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Abstract

A central challenge for the task of semantic segmentation
is the prohibitive cost of obtaining dense pixel-level anno-
tations to supervise model training. In this work, we show
that in order to achieve a good level of segmentation per-
formance, all you need are a few well-chosen pixel labels.

We make the following contributions: (i) We investigate
the semantic segmentation setting in which labels are sup-
plied only at sparse pixel locations, and show that deep
neural networks can use a handful of such labels to good
effect; (ii) We demonstrate how to exploit this phenomenon
within an active learning framework, termed PIXELPICK,
to radically reduce labelling cost, and propose an effi-
cient “mouse-free” annotation strategy to implement our
approach; (iii) We conduct extensive experiments to study
the influence of annotation diversity under a fixed budget,
model pretraining, model capacity and the sampling mech-
anism for picking pixels in this low annotation regime; (iv)
We provide comparisons to the existing state of the art in se-
mantic segmentation with active learning, and demonstrate
comparable performance with up to two orders of magni-
tude fewer pixel annotations on the CAMVID, CITYSCAPES
and PASCAL VOC 2012 benchmarks; (v) Finally, we eval-
uate the efficiency of our annotation pipeline and its sensi-
tivity to annotator error to demonstrate its practicality.

1. Introduction

The coupling of deep neural networks and large-scale la-
belled datasets has yielded significant progress on a host of
core machine perception tasks. A key challenge of training
these models is their need for considerable quantities of an-
notation, which can be prohibitively expensive to collect for
applications that require either specialised annotators such
as medical image diagnostics [1, 23, 56, 62], or fine-grained
labels, such as for detection and segmentation [36].

Semantic segmentation, in particular, has proven valu-
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Figure 1: All you need are a few pixels: We show that deep
neural networks can obtain remarkable performance with
just a handful of labelled pixels per image whose spatial co-
ordinates are proposed by the model, rather than the human
annotator. We compare our approach, PIXELPICK, with ex-
isting active learning and semi-supervised approaches on
the CAMVID dataset [7] (see Sec. 4 for further details).

able for decision making in a variety of applications such as
digital pathology [59], remote sensing [64] and autonomous
driving [67]. However, its requirement of per-pixel annota-
tions raises significant scalability challenges—on average
more than 1.5 hours of annotation and quality control was
required for each image in the CITYSCAPES segmentation
dataset [13].

The objective of this work is to propose a simple yet ef-
fective approach for training a good semantic segmentation
model at minimal annotation cost. Our approach is moti-
vated by three observations: (1) Within a given image, pix-
els exhibit significant spatial mutual information; (2) Deep
neural networks possess a strong inductive bias that ren-
ders them appropriate for modelling these spatial dependen-
cies [60]; (3) Collecting mask, scribble or click annotations
requires annotators to “localise and classify” using a mouse
or trackpad. By contrast, assigning a class to a pixel pro-
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posal can be “mouse-free”, requiring instead only a “clas-
sify” task without a localisation component (and which can
be performed via a single key-press). The first two fac-
tors imply that densely labelling all pixels in images may
be highly redundant, while the third suggests the possibil-
ity of designing an efficient sparse pixel labelling strategy.
Several questions then arise: how many sparse pixel labels
are needed to achieve good performance? how should those
pixel locations be selected? and how can the selected pixels
be annotated efficiently?

In this paper, we address these questions through the lens
of active learning [2, 54]. In contrast to passive supervised
learning (where the model is tasked to learn the mapping
from a fixed set of input-output pairs), active learning con-
siders a dynamic scenario in which a model can interac-
tively request labels for the samples that it believes will be
most useful for solving a given task. Our proposed PIX-
ELPICK framework adopts this paradigm, learning a model
for semantic segmentation by alternating between training
on previously labelled pixels and requesting new labels.

We make the following contributions: (i) We study the
problem setting in which labels are supplied at the level of
sparse pixels and show that with only a small collection
of such labels, modern deep neural networks can achieve
good performance; (ii) We show how this phenomenon can
be exploited with an efficient and practical “mouse-free”
annotation strategy as part of a proposed PIXELPICK ac-
tive learning framework; (iii) We perform a series of ex-
periments into factors that affect model performance in the
low-annotation regime: annotation diversity, architectural
choices and the design of the sampling mechanisms for se-
lecting most useful pixels; (iv) We compare with other state
of the art active learning approaches on standard segmen-
tation benchmarks: CAMVID, CITYSCAPES and PASCAL
VOC 2012, where we demonstrate comparable segmenta-
tion performance with significantly lower annotation bud-
get (Fig. 1); (v) Lastly, we assess PIXELPICK from the per-
spective of practical deployment, assessing its annotation
efficiency and robustness.

2. Related work

Our work is related to several themes of research that
have sought to minimise labelling costs for semantic
segmentation, as discussed next.

Weakly-supervised semantic segmentation. Many weak
supervisory signals have been explored in the literature
as a pragmatic compromise between fully supervised [37]
and fully unsupervised approaches to semantic seg-
mentation [26]. These cues include scribbles [35], eye
tracking [43], object pointing [3, 45, 12], web-queried
samples [27], bounding boxes [15, 28, 58], extreme clicks
for objects [44, 39] and image-level labels [70, 63, 17]. Dif-

ferently from these approaches, we gather labels at sparse
pixel locations proposed by the model itself, rather than at
locations selected by the annotator, and show that very few
such annotations are needed for good performance.

Interactive annotation. There is rich body of computer
vision literature considering the related problem of accel-
erating interactive annotation. The seminal work of [6]
demonstrated how to exploit scribbles to indicate the
foreground/background appearance model and leverage
graph-cuts for segmentation [5]. This was later extended
to the use of multiple scribbles on both object and back-
ground, applied to annotating objects in videos [41]. [48]
exploited 2D bounding boxes provided by the annotator and
performed pixel-wise foreground/background labelling us-
ing EM. Recent work [10] tasks a model with sequentially
producing the vertices of a polygon outlining an object,
given an appropriate crop. As with the weakly-supervised
signals described above, these methods are passive in the
sense that the labelling process is driven by the human
annotator, rather than the model.

Semi-supervised semantic segmentation. Inspired by
classical self-labelling approaches which aim to leverage
unlabelled data to improve a classifier [51, 68], a num-
ber of semi-supervised approaches have been developed to
make use of pseudo-labelling algorithms [30] for seman-
tic segmentation in a low-annotation regime. Consistency-
based pseudo-labelling methods have recently demon-
strated promising results, highlighting the important role of
aggressive data augmentations when only a small number of
densely annotated images or regions are available [42, 18].

Our approach differs from theirs in several ways: (i) our
model is trained from sparse pixel annotations, rather than
a small number of densely labelled images, (ii) we employ
active learning (samples are dynamically selected and
queried for annotation by the model), which, as we show
through experiments, brings additional improvements. We
compare our approach quantitatively with theirs in Sec. 4.3.

Active learning for semantic segmentation. At its core,
active learning is a set selection problem; the aim being
to determine the most informative subset of samples to ac-
quire labels for, given a labelling budget [2, 54, 32, 19, 69].
In this case the maximally informative labelled-pixel sub-
set is the one which yields the lowest generalisation er-
ror when used to train a supervised semantic segmentation
model. Prior work targeting segmentation has investigated
strategies to select superpixels that induce the maximum la-
bel change for a CRF on the training set by using weak
(image-level category) supervision [61], incorporate geo-
metric constraints [29, 40] and propagate foreground masks
to large-scale image collections [25]. For foreground seg-
mentation of medical imagery, FCNs [37] have been cou-
pled with bootstrapping [66], and U-Nets [47] with dropout-
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based Monte Carlo estimates of uncertainty [22] to drive la-
bel acquisition via uncertainty sampling. The strategy of
learning an estimator for difficult regions [69] has proven
effective as a basis for selecting which images should be
densely labelled for semantic segmentation [65]. Adversar-
ial learning has also been explored to query labels that align
distributions of labelled and unlabelled images [57].

More closely related to our work, prior studies have
considered region-based sampling strategies for semantic
segmentation, employing reinforcement learning [9],
equivariance constraints [21] and learned estimators of
labelling cost [38]. In contrast to these lines of research,
our work aims to introduce a more efficient paradigm of
active learning for segmentation, which is to train models
by only querying sparse pixel annotations (removing the
localisation component of the annotation task). Concurrent
to our work, Cai et al. [8] explore the use of super-pixels
with active learning. We compare our work with theirs and
with other region-based sampling strategies noted above in
Sec. 4.

3. Method
In this section, we describe the problem formulation and

introduce our framework for pixel-level active learning se-
mantic segmentation in Sec. 3.1. We then detail our mouse-
free annotation tool to efficiently implement the framework
in Sec. 3.2.

3.1. PIXELPICK framework

We seek to train a model for semantic segmentation with
pool-based active learning [53], in which we alternate be-
tween training a model on available annotation and request-
ing labels for unlabelled samples from an oracle (see Fig. 2).

More formally, let X ⊂ RH×W×3 denote the space of
colour images and let Φ(·; Θ) : X → YH×W represent a
ConvNet with parameters Θ that maps a given image to a
grid of elements in a C-class semantic label space (here Y
denotes the (C − 1)-simplex, i.e. Y = {(p1, . . . , pC) ∈
[0, 1]C :

∑C
p=1 pi = 1, pi ≥ 0}). We assume access to

an initial unlabelled pool of N images, DU , indexed by the
H ×W ×N pixel coordinate lattice, Ω, and an annotation
database, D0

L, initialised to an empty state.
At the kth round of learning, a batch of B ∈ N pixel

coordinates, ωk ⊂ Ω, are sampled by an acquisition func-
tion, A, using the predictions of the model trained in the
previous round, Φ(·; Θk−1), on the unlabelled pool DU , i.e.
A(DU ,Φ(·; Θk−1)) = ωk ⊂ Ω. The sampled pixel coordi-
nates ωk are then sent to an oracle for labelling to produce a
corresponding set of one-hot labels {yu ∈ Y : u ∈ ωk} that
are added to the latest version of the annotation database,
Dk−1

L . Finally, the model is retrained on this expanded
database, Dk

L = ∪k
i=1{(u, yu) : u ∈ ωi} (comprising

all annotations gathered so far), to produce a new model,

Φ(·; Θk), and the process is repeated. We term this frame-
work PIXELPICK due to its emphasis on selecting appro-
priate pixels for annotation. The two components of the
framework, namely retraining the segmentation model and
sampling new pixel coordinates, are discussed next.
Retraining the segmentation model. At round k of the
active learning algorithm, we solve for parameters Θk by
minimising a cross-entropy loss at each labelled pixel coor-
dinate present in the current annotation database Dk

L:

Θk = argmin
Θ

L(Θ,Dk
L) where (1)

L(Θ,Dk
L) = − 1

|Dk
L|

n∑
(u,yu)∈Dk

L

C∑
c=1

yu(c) · log(ŷu(c)).

(2)

In the expression above, yu(c) and and ŷu(c) denote the
cth channel of the oracle-provided label and corresponding
model prediction at pixel coordinate u, respectively.

Sampling new pixel coordinates for labelling. The objec-
tive of the acquisition function, A, is to sample the B pixel
locations at round k that maximise improvement in seg-
mentation performance for the current model Φ(·; Θk−1).
Functionally, it acts by examining the predictions of
Φ(·; Θk−1) across all candidate pixel coordinates among
the unlabelled pool Du and sampling B such coordinates
according to a specified criterion.

Discussion. The distinction between sampling contiguous
spatial patches for annotation (e.g. grids of 128x128 pixels
or larger as considered in prior work [38, 21, 9]), and
sampling individual pixel coordinates, as proposed within
the PIXELPICK framework, is a subtle but important one.
It has two key benefits. The first, as noted in Sec. 1, is
that it allows us to leverage the powerful inductive biases
provided by deep neural network architectures that render
them well suited to modelling spatial dependencies in
natural images [60]. The second is a practical one: by
providing annotators with pixel coordinate proposals,
the labelling process is transformed from a “localise and
classify” task (required when segmenting semantic regions
and typically performed with a mouse or trackpad), into
simply a “classify” task in which a class label is assigned
to a coordinate proposal, and which can often be performed
with a single key-press. We validate both claims through
experiments in Sec. 4, where we show that (i) deep neural
networks achieve strong segmentation performance at
extremely sparse annotation levels, (ii) “mouse-free”
annotation can be performed very efficiently.

Acquisition functions. The design of the specific crite-
ria employed by the acquisition function has been the sub-
ject of considerable attention in the active learning litera-
ture (see [53] and [46] for surveys of classical and recent
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Figure 2: Overview of the PIXELPICK active learning framework. Given a database of unlabelled pixels of interest (1)
each image is fed to a segmentation model to produce pixel-wise class probabilities (2), which are in turn passed to an
acquisition function to estimate per-pixel uncertainties and select a batch of B pixels to be labelled (3). The queries are sent
to annotators (4), and the resulting labels are added to the labelled pixel database, DL (5). Finally, the segmentation model
is retrained on the expanded database (6), before the cycle repeats. To bootstrap the process and train the initial segmentation
model, we randomly sample B pixels and send them to be annotated. See text in Sec. 3 for further details.

approaches, respectively). Since the focus of our work is
not the design of another criterion, but rather on the effec-
tiveness of individual pixels as the base unit for annotation,
we consider several existing approaches based on the frame-
work of uncertainty sampling [32] that have been noted as
effective in the literature, discussed next.

The Least Confidence acquisition strategy [33, 14]
draws, at each iteration, the pixel coordinate for which the
model has least confidence in its most likely class label. The
Margin Sampling strategy [50] looks for samples that ex-
hibit the smallest difference (i.e. lowest “margin”) between
the first and second most probable labels. Finally, the En-
tropy Sampling strategy aims to select the pixel coordinate
with the greatest conditional entropy [55] under the current
model. Formal mathematical descriptions of each method
are given in the supplementary.

As noted in prior work [4, 69], these strategies can
suffer from a lack of diversity if applied naively, but can be
readily adapted to minimise this effect by first sub-sampling
the unlabelled pool and then employing the acquisition
function to choose only from this restricted subset. A
variation of this diversity heuristic worked well on our
task: We first rank all pixels using the acquisition function,
then uniformly sampling B/N pixel coordinates from the
top M% ranked locations in each image, where M is a
hyperparameter and N denotes the number of images we
distribute our budget B amongst. We note that while more

sophisticated strategies (e.g. [52]) could also be considered
within our framework, a simple Margin Sampling strategy
coupled with the modification described above proved
effective (shown through experiments in Sec. 4), and thus
we adopt it in this work.
Sampling batches. The number of pixel coordinates sam-
pled in each round, B, is set as a hyperparameter. A larger
value of B corresponds to fewer rounds of annotation (and
therefore a potentially faster deployment cycle), at some
cost in performance. A detailed study of the effects of B
is provided in the supplementary.

3.2. PIXELPICK Annotation tool

To demonstrate the practical utility of the PIXELPICK
framework, we created an annotation tool to support the la-
belling process (Fig. 3). The tool is simple: for each image,
the annotator is presented with a few pixels that were se-
lected by the PIXELPICK acquisition function (described in
Sec. 3.1). They are also shown a mapping from keyboard
keys to semantic labels (Fig. 3, right hand side). The tool it-
erates over the pixel locations, highlighting the current pixel
in red and the annotator simply presses the appropriate key
to classify it. The tool then moves on to the next pixel pro-
posal, and the procedure repeats until all proposals in the
image are exhausted, when a new image is shown.

We note that an important difference between this an-
notation technique and those considered in prior work (e.g.
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Figure 3: PIXELPICK mouse-free annotation tool. The
annotator classifies the highlighted point (in red) by press-
ing the keyboard character of the corresponding class for the
dataset. The tool then highlights the next pixel proposal and
the process repeats. Note that the task requires the annnota-
tor to perform classification, but not localisation.

scribbles [35], object pointing [3, 45], extreme clicks [44,
39] etc.) is that it is “mouse-free”—requiring only key
presses from the user—but avoids the complexity of spe-
cialised approaches such as eye tracking [43]. In Sec. 4, we
conduct experiments to validate the efficiency of the pro-
posed annotation tool.

4. Experiments
In this section, we first describe datasets and implemen-

tation details for our experiments in Sec. 4.1. In Sec. 4.2,
we conduct extensive ablation studies, and we then compare
with existing state of the art approaches in Sec. 4.3. Finally,
in Sec. 4.4, we demonstrate the practical feasibility and ro-
bustness of PIXELPICK by reporting annotation times and
investigating its sensitivity to annotator errors.

4.1. Experimental setup

Datasets. We conduct experiments on the widely used
CAMVID [7], CITYSCAPES [13] and PASCAL VOC
2012 [16] (abbreviated to VOC12) datasets. Detailed de-
scriptions of each dataset are provided in the supplementary.
Training setting. During each round of active learning,
we enforce the cross-entropy loss only on the labelled
pixels (i.e. those in Dk

L for round k), as described in
Sec. 3.1. Unless otherwise stated, M , the hyperparameter
defining the % of top ranked pixel coordinates used as a
basis for uniform sampling is set to 5, while B, the pixel
labelling budget per round is set to 10N for CAMVID and
CITYSCAPES and 5N for VOC12, where N is the number
of images in the dataset. At the beginning of each round,
we reinitialise the model and train from scratch with the
updated labelled pixels. For details about optimisation and
data augmentation, please refer to the supplementary.
Evaluation metrics. Following standard prac-
tice [21, 65, 42, 38], we compute mean intersection

over union (mIoU), report our results on the test set for
CAMVID, and on the validation set for CITYSCAPES and
VOC12 datasets. To provide a measure of variance in our
low data regime, we report the average of 3 different runs
(i.e., different seeds) on PASCAL VOC 2012 and 5 runs on
CAMVID and CITYSCAPES for all experiments. We plot
their standard deviations as shaded regions (±1 std. dev.).

4.2. Ablation studies

In this section, we explore the effect of four factors
that affect performance in the PIXELPICK framework,
with a particular focus on annotation diversity (with the
goal of finding the most effective way to spend an anno-
tation budget); encoder depth (varying the capacity of the
encoder); encoder initialisation (self-supervised vs super-
vised pretraining); and acquisition function (determining
the best way to select pixels). Note that, while investigating
the first three factors, all pixels are selected via simple
uniform random sampling, with the goal of validating the
effectiveness of inductive bias in modern ConvNets. We
simulate the active learning process, following standard
practice [21, 65, 9], i.e. to label the queried pixels, we sim-
ply reveal labels by querying the ground truth annotations
at their spatial coordinates.

Annotation diversity. Given a fixed pixel labelling
budget (B pixels), a natural question arises: is it better to
label a small number of images densely or a large number
of images sparsely? To address this question we design a
simple experiment, where a fixed annotation budget of n
pixels is to be distributed over a dataset of Ntotal images.
We define the annotation diversity ratio, η =

Nimg

Ntotal
, where

Nimg refers to the number of images that have had at least
one pixel labelled (for simplicity, we assume the labelling
budget is evenly distributed over the selected set of images).
Therefore, η → 1 refers to a budget uniformly distributed
over the full dataset (thereby forming a sparse, but diverse,
label set), η → 0 denotes the case where the budget is
only spent on a few images (yielding a densely annotated
subset of images). We then train DeepLabv3+ models on
CAMVID and CITYSCAPES, fixing B so as to end up with
10 pixel labels per image when η = 1, and experiment with
5 different diversity ratios η from 0.01 to 1.0. In Fig. 5(a),
we observe that mean IoU increases monotonically with
η. This indicates that, given a fixed budget, it is better
to sparsely annotate as many images as possible, rather
than a smaller number more densely, motivating our sparse
PIXELPICK approach. In the remaining experiments, we
likewise spend our annotation budget evenly across all
images within a dataset (as described in Sec. 3.1), with
each image being only sparsely labelled.

Encoder depth. We next investigate the effect of encoder
capacity in the low annotation regime. Specifically, we
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Figure 4: Ablation studies. In (a) and (b), we investigate the effect of segmentation encoder depth on CAMVID and VOC12,
respectively. We observe that greater depth consistently helps performance above a threshold of 10 pixel labels per image. In
(c) and (d), we compare fully-supervised ImageNet classification pretraining with self-supervised ImageNet (MoCov2 [11])
pretraining for the encoder on CAMVID and VOC12, respectively, where we see that for lower numbers of pixel labels per
image that fully-supervised pretraining is a better choice, but the situation reverses as more annotations become available.

experiment with a ResNet-based FPN by changing the
number of layers in the encoder from 18 to 101 layers. All
encoders are initialised with a model pretrained for classi-
fication on ImageNet [49]. We conduct experiments both
on CAMVID (training each model with 1 to 100 randomly
labelled pixel coordinates per image) and VOC12 (training
each model with 1 to 1000 randomly sampled labelled pixel
coordinates per image), reporting results in Fig. 4(a) and
Fig. 4(b), respectively. We observe that deeper networks
yield higher performance above a minimum number of
labelled pixels (approximately 10) per image. This implies
that, at the cost of greater computational complexity, the
use of a deeper network may be a viable way to reduce
annotation requirements in low annotation regimes (above
some minimum labelling threshold).

Encoder initialisation. Next, we investigate whether su-
pervised pretraining is necessary for good segmentation
performance in a low annotation regime. Concretely, we
compare the performance of an FPN-based architecture
with a ResNet50 encoder that is initialised using either su-
pervised (ImageNet classification) or self-supervised (Mo-
Cov2 [11]) pretraining. To study how performance differs
with the number of labelled pixels, we vary the annotation
budget from 1 to 104 randomly sampled labelled pixels per
image on CAMVID (Fig. 4(c)) and VOC12 (Fig. 4(d)). On
CAMVID, we observe an interesting biphasic phenomenon:
when the number of labelled pixels per image is fewer than
10, the model initialised with supervised ResNet50 shows
superior performance. However, as the number of pixel la-
bels increases, self-supervised pretraining gradually outper-
forms its supervised counterpart. This phenomenon is also
observed on the VOC12 dataset, with a cross-over occur-
ring at approximately 102 labelled pixels per image. Thus,
supervised pretraining may be an appropriate choice for low
annotation budgets, when suitable pretraining annotations
are readily available, but its advantage wanes the annota-
tion budget grows. Given its superiority at low annotation

levels, we adopt supervised pretraining for the remaining
experiments.

Acquisition function. Thus far, we have only labelled
pixels selected via simple uniform random sampling,
showing that modern CNNs—with their strong inductive
biases—can be trained for semantic segmentation with just
a handful of pixel annotations per image. Here, we go one
step further, investigating whether a better choice of acqui-
sition function can further improve learning efficiency. To
this end, we experiment on CAMVID with three popular un-
certainty sampling methods (described in Sec. 3.1): Least
Confidence (LC), Margin Sampling (MS) and Entropy
Sampling (ENT). In addition, we also experiment with a
Query-By-Committee (QBC) [54] approach that queries
labels using model ensembles [53]. We implement this with
dropout after each convolutional layer, repeating inference
20 times to obtain a Monte Carlo estimate following [20].
Due to the large number of models to be trained (i.e. differ-
ent acquisition functions, each trained five times to estimate
variance), we employ the lightweight MobileNetv2-based
DeepLabv3+ model. We initialise training with 10 uniform
randomly selected labelled pixels per image. Once training
converges, we query 10 additional pixel labels with the
given acquisition function. As described in Sec. 3.1, we
first take top M% ranked pixels (here, M = 5) per image
under the uncertainty estimation ranking and uniformly
sample 10 pixels from these pixels. Fig. 5(b) shows the
results. We see that all uncertainty-based methods outper-
form the random baseline in every round. Interestingly,
dropout-based voting variants of LC, MS and ENT each
show worse performance than their counterparts voting—a
similar observation was also made in [9]. We note that in
our problem setting, Margin Sampling (MS) outperforms
other strategies, reaching about 96% of the performance
of the fully supervised baseline with only 100 pixels per
image (0.06% of the annotations). Therefore, we use MS
as our sampling method for PIXELPICK to compare against
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Figure 5: Ablation studies. In (a), we observe that sparsely annotating a larger number of images (higher η value) out-
performs denser labelling of fewer images, with consistent trends on the CAMVID and CITYSCAPES datasets. In (b), we
compare acquisition functions on CAMVID and find that Margin Sampling performs best. In (c), we investigate the sensitiv-
ity of the PIXELPICK framework to annotator errors by simulating a pixel classification user error (SUE) rate of 10%. We
observe that performance is only marginally affected, indicating the practical robustness of the PIXELPICK framework.
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(b) Qualitative results for models trained with PIXELPICK on VOC12 (top) and CITYSCAPES (bottom).

Figure 6: Comparison to state-of-the-art and qualitative results. In (a) we observe that PIXELPICK performs favourably
against existing state-of-the-art approaches for active learning and semi-supervised learning on CITYSCAPES. In (b) we show
qualitative results. With only 10 labelled pixels per image, segmentation models trained with PIXELPICK achieve promising
visual quality, which further improves to capture fine details (e.g. the cleanly segmented thin lamppost in the bottom right
image) as further labelled pixels are used.

previous work in the following section.

Discussion. To summarise, we can draw the following con-
clusions from the ablation studies: First, given a fixed pixel
annotation budget, it is best to spread it over as many images
as possible; Second, the inductive bias in modern ConvNets
makes them well-suited to capture local correlations within
an image, evidenced by the first three experiments, where
models trained with randomly sampled pixels still perform
well; Third, although it might be thought that deeper net-
works with greater capacity would suffer significantly from
over-fitting in the low-annotation regime, we found that for
many budget choices, deeper networks are the preferred op-
tion. Fourth, in terms of acquisition functions, active learn-
ing outperforms random sampling, and in particular, Mar-
gin Sampling performs best in our setting.

4.3. Comparison to state of the art methods

We next validate our framework by comparing
against prior work in active/semi-supervised learning
on CAMVID (Fig. 1) and CITYSCAPES (Fig. 6(a))
and in weakly-supervised learning on PASCAL VOC
2012 (Tab. 1). To strike a balance between computation
complexity and performance, we adopt the FPN model
with a ResNet50 backbone, and query additional samples
each round with Margin Sampling, as suggested by the
ablation study. We train for 10 query rounds, with each
round adding 10 labelled pixels per image for CAMVID
and CITYSCAPES and 5 pixels for VOC12.

Comparison to region-based active learning and
semi-supervised methods. In Fig. 1 and Fig. 6(a), we
observe that our approach performs favourably to ex-
isting semi-supervised and region-based active learning
approaches in terms of label efficiency on both CAMVID
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Method Backbone Train set (anno. type) mIoU

Weakly-supervised methods
GAIN [34] VGG16 10.5K imgs (classes) 55.3
MDC [63] VGG16 10.5K imgs (classes) 60.4
DSRG [24] ResNet101 10.5K imgs (classes) 61.4
FickleNet [31] ResNet101 10.5K imgs (classes) 64.9
BoxSup [15] VGG16 10.5K imgs (boxes) 62.0
ScribbleSup [35] VGG16 10.5K imgs (scribbles) 63.1

Interactive weak supervision
PIXELPICK (Ours) ResNet50 1.5K imgs (sparse pixels) 65.6

Table 1: Comparison to existing weakly-supervised
methods on VOC12 validation set. PIXELPICK is com-
petitive against existing methods, using a budget of 20 pixel
annotations per image when trained on a much smaller num-
ber of images.

and CITYSCAPES, highlighting that the strong inductive
bias of CNNs can make good use of pixel-level supervision.

Comparison to previous weakly-supervised learning
work. In Table 1, we compare our results on VOC12 to
weakly-supervised models which leverage different forms
of ground truth annotation. We observe that PIXELPICK
compares favourably to existing methods (each trained
on 10.5K images) when PIXELPICK uses a budget of 20
pixel annotations per image across only 1.5K training
images (since active learning involves retraining the model
multiple times, we use a limited size of training set). For
reference, note that other methods such as BoxSup [15]
and ScribbleSup [35] use multiple annotations per image,
depending on the number of objects present.

Comparison to concurrent work of active learning for
semantic segmentation In Fig. 7, we compare with the
concurrent work of [8], which employs sparse superpixel
annotation. To account for the differences between the
architectures and training image resolutions used in each
method, we compare the methods according to the % of
fully supervised performance attained by the model. On
the x-axis, we indicate the annotation cost (measured as the
number of keyboard inputs for querying pixel labels, i.e. the
“class clicks” referred to in [8]). We observe that our pro-
posed PIXELPICK approach is competitive with the concur-
rent work. In particular, we note that PIXELPICK is able to
reach 90% performance with fewer annotation cost on both
CITYSCAPES and VOC12 benchmarks.

4.4. Practical deployment

Thus far, we have largely followed the common practice
in previous active learning segmentation work, mimicking
the labelling process by simply disclosing the correspond-
ing labels from the fully-annotated dataset. In this section,
we evaluate the efficiency of PIXELPICK (Fig. 3) and its

105

amount of clicks (log-scale)

40

60

80

100

%
 o

f f
ul

ly
 s

up
. m

Io
U

PixelPick (Ours, ResNet50)
SAL (Xception65) [8]

2 4 6
amount of clicks 1e4

70

80

90

%
 o

f f
ul

ly
 s

up
. m

Io
U

PixelPick (Ours, ResNet50)
SAL (Xception65) [8]

Figure 7: A comparison based on estimated annotation
cost. We compare PIXELPICK against the concurrent work
of [8] in terms of mIoU ratio vs annotation cost approxi-
mated by the amount of clicks on (left) CITYSCAPES and
(right) VOC12 datasets.

sensitivity to annotator noise during model training.
In detail, we ask eleven annotators to label 100 images

from VOC12 dataset, with 10 pixels per image, we mea-
sure the average time and accuracy (between annotator and
the groundtruth from original dataset). As a result, with
our simple unoptimised annotation tool, it takes 1.42 sec-
onds on average to label the queried pixel (14s per image),
with 87.7% average accuracy. To our knowledge, this an-
notation speed is significantly faster than drawing bound-
ing boxes or scribbles [15, 35], and approximately twice as
fast as picking extreme points according to times reported
by [44]. Additionally, given the observed annotation error
rate, we conduct an experiment to assess the influence of
these noisy annotations, that is, we artificially jitter 10%
of the groundtruth annotations to simulate errors during the
annotation process and train a model on pixels containing
this label noise. As shown in Fig. 5(c), the performance gap
incurred from annotation noise is negligible, indicating that
our framework is not only efficient with respect to annota-
tion time but also robust to potential errors caused by anno-
tators. This is an encouraging sign for the practical potential
of the PIXELPICK framework for real-world deployment.

5. Conclusion
In this work we proposed PIXELPICK, a framework

for semantic segmentation that employs a small number
of sparsely annotated pixels to train effective segmentation
models. We showed that PIXELPICK requires considerably
fewer annotations than existing state-of-the-art to achieve
comparable performance. Finally, we showed how anno-
tation for pixel-level active learning can be obtained effi-
ciently with a mouse-free labelling tool, facilitating real-
world deployment. We hope that our work encourages fur-
ther research into the promising use of sparse pixel-level
annotation for image understanding.
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