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Abstract

Vision systems for fully autonomous navigation must
perform well even in unstructured and degraded scenar-
ios. In most driving datasets today, there is a bias to-
ward clear-weather conditions as compared with extreme-
weather owing to the difficulty in capturing and annotating
large-scale image datasets degraded by adverse weather.
While there has been extensive research on techniques such
as deraining, dehazing and on tasks such as segmenta-
tion and domain adaptation, there has been minimal atten-
tion toward methods to effectively translate clear-weather
driving datasets to extreme-weather domains. To address
this, we present a method that builds on recent advances in
Generative Networks and Self-Supervised Learning to per-
form conditional multi-domain image translation. We eval-
uate our method on the semantic scene understanding task
and demonstrate quantitatively superior translation results
from clear-weather conditions to adverse-weather shifted
domains such as Rain, Night and Fog conditions. From our
experiments, we show improved domain invariant content
disentanglement, and segmentation methods trained with
datasets translated using the proposed method have im-
proved performance over single and multi-domain image
translation baselines on real-world adverse weather data.

1. Introduction

The performance of vision algorithms are crucial for ap-
plications in autonomous navigation and robotic systems
that are to be deployed in real-world settings. This in-
variably involves unstructured environments and degraded
scenes from non-ideal weather and illumination settings,
and the vision algorithms must be able to perform optimally
even in such adverse conditions. Image degradation due to
fog [65], rain [33, 71] and low-illumination from night-time
scenes [6, 16] lead to a significant decrease in visibility [80]
and that leads to decreased performance across vision tasks

such as segmentation and detection. An autonomous system
is required to be robust and perform well even in degraded
conditions such as fog, rain, night-time glare, overcast con-
ditions and snow. While a significant body of research has
dealt with deraining [28, 33, 62, 71], defogging/dehazing
[52, 73] and night-to-day translation [61, 83], novel tech-
niques for the multi-domain visually degraded scene gener-
ation problem to augment existing driving datasets captured
in clear-weather to adverse weather conditions has received
minimal attention. Compiling large-scale driving datasets
in degraded scenarios such as Rain, Fog, Snow and Night-
time conditions is not scalable due to unpredictable weather
patterns (while capturing the data) and due to poor illumina-
tion and scene degradation that make the task of annotating
these datasets a formidable challenge. As compared with
clear-weather daytime driving datasets such as Cityscapes
[14], KITTI [19] and IDD [70], degraded datasets are sig-
nificantly smaller [58]. While the BDD100K dataset [78]
has approximately 40% of its images captured at night,
only 345 images have semantic segmentation labels [60].
Further, nearly 70% of the labels for BDD100K Night im-
ages have labeling errors [57]. Hence, there is a need for a
multi-domain generative model to effectively translate large
clear-weather driving datasets to adverse weather domains
with realistic results. Further, dataset translation also allows
the reuse of existing high-quality annotations in addition to
augmenting and enriching existing datasets.

CNNs are heavily data-sensitive. In Table 1, the seman-
tic segmentation performance of a BiSeNetV2 [77] model
trained on the Cityscapes dataset [14] shows a significant
decrease in mIoU when evaluated on real-world datasets
such as Foggy Zürich [15, 58], ACDC-Rain [60] and Dark
Zürich [16] for fog, rain and night respectively. Deep vi-
sion models trained for vision and perception tasks in au-
tonomous navigation show an alarming bias toward clear-
weather daylight conditions owing to the model architec-
tures being trained on largely available annotated data in the
well illuminated domain. This dataset bias leads to a lack of
generalization to adverse weather conditions. The research
community will benefit from an improved multi-domain
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Table 1. Comparison between semantic segmentation models
trained on Cityscapes and evaluated on adverse-weather domain
datasets (in Mean IoU). The models used are: BiSeNetv2 [77],
PSPNet [82], DeepLabv3+ [8], DDRNet [27].

Semantic Segmentation Models Trained on Cityscapes (mIoU)

Validation Data (↓) BiSeNetv2 PSPNet DeepLabv3+ DDRNet

Cityscapes 75.75 76.54 77.78 79.63
Foggy Zürich 11.22 15.35 19.40 32.55
Foggy Driving 22.50 28.39 22.79 40.85

Foggy-Cityscapes 39.05 51.82 56.23 62.47
ACDC-Rain 22.05 39.32 29.11 41.37

Rainy-Cityscapes 17.65 41.28 46.05 45.73
Dark Zürich 1.43 8.17 7.02 14.61

translation method that can be used to obtain a domain-
shifted dataset with realistic images. Such a method can be
used to translate clear-weather datasets such as Cityscapes
[14] or the Indian Driving Dataset [70] to domain-shifted
versions in Fog, Rain or Night-time conditions. In this
work, we utilize images from several datasets (refer Sec-
tion 3) spanning the domains of Rain, Fog, and Night-time
scenes to train the multi-domain image translation method.

Recently, several works such as DSMAP [5], MSGAN
[44] and DRIT [37] have investigated methods to enable di-
verse image translation by improving the disentanglement
of domain-invariant and domain-specific content spaces to
translate an image from a source domain to diverse time-of-
day or weather target domains. While these methods and the
multi-domain image translation methods such as MUNIT
[31] and DRIT++ [38] show good performance for diverse
image synthesis, their translation results when used for se-
mantic scene understanding tasks in adverse weather such
as SFSU [58] show suboptimal generalization performance.
Moreover, our experiments with high-resolution DRIT++
with a modified perceptual loss [83] and mode-seeking reg-
ularizer [44] demonstrated satisfactory diverse image syn-
thesis only for similar scenic datasets such as Cityscapes
and BDD100K whereas the translation performance for the
Indian Driving Dataset (IDD) dataset had several artifacts
(IDD has a wide variety of scenes with more segmentation
label classes than Cityscapes). We note for these methods
that despite the use of several loss functions to improve dis-
entanglement of domain-invariant and domain-specific con-
tent spaces, their translation of style across datasets with
scenic domain-shift lead to issues in translational general-
ization. Our method addresses this issue by using a con-
trastive loss [50], multi-scale normalization [30] and denor-
malization [51] methods to effectively preserve the content
information and apply style in a multi-scale manner leading
to better generalization and translation performance.

We address these challenges by designing a novel multi-
domain image translation approach drawing on insights
from ForkGAN [34], TSIT [34] and FastCUT [50] for
our method. In Fig.(1), we show the pipeline of our
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Figure 1. Overview of the multi-domain translation method.

method trained with a clear-weather dataset conditioned on
adverse-weather images to translate the dataset to an ad-
verse domain-shifted version. Experiments show that our
method outperforms prior image translation methods for
the semantic scene understanding task in adverse conditions
and demonstrates improved generalization capability when
a semantic segmentation model is fine-tuned with a domain-
shifted dataset translated using our method. In summary,
the contributions of this work are:

• We propose a two-stream contrastive multi-domain
image translation method with Adaptive Instance Nor-
malization [30] to introduce style and Adaptive Denor-
malization to preserve content [34, 51].

• We show that using a multi-scale contrastive loss [10,
45, 48, 50] and a perceptual loss, we are able to bet-
ter preserve the content and improve the style infu-
sion from training with images from Foggy-Cityscapes
(fog) and Rainy-Cityscapes (fog + rain) datasets.

• We show that with less than 170 images from each tar-
get domain, the proposed approach can match the per-
formance of baseline multi-domain and single-domain
translation methods on the semantic scene understand-
ing evaluation on real-world adverse weather datasets.

• We present experiments and ablation studies to illus-
trate the effectiveness of the proposed approach.

2. Related Work
Multi-domain image translation methods to transform

datasets from one domain to many has received less at-
tention from the research community. There are several
datasets that have been compiled, yet most driving datasets
are pertinent to clear-weather conditions. The focus of the
research community has been on only a select few clear-
weather datasets for evaluation on segmentation and detec-
tion tasks. We discuss related works and experiments:

Multi-Domain Image Translation. Image-to-image
translation methods such as CycleGAN [84], MUNIT [31],
FUNIT [41] have successfully been able to translate images
from one domain to another in an unpaired setting. Some
methods [1, 13, 30, 37, 38] have performed well in multi-
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domain translation and diverse translation tasks [37, 40],
with good performance even in high resolution [66]. Image
augmentation is an important step in self-supervised learn-
ing [10, 24], and more recent methods in Domain Adap-
tation [39, 49, 68, 69] use these image translation [12] re-
sults for the synthetic to real (syn2real) task. Further, re-
cent methods such as COCO-FUNIT [56] and unsupervised
methods such as [2] have been successful in the low-data
regime but their performance has not been investigated in
the clear-weather to adverse weather domains. Still, most
methods require large datasets in the target domain - which
is sometimes infeasible or not scalable to compile (Sec.(1)).

Style Transfer. Style transfer methods preserve the con-
tent information and infuse style to manipulate the image [7,
18]. Recent works propose GAN-based methods [31, 79,
84], wavelet transforms [76] or graph cuts [81] for effective
style transfer. Further, [43, 74] propose universal photo-
realistic style transfer. To better preserve the scene informa-
tion in the target domain, we experimented with improving
multi-scale adaptive normalization [30] for learning a joint
embedding onto a bilateral grid based on [74]. This enables
edge-aware local affine transforms for photo-realistic multi-
domain translation. This approach transforms the genera-
tive adversarial formulation into an edge-aware style trans-
fer method that suitably combines local and global scene
information across domains. We found better scene consis-
tency for the IDD dataset (refer Sec.(1)) with much clearer
and sharper translations for ‘two-wheelers’ and ‘autorick-
shaws‘ that are absent in weather-shifted domain scenes.
While the translation quality and the photo-realism of the
generated images were qualitatively good, the intensity of
the weather degradation was low and had more global than
local style in the output leading to mild translations.

Physics-based degradation. Recently, Physics-based
methods have been proposed to approximate and render fog
[15, 58] and rain [23, 28, 33, 67, 71, 75] with realistic pho-
tometry and physical properties. While the rendering is re-
alistic, these methods depend on availability of depth infor-
mation [28, 58], camera calibration [15], inputs where pixel
is not covered by rain [71], streaks radiance [23] etc. More-
over, these methods include computations such as depth-
completion, guided-filtering, per-pixel rain masks, simula-
tions etc., leading to long render-times for each image.

Domain Adaptation. Few-shot learning [17, 63, 64] and
Domain Adaptation [4, 29, 53] methods have been stud-
ied in order to adapt to unknown domains in an unsuper-
vised manner. Recent works like [55] have described the
concept of Universal Domain Adaptation (UniDA) to be
able to adapt to any target domain with arbitrary shifts.
In addition, techniques in realistic settings such as Open-
Compound Domain Adaptation (OCDA) [42, 49] have been
proposed to adapt a model trained on clear-weather driv-
ing datasets with labels (Indian Driving Dataset) to achieve

better performance on multiple heterogeneous weather do-
mains. Improving methods for realistic DA like OCDA can
be an important step toward UniDA. A few-shot Domain
Adaptation formulation [47] has been proposed and recent
work [54] using few labeled samples and many unlabeled
samples in the target domain have been studied for classi-
fication. Curriculum learning methods [57, 59] have pro-
posed techniques to improve segmentation performance in
adverse weather conditions. Thus, there are few works that
address the adaptation to adverse weather conditions and
there is a need for datasets to have adverse domain-shifts
with the same labels to evaluate adaptation performance.

3. Methodology
3.1. Problem Formulation

The two-stream contrastive multi-domain image transla-
tion model is illustrated in Fig.(2) with the source stream
and style conditioning stream [34]. We denote the source
domain (S) comprising of clear-weather images {Sn} as the
source input. For this work, we consider three adverse con-
dition domains as the target styles - Fog, Rain and Night-
time; Our setting is unpaired, hence we use the images from
the adverse target domains ({Tfog, Train, Tnight} ∈ T) as
our style conditioning input, where T is the combined com-
posite style conditioning domain. The S is the source con-
tent input and T is the target style input. We train the two-
stream conditional CNN model (N) to capture the source
domain content structure and the composite target domain
styles at multiple feature scales of the upsampling block fea-
ture maps. The model N consists of a source stream that
takes as input Ŝ = Ŝn, ∀n = 1, · · · , N and a style condi-
tioning stream that takes in T̂= T̂m, ∀m = 1, · · · ,M as
input. The Generator G samples a latent vector z0 ∈ Z
from a random Gaussian distribution and progressively uti-
lizes the target style and source content captured by the
AdaIn and FADE blocks respectively in the feature maps
of the i-th residual block (of k total blocks). In addition to
progressively refining the generated image at various fea-
ture scales, we introduce a contrastive loss to maximize the
mutual information [48] between the source input and the
generated image to improve the translation results. Further,
multi-scale discriminators [72] enable the effective infusion
of adverse-weather domain style in the generated images.

3.2. Proposed Approach

AdaIn. We use the Adaptive Instance Normalization
[30] for the style image feature maps at each of the i-th
blocks (i=7) in the style conditioning stream. This enables
better preservation of the style at various scales to fuse the
information in a multi-scale manner with the source content
features captured by the denormalization block (FADE). We
denote the feature map at the i-th block to be mi

s, the fea-
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Figure 2. Overview of the two-stream contrastive multi-domain translation model.

tures extracted (AdaIn) to be f i
s, and the µ and σ represent

the mean and standard deviation respectively. The AdaIn
formulation is as follows:

AdaIn (mi
s, f

i
s) = σ(f i

s)

(
mi

s − µ(mi
s)

σ(mi
s)

)
+ µ(f i

s) (1)

FADE. To fuse the domain-invariant information cap-
tured by the source stream, we use the denormalization
method described by [34, 51] for the source feature maps
at each of the i-th blocks (i=7) in the source stream. First,
the feature map mi is subject to batch normalization [32]
followed by the learned denormalization. The denormaliza-
tion parameters modulate the scale and offset from batch
normalization by using one-layer convolutions to learn a
scale factor γi

c and and offset βi
c. Using the same nota-

tion as above, mi
c is the feature map at the i-th block, f i

c

are the features extracted by the FADE block, and µ and σ
represent the mean and standard deviation respectively. The
FADE formulation is as follows:

FADE (mi
c, f

i
c) = γi

c ·
mi

c − µ(mi
c)

σ(mi
c)

+ βi
c (2)

As discussed, our method aims to translate images from
the clear-weather domain conditioned on images in the
weather domain (style) to generate realistic images in the
adverse weather domain with the aim of translating the en-
tire dataset to the domain-shifted version. We use the AdaIn
[30] to preserve style information and FADE [34, 51] to pre-
serve domain-invariant content information for each feature
map of the i-th residual block as shown in Fig.(2).

Method Overview. Referring to Fig.(1) and Fig.(2),
we describe the training flow and lay the context for
the proposed method. An image {Sn} from the clear-
weather source domain S is the content stream in-
put. Similarly, an image {Tm} from the adverse-weather
composite (Fog, Rain and Night-time) target domain

({Tfog, Train, Tnight} ∈ T), is the style stream condition-
ing input. The generator G draws a latent vector z0 from a
random Gaussian distribution and utilizes, (a) the style fea-
ture map mi

style and style features f i
style to fuse the target

domain style with the content, and (b) the content feature
map mi

content and style features f i
content to fuse the source

domain content with the style at each of the i-th blocks
(i = 7) to perform multi-domain image-to-image transla-
tion. The output from the generator is the translated image
in the conditioned domain. We compute the adversarial loss
(LGAN ) with a multi-scale discriminator to improve the re-
alism of the translation, and compute the modified percep-
tual loss (LPerceptual) for improved content consistency. A
multi-scale patch-wise contrastive loss (LCTR) is used to
preserve source domain content and also translate the image
with a less restrictive assumption than methods that impose
the cyclic consistency constraint (we describe and formulate
the losses in the following subsection). Further, we show
that using the above architecture, we are able to success-
fully perform the task of multi-domain conditional trans-
lation with improved results for the semantic scene under-
standing task (described in Sec. 5). The proposed method
can then be used to translate clear-weather datasets such as
Cityscapes and IDD to each of the three adverse-weather
domains. As validated by the results in Table 2, a standard
segmentation method trained on Cityscapes and then fine-
tuned on a domain translated version of Cityscapes using
the proposed dataset translation method, outperforms previ-
ous multi-domain translation methods on semantic segmen-
tation performance on real-world datasets.

Adversarial loss. We use multi-scale discriminators to
discriminate the images at different scales to better enforce
the generated images to be visually similar to the target do-
main (T) images ({Tfog, Train, Tnight} ∈ T). We denote
the discriminator as D and the generator that draws a ran-
dom vector z0 ∈ Z from a random Gaussian distribution
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and is conditioned by AdaIn and FADE as G. The Adver-
sarial loss [21] formulation is as follows:

min
G

max
D

LGAN (D,G) = ET̂m∼T[logD(T̂m)]

+Ez0∼pz(z)[log(1−D(G(z0)))]
(3)

Perceptual Loss. We employ the perceptual loss [9,
35] to ensure that the translated image maintains content
consistency and is perceptually similar despite the domain
shift. Specifically, we use the perceptual loss modifica-
tion discussed in [83]. In Eq.(4), Φi is the VGG-19 model
pre-trained on ImageNet used to extract the feature maps
from the i-th layer. Following [83], we employ interpola-
tion to match the dimensions of the generated feature maps
f̂generated and input content feature maps fcontent to fit the
last thee layers of Φ enabling a slight improvement in the
content preservation across feature levels.

LPerceptual = τ(

N∑
i=1

λi ∥Φi(f̂generated)−Φi(fcontent)∥ )

(4)
Multi-layer Patch-wise Contrastive loss. In addition

to the GAN loss and perceptual loss, we use a multi-layer
patch-wise contrastive loss [50] with a Generator Encoder
GEncoder (reuse the last three blocks from the generator;
thus GEncoder is a subset of G) and a two-layer MLP (Hl)
to reduce dimensions similar to SimCLR [10]. The input
content image and generated image are divided into 256
patches each. A query is a patch sampled from the target
domain translated image (i.e, the generated image) and is
associated with the patch at the same location in the in-
put content image. This corresponding patch in the input
is the ”positive” and other non-corresponding patches are
the ”negatives” in the shared embedding space. Thus, the
contrastive loss can be formulated as a (k+1)-way classifica-
tion that associates the query vector with the positive patch
and disassociates the patch with respect to the negatives in
a shared embedding space. Hence, patches p, p+ ∈ RD and
p− ∈ Rk×D where p is the query patch from the target do-
main, p+ is the positive patch. There are k negative patches
(p−) in the D-dimensional shared embedding space.

LCTR = − log

[
exp(p · p+/τ)

exp(p · p+/τ) +
∑k

i=1 exp(p · p
−
i /τ)

]
(5)

CUT [50] shows that using internal patches (negatives
from within the image) similar to SimCLR [10] setting
demonstrates better translation performance as compared
with using negatives from other images (external negatives)
similar to a MoCo [24] setting. Consider the embedding
vectors vl obtained after the feature maps at l-th layer are
passed through Gl

Encoder and Hl, we get a stack of vec-
tors {vl} = {Hl(G

l
Encoder(G(Sm)))} ∀l ∈ 1, 2, 3 · · ·L.

NightInput (Day) Fog Rain

Figure 3. Qualitative results for the Indian Driving Dataset.

We denote number of patches as Npatch, the positive vector
at layer l as v+l , the negatives as v−l and the query vector
from the target domain image as v̂l. Hence, we obtain the
SimCLR setting patch-wise contrastive loss as follows:

LInternalNCE = EŜn∼S

L∑
l=1

Npatch∑
j=1

LCTR( v̂l, v
+
l , v

−
l )

(6)
Maximizing mutual information for high dimensional

image spaces with a contrastive loss is equivalent to min-
imizing conditional entropy (InfoGAN [11] lower bound).
While [50] have designed the contrastive InfoNCE loss for
single domain translation, we show that using the above loss
in addition to the content and style streams that capture and
fuse domain-invariant and domain-specific features enables
unsupervised multi-domain image-to-image translation.

Loss function. Our loss function objective for two-
stream contrastive multi-domain image translation model
includes the GAN loss to generate realistic images in the tar-
get domain, the modified perceptual loss to preserve source
content when conditioned with style from the target do-
mains, and the patch-wise contrastive loss to effectively
disentangle style from content and enabling better content
preservation in the image. The full objective is as follows:

L = LGAN + λ1LPerceptual + λ2LCTR (7)

where λ1 and λ2 are hyper-parameters to weigh the
losses that contribute to content preservation.

4. Experiments
In this section, we elaborate on the training and explain

the evaluation pipeline. We also discuss how the Seman-
tic Foggy Scene Understanding Task (SFSU) [20, 58] is
extended to evaluate the generalization performance of a
model fine-tuned on the adverse domain translated datasets.

Datasets.1 We use a composite of images from the
Cityscapes [14] and Indian Driving Dataset [70] for the
source clear-weather domain. We use a composite tar-
get dataset with three domains - Fog (Foggy-Cityscapes

1Please refer to the supplementary material for more detail on datasets.
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Figure 4. Qualitative translation results for the Cityscapes Dataset.

[15, 58]), Rain (Rainy-Cityscapes [28]) and Night-time
(BDD100K Night Images [78]). For evaluation, we use
the following: Fog (Foggy Zürich [16, 57], Foggy Driv-
ing [15], Foggy-Cityscapes [58]), Rain (ACDC-Rain [60],
Rainy-Cityscapes [28]) and Night-time (Dark Zürich [16]).

Training. We use 9435 images for the source (compos-
ite of 2975 Cityscapes images and 6460 IDD-HQ images)
and 9435 images for the target domain with 3145 images
from each of the three adverse weather domains. Every
epoch has 9435 steps and each step includes one image from
the source composite dataset and one image from the target
composite dataset that is passed to the content and style con-
ditioning streams respectively. The Generator G is inverse
with respect to the content and style streams and incorpo-
rates the content and style information in a progressively
increasing feature map scale. The contrastive loss is com-
puted by reusing the three blocks and feature maps of the
Generator G as GEncoder followed by the two-layer MLP
Hi. We use the Adam optimizer [36] to train the model for
25 epochs on an NVIDIA Tesla V100 GPU with loading
size of 2048× 1024 and crop size of 1024× 512 taking up
18 GB of GPU VRAM. Similar to [34], we adopt a two-time
update rule [26] to train G and the multi-scale discrimina-
tors for convergence and also introduce Spectral Norm [46]
in all layers to enforce Lipschitzness and improve training
stability. The spatial resolution of the generated images are
same as that of the Cityscapes dataset (2048× 1024).

Evaluation. We evaluate our method using the semantic
scene understanding downstream task to validate the gener-
alization capability of a pre-trained model fine-tuned on the
domain-translated dataset. We follow the Semantic Foggy
Scene Understanding task (SFSU) [20, 22, 58] and extend
the premise to Night-time and Rainy scene understanding.
An outline of the steps for evaluation is as follows:

1. First, we train a semantic segmentation model (M) on
the Cityscapes dataset (clear-weather hence we denote
it as Dclear). For this work, we use the recent work

DDRNet [27] (DDRNet-39 with ResNet-34 backbone
[25]) because the method demonstrates the best se-
mantic segmentation performance (mIoU) in Table 1.

2. Then, we use an image translation method (see Table
2) to perform dataset translation of Cityscapes (Dclear)
to the three target domains to obtain Dfog , Drain and
Dnight as the fog, rain and night domain-translated
datasets respectively.

3. We then make a copy of the Dclear trained M net-
work for each of the three target domains and fine-tune
them respectively on Dfog , Drain and Dnight to ob-
tain Mfog , Mrain and Mnight for the image translation
method used in Step 2.

4. We validate the fine-tuned models on real-world
datasets for semantic segmentation. We evaluate the
Mfog network on Foggy Zürich [58], Foggy Driving
[15] and Foggy-Cityscapes [15, 58], Mrain network
on ACDC-Rain [60] and Rainy-Cityscapes [28], and
the Mnight network on the Dark Zürich [57] dataset.

As tabulated in Table(1), the DDRNet-39 model (M) has
an mIoU performance of 79.63 on the Cityscapes test-set,
but when evaluated on Foggy/Rainy/Night datasets, there
is a significant decrease in performance: mIoU of 40.85
for Fog, mIoU of 41.37 for Rain and only 14.61 for Night-
time scenes. Following Steps 1-4 above, the evaluation of
fine-tuned M networks for recent single domain and multi-
domain image translation methods is tabulated in Table 2.

Baselines. We consider several classic and recent im-
age translation models to compare with our method for the
dataset translation (enrichment/augmentation) task. These
models will be trained on the same datasets as our method
(single domain translation methods: CycleGAN [84] and
CUT [50] will have one model for each adverse-weather
domain) and be used for the dataset translation task.
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Table 2. Comparison of performance for semantic segmentation models pre-trained on Cityscapes and fine-tuned on the respective domain-
shifted datasets. The fine-tuned models are evaluated on the adverse-weather datasets (in Mean IoU). Note: For the single domain image
translation models - CycleGAN and CUT, we train one model for each domain (Fog, Rain, Night-time). The best results are in bold and
second-best is underlined. From Table 1, DDRNet-39 trained on Cityscapes has a Mean IoU of 79.63 on the Cityscapes test-set.

Semantic Segmentation: DDRNet-39 Trained on Cityscapes and Fine-tuned on Domain-shifted Data.

Fine-tuning (↓) Foggy Zürich Foggy Driving Foggy-Cityscapes ACDC-Rain Rainy-Cityscapes Dark Zürich

Cityscapes [14] 32.55 40.85 62.47 41.37 45.73 14.61
CycleGAN [84] 38.45 43.25 67.85 43.67 57.12 31.50

MUNIT [31] 37.12 43.55 67.29 42.71 56.74 29.94
DRIT++ [38] 38.63 44.18 68.45 44.05 59.28 30.36

CUT [50] 37.48 44.07 68.52 44.29 60.17 32.02
TSIT [34] 39.81 44.59 68.02 44.41 62.39 33.46
Proposed 41.69 45.35 69.74 44.56 63.19 35.36

Table 3. Semantic segmentation generalization performance (in
mIoU) when translation models are trained with 501 total images
(167 images each from Foggy-Cityscapes, Rainy-Cityscapes and
BDD100K-Night) following the fine-tuning strategy as Table 2.

Fine-Tune (↓) Foggy Zürich Rainy-Cityscapes Dark Zürich

TSIT [34] 34.11 54.89 29.64
Proposed 34.98 56.12 30.02

Figure 5. Disentangling Fog and Rain from Foggy-Cityscapes and
Rainy-Cityscapes. Methods have been trained on 167 images from
each target domain in a multi-domain setting. For fog translation,
the TSIT results have an overall grey effect with loss in content
information and a stronger influence of style as compared with the
proposed method. For the rain translation, the TSIT results have
very few rain droplets in the image whereas our result has both
rain droplets (streaks) and fog at a distance (from the camera).

Input (Content) OursFog (Style) TSIT

Input (Content) OursRain (Style) TSIT

5. Results and Discussion

The results for the semantic scene understanding task
is in Table(2). We see that our method outperforms other
single-domain and multi-domain image translation meth-
ods including TSIT [34], DRIT++ [38] and MUNIT [31].
The performance improvement of the proposed method over
multi-domain translation methods TSIT and DRIT++ es-
pecially for the Fog and Rain datasets is in part due to
the better disentanglement of rain and fog styles when

trained with a composite of Foggy-Cityscapes and Rainy-
Cityscapes (and BDD100K-Night). This is because the syn-
thetic rain images in Rainy-Cityscapes dataset has been cre-
ated based on the visual effects of rain in real-world images
using scene depth information to synthesize rain streaks and
fog as a function of distance from the camera. Since both
domains have synthetic fog at different intensities, it is thus
necessary to effectively disentangle the rain and fog styles.
In Fig.(4), we show a qualitative comparison of the transla-
tion results on the Cityscapes dataset highlighting the arte-
facts in the translation results using baseline methods (red
arrows). From the image, we notice the completely dark re-
gions above the vehicles for MUNIT and DRIT++, whereas
the result from the proposed method preserves the objects
from the daylight scene such as the road sign and also in-
cludes realistic street-lighting. In addition, the translated
images using MUNIT, DRIT++ and TSIT for the rain do-
main lacks rain streaks whereas the translation result for the
proposed method includes rain streaks and appropriate fog.
We attribute the higher performance of the proposed method
over the baselines on the semantic scene understanding task
to the improved content preservation and style infusion in
the proposed formulation. Further, the proposed method
also outperforms single-domain translation methods: Cy-
cleGAN and CUT, despite the baselines having one trans-
lation model for each domain as compared to the proposed
multi-domain translation method where only one model is
trained on the composite target dataset (T).

To investigate the performance of our method when us-
ing only as few as 167 images from each target weather do-
main (the source and target have a total of 501 images each),
we find better style infusion and content preservation in the
translated results from the proposed method as compared
with TSIT. Quantitative results following the same evalua-
tion strategy as described in Sec.(5) for the low-data regime
are in Table 3. In the qualitative comparison in Fig.(5), the
translation results for TSIT shows a loss in content infor-
mation and is more strongly influenced by the style. As de-
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Figure 6. Qualitative results of ablation experiments.

Table 4. Quantitative evaluation of ablation experiments measur-
ing Mean FID (lower is better) for the multi-domain image trans-
lation task (fog, rain, night) on the Cityscapes validation-set.

Sl. Ablation Experiment Mean FID ↓
1. w/o Target style conditioning 82.352
2. w/o AdaIn 82.934
3. w/o Denormalization 81.799
4. w/o LCTR 85.943
5. w/o LPerceptual 157.401
6. Proposed 79.806

scribed in Sec.(3.2) we use a modified perceptual loss and
a multi-layer patch-wise contrastive loss to better preserve
features from the content image and infuse style progres-
sively, hence we observe better translation results with the
proposed method as compared with TSIT with lesser data.

We show qualitative results2 using the proposed method
for the Indian Driving Dataset (IDD) [70] in Fig.(4). As
discussed in Sec.(2), the IDD dataset shows a scenic
domain-shift compared to the European driving scenes in
Cityscapes, yet the results using the proposed method show
realistic adverse-weather degradation.

Ablation experiments.3 For multi-domain image trans-
lation methods, the network design and implementation
choices are important for effective training. We conduct ab-
lations on the different components of the proposed method
to investigate the diversity of translation. We report the
results for the ablation experiments for the multi-domain
translation tasks on the Cityscapes validation set using the
Fréchet Inception Distance (lower is better) metric. We only
report the FID metric for ablations in Table 4 and omit the
Inception Score (IS) as Barratt et al. [3] have shown that In-
ception Score is not a useful evaluation metric for compar-
ing models. From the results in Table 4, we see the lowest
FID metrics indicating the higher image generation quality
using the proposed approach. In Fig.(5), we show a qualita-
tive comparison among the different ablation experiments in
Table 4. We find that removing the perceptual loss leads to
severe loss in source content and removing the contrastive

2Please refer to the supplementary material for more results.
3Please refer to the supplementary material for a high-resolution image.

loss leads to loss in both content structure and target domain
style. The same observation is reflected in the mean MIoU
for in Table 4. Further, the results (1.) without target style
conditioning and (2.) without AdaIn, the method is unable
to infuse any realistic style to the content and degrades the
image. Similarly, providing the input as is without the con-
tent network stream leads to improper stylization.

6. Conclusion
In this work, we propose a two-stream multi-domain

image translation method to effectively translate a driv-
ing dataset from clear-weather to adverse-weather domains:
fog, rain and night-time. Our method is able to effectively
capture domain-invariant content from the content stream
using an adaptive denormalization method and is also able
to fuse style captured by the style stream with adaptive in-
stance normalization at multiple feature scales. The pro-
posed method uses the modified perceptual loss and a multi-
layer patch-wise contrastive loss to disentangle and pre-
serve content and structure from the source domain, and
also utilizes multi-scale discriminators to learn the trans-
lational mapping from one domain to many domains when
conditioned with the target domain image. We also show
that using only 167 images for each target domain, we
are able to successfully learn the high-dimensional map-
ping to obtain realistic translation results. With the pro-
posed method in this work, we show improved semantic
scene understanding performance across the three domains
performing better than the baseline methods on real-world
datasets. This validating the hypothesis that the proposed
multi-domain translation method can be used to translate
clear-weather datasets to adverse-weather domains to help
improve the performance of vision systems for autonomous
navigation in unstructured and challenging real-world sce-
narios. We hope that our work will benefit the data augmen-
tation and dataset enrichment community and spur new re-
search directions to augment and improve existing datasets
in addition to spending resources in compiling new data.
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