
InAugment: Improving Classifiers via Internal Augmentation
Supplemental Material

Moab Arar1, Ariel Shamir2, and Amit Bermano1

1Tel-Aviv University
2The Interdisciplinary Center Herzliya

1. Alternative Implementations

In our implementation, we copy different patches and ap-
ply the same image transformation on the copied patches.
In this section, we give a detailed explanation of our imple-
mentation and also consider different implementations. In
order to compare these implementations, we train a PreAct-
ResNet18 [2, 1] on the CIFAR-100 [3] dataset. All reported
results are obtained by averaging seven different runs. In all
experiments, we copy two patches of size 32× 32. The first
patch is not resized, while the second patch’s dimension is
scaled by 0.5. It is worth noting that this is not the best con-
figuration obtained for the PreAct-ResNet18 [2, 1] model;
however, we want to observe the effect InAugment has on
the network’s performance when multiple patches are used.

Setup 1 (AA→ InAugment): in this setup, the input im-
age undergoes the standard augmentation, i.e., random-crop
and random flip, and a random sub-policy of Auto Augment
is then applied. Thereafter we apply InAugment by copying
patches from the augmented image.

Setup 2 (InAugment → AA): in this setup, we first ap-
ply the standard augmentation. Afterward, we apply InAug-
ment, and finally, we perform the Auto Augment augmen-
tation. We also applied InAugment first (in the order of op-
erations) but found that the former order performed better.

Setup 3 (InAugment & AA on patches): in this setup,
we first copy patches from the input image. Before past-
ing the patches, we apply different augmentations on the
patches and base image. We found that it is better not ap-
plying random-crop on the patches. Therefore, the base im-
age undergoes the standard CIFAR augmentation plus Auto
Augment. The patches, on the other hand, only undergo
random flipping and Auto Augment.

Setup 1 Setup 2 Setup 3 Setup 4 (Ours)

Exp. 1 80.03 79.84 79.98 80.36
Exp. 2 80.07 80.01 80.26 80.30
Exp. 3 79.72 79.83 80.48 80.20
Exp. 4 80.36 79.72 79.88 80.20
Exp. 5 80.07 79.71 80.09 80.00
Exp. 6 80.50 80.26 79.80 79.74
Exp. 7 79.79 80.24 80.24 80.57

avg. ± std. 80.07 ± .30 79.94 ± .23 80.10 ± 0.24 80.19 ± .25

Table 1: Top-1 accuracy report for different InAugment im-
plementations. We report the best top-1 accuracy obtained
for each setup on seven independent runs. In the last row,
we report the average accuracy and the standard deviation
of all the corresponding setup experiments.

Setup 4 (InAugment & same AA on patches): in this
setup, we copy patches from the input image. The copied
patches and the base image undergo the same augmenta-
tion, except for random-cropping, which is not performed
on the copied patches. Unlike Setup-3, we apply the same
augmentation on both the patches and base image, includ-
ing the same random-flip and Auto Augment sub-policy. It
is important to note that the operations in Auto-Augment
are applied randomly. However, we found that if an image
transformation operation is applied, it should be performed
on all images (i.e., the copied patches and the base image).

Results: the results for each experiment setup are re-
ported in Table 1. As can be seen, applying InAugment
on the input image before augmentation (Auto Augment)
achieves the worst accuracy. The second worst implemen-
tation is when we first apply Auto Augment and then per-
form InAugment on the augmented image. We believe that
because, in this setup, the image right-before InAugment
contains many padded pixels (e.g., due to rotation, crop-
ping), and there is a good chance that the copied patches
will also contain these pixels. Therefore, the patches will



not contain meaningful information. Specifically, it is best
to copy patches from the input image before any augmenta-
tion. Also, note that applying different augmentations on
the patches (setup 3) yields the second-best performance
(the performance drop for larger networks is even more ev-
ident). We believe that since sub-policies in Auto Augment
are applied with some pre-defined probability, applying dif-
ferent sub-policies for each patch independently will result
in a patch that is most likely not augmented at all, which
will bias the network towards identifying un-augmented
patches.

2. Additional Out-of-distribution Samples
In the paper, we showed that incorporating InAugment

as an image augmentation technique yields robust mod-
els to scale. The idea is that exposing the network during
training to a multi-scale view of the same image encour-
ages the network to become scale-invariant. To test this
hypothesis, we evaluated our network on rescaled versions
of the ImageNet [4] validation set. We consider three al-
ternatives: (1) zero-padding, (2) tiling, and (2) symmetric-
padding with Gaussian blur to scale the entire validation
split. We briefly discuss each rescaling method, and we
also give an overview of the standard ImageNet validation
set pre-processing step:

• The standard pre-processing of the validation set:
images in the validation set are center-cropped to a size
that is roughly 90% of the input image. The cropped
images are then resized to a fixed dimension of 224 ×
224.

• Zero-Padding: the input images are zero padded
(in each direction) by a fixed padding size D ∈
[64, 128, 256, 512]. The images are then transformed
using the standard validation set transformation.

• Tiling: rescaling by tiling is done as follows: each
image is tiled x-times along each dimension, and the
tiled image is then rescaled using the standard Ima-
geNet transformation. In general, tiling the image x-
times will scale the final image by 1/x since the output
size is always fixed to 224 × 224. For tiling, we con-
sider 4 versions, where for each version, we tile each
the image T times, such that T ∈ [1.5, 2, 3, 4]. Note
that for T = 1.5, we tile only half the image in each
direction.

• Symmetric-padding & Gaussian blur: similar to
zero-padding, we pad each image along both dimen-
sions. However, we use symmetric-padding and the
padded pixels are blurred using the Gaussian-filter,
of size 51 × 51 and σ = 10. We use the same
padding values as in the zero-padding case, i.e., D ∈
[64, 128, 256, 512].

Metric: to measure the robustness of the model on
multi-scale images, we evaluate the ratio between the accu-
racy of the model on the scaled validation set and the origi-
nal set. This metric measures the performance preservation
of the network when tested on an out-of-distribution image
scale.

Results: we trained a ResNet50 [1] network from
scratch on two setups: training using Auto Augment as the
only augmentation method and training the network with
Auto Augment and InAugment as the augmentation meth-
ods. The accuracy preservation of the networks is reported
in Figure 1. We also show Grad-CAM [5] visualization for
the network in Figure 2. As shown in Table 1, incorporat-
ing InAugment in the training process yields a more robust
model for all validation sets. It is also evident from Fig-
ure 2 that using InAugment yields a model that is insensi-
tive to artifacts. See, for example, in Figure 2a, it is evident
that the baseline model associates the padded pixels to be
the border of a Television. Furthermore, in Figure 2, we
see that using InAugment improves the localization of the
model.

3. Code
Our code will be made publicly available and all pre-

trained models will be uploaded as well.

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015. 1, 2, 3

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In Bastian
Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Com-
puter Vision - ECCV 2016 - 14th European Conference, Ams-
terdam, The Netherlands, October 11-14, 2016, Proceedings,
Part IV, volume 9908 of Lecture Notes in Computer Science,
pages 630–645. Springer, 2016. 1

[3] Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, 2009. 1

[4] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015. 2

[5] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-
cam: Visual explanations from deep networks via gradient-
based localization. In IEEE International Conference on
Computer Vision, ICCV 2017, Venice, Italy, October 22-29,
2017, pages 618–626. IEEE Computer Society, 2017. 2, 4



64 128 256 512

Padding size

25%

50%

75%

100%
A

cc
u
ra

cy
R

a
ti

o
Top-1 Accuracy

AA

AA + InAug

64 128 256 512

Padding size

25%

50%

75%

100%

A
cc

u
ra

cy
R

a
ti

o

Top-5 Accuracy

AA

AA + InAug

(a) Zero-padding

x1.5 x2 x3 x4

Tiling Number

25%

50%

75%

A
cc

u
ra

cy
R

a
ti

o

Top-1 Accuracy

AA

AA + InAug

x1.5 x2 x3 x4

Tiling Number

25%

50%

75%

A
cc

u
ra

cy
R

a
ti

o

Top-5 Accuracy

AA

AA + InAug

(b) Tile

64 128 256 512

Padding size

25%

50%

75%

100%

A
cc

u
ra

cy
R

a
ti

o

Top-1 Accuracy

AA

AA + InAug

64 128 256 512

Padding size

50%

75%

100%

A
cc

u
ra

cy
R

a
ti

o

Top-5 Accuracy

AA

AA + InAug

(c) Symmetric-padding & blur

Figure 1: ResNet50 [1] robustness to scale.



(a) Zero-padding (b) Tiling (c) Symmetric-padding & blur

Figure 2: Grad-CAM [5] visualization for ResNet50 (best viewed when zoomed-in).


