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A. Gradient Calculation for CAS loss

Here we describe the calculation of gradient of the
class-agnostic segmentation loss function with respect to
the weights ω of the network:

The class-agnostic segmentation loss is defined as:

CAS =

N∑
i=1

∫
ri

α||s(x)− ŝ(ri)||22
|ri|

dx︸ ︷︷ ︸
Uniformer

−
N∑
i=1

N∑
j=1
i 6=j

(1− α) ||̂s(ri)− ŝ(rj)||22︸ ︷︷ ︸
Discriminator

(1)

where N is the number of regions in the ground truth mask;
r1, ..., ri, rj , ..., rN denotes the regions of the ground truth
mask (a particular segment); |ri| denotes the number of
pixels in the region ri; s = {s1, ..., sm, ..., sM} is a vector
of output descriptor components (or softmax output) of the
network; m ∈ {1, ...,M} where M denotes the number
of output (softmax) channels i.e., number of units in the
last layer of the network; α ∈ [0, 1] is a scalar, a weighing
hyper-parameter which assigns weight to each term; for a
region r we have that, ŝ(r) = {ŝ(r)1, ..., ŝm(r), ..., ŝ(r)M}
is a vector containing channel-wise mean of the descriptor
values; where for a channel m, ŝm(r) = 1

|r|
∫
r
sm(x) dx.

In our formulation ŝm(r) acts as a proxy for class label.

We compute the derivative of the loss with respect to the
weights ω of the neural network,

∇ω
N∑
i=1

∫
ri

α
||s(x)− ŝ(ri)||22

|ri|
dx−∇ω(1−α)||̂s(ri)−ŝ(rj)||22

(2)

using Leibniz rule, we can interchange the order of integral
and gradient, we get,
N∑
i=1

∫
ri

∇ωα
||s(x)− ŝ(ri)||22

|ri|
dx−∇ω(1−α)||̂s(ri)−ŝ(rj)||22

(3)
Next, we simply apply chain rule to get,

∇ωCAS =

N∑
i=1

∫
ri

2
α(s(x)− ŝ(ri))(∇ωs(x)−∇ω ŝ(ri))

|ri|
dx

−
N∑
i=1

N∑
j=1
i 6=j

2(1− α)(̂s(ri)− ŝ(rj))(∇ω ŝ(ri)−∇ω ŝ(rj))

From Equation (1) we’ve, ∇ω ŝ
m(ri) =

1

|ri|
∫
ri
∇ωs

m(x)dx, where we have ∇ωs
m(x) from

the backpropagation of the network as sm(x) is the softmax
output of the network.

B. Detailed Results for Properties of CAS loss
B.1. Sparsity

To prove the property of sparsity of the network when
using CAS loss, we show the application of loss function in
binary segmentation case where we have two outputs from
the softmax channel. If we fix the value of α, the problem
simplifies to,

min− ||a− b||22 = max ||a− b||22 (4)

subject to,
2∑
j=1

a(j) = 1

2∑
j=1

b(j) = 1

a(j) ≥ 0 b(j) ≥ 0 ∀j

(5)
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Here, for simplicity of notation we are using a and
b to denote the average descriptors on foreground and
background respectively. We show the profile for loss
function in Figure 1. Notice that the minima for loss
function exists at the the points where output descriptors
are sparse and different.

Writing the Lagrangian for the system we get,

L(a0, a1, b0, b1, λ1, λ2, µ1, µ2, µ3, µ4) = (a0 − b0)2+
(a1 − b1)2 − λ1(a0 + a1 − 1)

− λ2(b0 + b1 − 1) + µ1a0 + µ2a1 + µ3b0

+ µ4b1 (6)

where λ are the Lagrange multipliers for equality con-
straints and µ are the Lagrange multipliers for the inequality
constraints.

∇a0L = 2(a0 − b0)− λ1 + µ1 = 0

∇a1L = 2(a1 − b1)− λ1 + µ2 = 0

∇b0L = −2(a0 − b0)− λ2 + µ3 = 0

∇b1L = −2(a1 − b1)− λ2 + µ4 = 0

a0 + a1 = 1

b0 + b1 = 1

µ1 · a0 = 0

µ2 · a1 = 0

µ3 · b0 = 0

µ4 · b1 = 0

(7)

For a point to be maximum of the above constraint opti-
mization it has to satisfy the KKT conditions. Here we
write the KKT conditions and show that the sparse and dif-
ferent descriptors satisfy the KKT conditions. Sparse and
different descriptors a0 = 1, a1 = 0, b0 = 0, b1 = 1,
λ1 = λ2 = 2, µ2 = µ3 = 4 satisfy the KKT conditions.
Similarly, we can show the same for the other sparse and
different solution. The same can be extended to multiple
dimension with the only condition being that the number
of softmax channels should be greater than or equal to the
number of classes.

The network using CAS loss has sparse solutions which
can be visualised as sparse outputs as shown in Figure 2 and
3.

B.2. Class-Imbalance

The empirical results which show robustness to class im-
balance are shown in Fig. 5 To test the accuracy of the class-
agnostic segmentation loss in tackling class imbalance, we
test on an artificially generated toy example. This allows
us to specifically focus on the class agnostic property of the

Figure 1. Profile of Loss Function

loss function while eliminating other factors. We generate
data for two classes in 2D where class one is centred around
point (1, 0) and class two is centred around point (0, 1). The
samples for both classes have random Gaussian noise added
to each component and hence are scattered around the class
centres with variance value of 0.2. The two classes are also
highly unbalanced with class 1 having 10000 data points
and class 2 having only 10 points (see Figure 4).

We generate 2 sets of data for training and testing respec-
tively. We train a 2 layer fully connected networks with 10
hidden units and test on testing data. The results are sum-
marized in Table 1. The CE loss fails to perform in this case
where data is highly unbalanced and assigns all output la-
bels to belong to class 1. On the other hand, CAS loss is
immune to this class imbalance and performs better.

B.3. Boundedness

Figure 6 shows the training loss for training with 3000
images. Notice that the loss in the Figure 6 is well bounded
within (αNi,−(1− α)Ni].

C. Low-fidelity data setting explanation
An example of what the low-fidelity data looks like is

shown in Figure 7, where 50% of the data was normal and
half was flipped.

D. Dataset-wise models’ Results for salient ob-
ject detection

In Table 2 the quantitative results of all our mod-
els trained on different datasets and tested on 7 saliency
datasets are shown, along with comparison with state-of-
the-art methods.

As seen in Table 2, all the models, even the state-of-the-
art ones, perform better when tested on the datasets belong-
ing to the training set domain. This is the anticipated issue
of dataset bias [8], which is a shortcoming of the breadth of
the various datasets.
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Figure 2. Sparse outputs of the network using CAS loss
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Figure 3. Empirical Results for Sparsity: Sum of components of both channels is 1 and only one channel is active at a time, thus, resulting
in sparse output descriptors

Table 1. CE and CAS comparison
CE Results

output \ label class 1 class 2
class 1 10000 10
class 2 0 0

CAS Results
output \ label class 1 class 2

class 1 9899 0
class 2 101 10

E. Pre and Post-processing for Multi Object
Segmentation

We have performed multi object segmentation on
BSDS500 and Pascal VOC2012 datasets. The numbers of
segments (objects) in each image in unknown apriori. In the
pre-processing step, we resize all images to 256 × 256 and
normalize them to zero mean and unit variance. For post
processing we cluster the descritpors (outpouts of DNN) in

20 regions and then smooth out the regions with less then
2% of the total pixels in the image using conditional random
fields (we used pydensecrf library 1).

1https://github.com/lucasb-eyer/pydensecrf



Figure 4. Data Sample

Ground Truth CE CAS Ground Truth CE CAS

Figure 5. Empirical Results for Class Imbalance: The CE loss fails to output disconnected or clear salient objects because of the size
bias of salient objects, whereas, the CAS loss is robust to such size bias or class imbalance

F. Visual Results for Multi Object Segmenta-
tion

The visual results for multi object segmentation are
shown in Figure 10 for BSDS500 dataset and in Figure 11
for PASCALVOC2012 dataset.

G. Visual Results for DeepLab model for
Salient Object Detection and Texture Seg-
mentation

The visual results for DeepLab-CE model i.e., DeepLab-
v3 architecture with cross-entropy loss function and
DeepLab-CAS model i.e., DeepLab-v3 architecture with
class-agnostic segmentation loss are shown in Figure 8 for
salient object detection and in Figure 9 for texture segmen-
tation.

All these results concur with those performed on FCN-
ResNet-101 architecture. These verify our claims empiri-
cally, about the working of our CAS loss function with any
neural network. Also, the performance of the CAS loss

is comparable and majority of times better than the cross-
entropy loss function, for both the tasks of salient object
detection and segmentation.



Figure 6. Training curve for CAS loss
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Figure 7. Low-fidelity training data sample



Model Training Set MSRA-B DUTS-TE ECSSD PASCAL-S HKU-IS THUR15k DUT-OMRON
Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓

ResNet-pre-CAS (ours) MSRA-B 0.985 0.010 0.836 0.088 0.874 0.071 0.818 0.112 0.887 0.056 0.891 0.075 0.876 0.066
ResNet-m-CE (ours) MSRA-B 0.958 0.030 0.910 0.067 0.905 0.068 0.868 0.100 0.921 0.053 0.928 0.065 0.920 0.059
ResNet-m-CAS (ours) MSRA-B 0.944 0.037 0.853 0.091 0.876 0.079 0.811 0.124 0.931 0.057 0.930 0.075 0.863 0.080
ResNet-d-CE (ours) DUTS-TR 0.947 0.0.65 0.919 0.055 0.867 0.077 0.876 0.091 0.928 0.044 0.935 0.057 0.867 0.062
ResNet-d-CAS (ours) DUTS-TR 0.932 0.046 0.871 0.071 0.888 0.075 0.840 0.121 0.939 0.050 0.931 0.073 0.875 0.071
DeepLab-CAS (ours) DUTS-TR 0.931 0.040 0.850 0.070 0.864 0.072 0.800 0.111 0.882 0.054 0.888 0.069 0.865 0.060
DeepLab-CE (ours) DUTS-TR 0.928 0.039 0.847 0.070 0.867 0.069 0.805 0.110 0.880 0.052 0.881 0.070 0.856 0.061
BAS-Net [5] DUTS-TR - - 0.860 0.047 0.942 0.037 0.854 0.076 0.921 0.039 - - 0.805 0.056
PoolNet [3] MSRA-B +

HKU-IS
- - 0.892 0.036 0.945 0.038 0.880 0.065 0.935 0.030 - - 0.833 0.053

CPSNet [10] COCO+DUT - - - - 0.878 0.096 0.790 0.134 - - - - 0.718 0.114
PFAN [11] DUTS-TR - - 0.870 0.040 0.931 0.032 0.892 0.067 0.926 0.032 - - 0.855 0.041
PAGENET+CRF[9] THUS10k - - 0.817 0.047 0.926 0.035 0.835 0.074 0.920 0.030 - - 0.770 0.063
PAGENET[9] THUS10k - - 0.815 0.051 0.924 0.042 0.835 0.078 0.918 0.037 - - 0.770 0.066
HED [2] MSRA-B 0.927 0.028 - - 0.915 0.052 0.830 0.080 0.913 0.039 - - 0.764 0.070
DNA [4] DUTS-TR - - 0.873 0.040 0.938 0.040 - - 0.934 0.029 0.796 0.068 0.805 0.056

-pre- represents model pre-trained using cross-entropy loss and then trained using CAS loss; -m- represents the model trained on MSRA-B dataset; -d- represents the model trained
on DUTS-TR dataset ;
red represents the best score value on the dataset; blue represents the second best score on the dataset; - represents the dataset was not tested by the method

Table 2. Numerical Results on High-Fidelity Data for all the models trained on different datasets



Image Ground Truth DeepLab-CAS (hfd) DeepLab-CE (hfd) DeepLab-CAS (lfd)

Figure 8. Visual Results for models trained with DeepLab-v3 architecture (hfd - denotes trained on high-fidelity data; lfd - denotes trained
on low-fidelity data)
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Figure 9. Sample representative results on Real-World Texture Dataset: Visual results for texture segmentation experiments, using
DeepLab architecture; -a- denotes trained on the 7 saliency datasets and texture dataset



Image Ground Truth CAS Discriminative Loss [1] Magnetic Loss [6] Triplet loss [7]

Figure 10. Visual Results for BSDS500



Image Ground Truth CAS Discriminative Loss [1] Magnetic Loss [6] Triplet loss [7]

Figure 11. Visual Results for PASCAL VOC
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