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A. Overview

In this supplementary material, we first give a more de-
tailed description of the dataset used in this work (Sec. A.1)
and training setting (Sec. A.2). Next, we present three ad-
ditional studies: (i) an evaluation into the effect of varying
the number of pixel coordinates sampled in each round of
training (Sec. B); (ii) the influence of our proposed diver-
sity heuristic (Sec. C), and (iii) the effectiveness of a human
at selecting pixel coordinates in comparison to using model
uncertainty (Sec. D). Finally, we present formal definitions
of the employed acquisition functions (Sec. E), further ex-
perimental comparisons on PASCAL VOC 2012 (Sec. F)
and detailed descriptions of methods we compared to in the
main paper, which were omitted due to space constraints
(Sec. G).

A.1. Datasets

CAMVID [2] is an urban scene segmentation dataset
composed of 11 categories and containing 367, 101, and
233 images of 360× 480 resolution for training, validation,
and testing, respectively.

CITYSCAPES [4] is a dataset collected for the purpose of
autonomous driving consisting of 2975 training, 500 vali-
dation and 1525 test high-resolution images (1024× 2048)
with 19 classes. During training, we resize the images
to 256 × 512 pixels to make the training time manage-
able, and perform inference on images of 512×1024 pixels.

PASCAL VOC 2012 [7] (abbreviated to VOC12) contains
1464, 1449, and 1456 images for training, validation and
testing respectively. Each pixel is labelled as one of the 20
semantic categories or background. Since images in this
dataset have different sizes, during training we resize the
larger image dimension to 400 and randomly crop a 320 ×
320 patch as input, and use the original size for inference,
following [17].

A.2. Optimisation and data augmentation

Optimisation. We use Adam [10] with a learning rate of
5 × 10−4 for the CAMVID and CITYSCAPES datasets, and
SGD with momentum 0.9 and a learning rate of 10−2 for the
PASCAL VOC 2012 dataset. For CAMVID, we train for 50
epochs and decay the learning rate at 20 and 40 epochs by
a factor of 10. On CITYSCAPES and PASCAL VOC 2012,
we use the poly learning rate schedule as in [17, 23, 3, 16].
Data augmentation. We largely follow [17], and use
random scaling between [0.5, 2.0] and random horizontal
flipping. In addition, we apply photometric transformations
such as colour jittering, random grayscaling and Gaussian
blurring.

B. Effect of the number of queried pixel coor-
dinates per round

To understand how the number of labelled pixels added
at each round affects the model’s performance, we train
MobileNetv2-based DeepLabv3+ models on PASCAL VOC
2012. Each model queries n ∈{1, 2, 5, 10} pixel(s) per im-
age per round and the maximum budget is set to 30 pixels
per image (in the notation employed in Sec. 3 of the paper,
n = B/N with N = 1464 for the PASCAL VOC 2012
dataset). All models are given random 1 pixel per image
at the beginning of training. As shown in Fig. 1 (left), we
note that when the annotation budget is very low (e.g., ≤
10 pixels per image), a model with a lower n value shows a
higher mIoU. However, when more annotations are allowed
(e.g. ≥ 20 pixels per image), performance is similar across
the models.

On the other hand, as the number of query rounds re-
quired to reach the max budget is inversely proportional to
n, we also measure the GPU time for the models to com-
plete the whole training process (Fig. 1, right).1 We ob-
serve that, there is a trade-off between training time and n.

1We measure timings on a NVIDIA RTX2080ti GPU card.



For instance, to reach about 0.5 mIoU, the model has to be
re-trained 6 times (corresponding to an annotation budget of
6 pixels per image) when n = 1, whereas one would only
need to query once (corresponding to an annotation budget
of 11 pixels per image), if n = 10, reducing the overall
training time by a factor of 5.
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Figure 1: Effect of the number of queried pixel coordi-
nates per round on VOC12. PIXELPICK-n denotes our
model which samples n pixels per image per query round.
Left: given a highly limited annotation budget (e.g., ≤ 10
pixels per image), we observe that it is beneficial to pick
fewer pixels at each round to achieve a better label effi-
ciency in terms of performance. Right: we show a trade-off
between the number of queried pixels per round and total
GPU training time taken to reach a certain level of perfor-
mance.

C. Diversity heuristic
As noted in [1, 24], simply selecting samples with the

highest uncertainty can result in poor performance due to a
lack of diversity among samples. In our PIXELPICK frame-
work, this manifests as querying pixels from a limited set of
spatial regions, which is likely to incur redundant queries,
and in turn degrades the labelling efficiency.

To alleviate this effect, [24] sub-sampled the unlabelled
pool and chose the n-most uncertain samples from the re-
sulting subset. We experiment with this approach by uni-
formly sampling 5% pixel coordinates within an image
and then taking as queries the 10 most uncertain pixels
amongst them at each query stage. Specifically, we train
DeepLabv3+ models on CAMVID for 10 rounds, with 10
random labelled pixels per image given at the beginning
of training. However, as shown in Fig. 2 (left, denoted by
{MS, LC, ENT}-A), this heuristic does not show promis-
ing results compared to the random baseline (RAND) and
the performance varies significantly depending on the sam-
pling strategies. For example, choosing entropy (ENT-A) as
the acquisition function yields a lower mIoU than RAND,
whereas using margin sampling (MS-A) allows a better per-
formance. We conjecture that this is because directly se-
lecting n-most uncertain pixels from the uniformly sub-
sampled unlabelled pixels still tends to collect from a few
restricted regions (i.e. less diversity).

Instead, to gather queried pixels from more diverse ob-
jects, we propose in the paper to first sample 5% unlabelled

pixels with highest uncertainty and uniformly select 10 pix-
els from the this subset (denoted as {MS, LC, ENT}-B in
Fig. 2). Put differently, we swap the order of the uniform
and uncertainty sampling processes. As can be seen in
Fig. 2, the proposed approach brings better results and is
robust to the choice of a uncertainty strategy in the pixel-
level active learning setting.

To provide evidence for our hypothesis on diversity of
the queried pixels, we compute the average number of
unique categories for queried pixels within an image as an
approximate diversity measure. As can be seen in Fig. 2
(right), ENT-A and LC-A, which show worse performance
than the uniform sampling (RAND) at the end of AL,
queried pixels from less diverse classes than RAND. On the
other hand, methods with a higher mIoU queried from ob-
jects with greater category diversity than RAND, underpin-
ning our hypothesis. We therefore use the proposed diver-
sity heuristic throughout our experiments in the main paper.
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Figure 2: Effect of diversity heuristic on CAMVID. Left:
we observe that directly selecting n-most uncertain pixels
from randomly sub-sampled regions as in [24] within an im-
age is sensitive to the choice of an acquisition function (de-
noted as {MS, LC, ENT}-A). In contrast, uniformly choos-
ing n pixels per image from M% pixels with highest uncer-
tainty is robust to the acquisition functions and shows better
performance (denoted as {MS, LC, ENT}-B). Right: we
show that the average class diversity per image covered by
the queried pixel locations plays an important role in per-
formance.

D. Human labelling oracle
To show it is beneficial to query labels from the model’s

perspective rather than a human annotator, we compare
models trained with labelled pixels selected by one of the
uncertainty sampling strategies and by a human annotator.
For this, we train a MobileNetv2-based DeepLabv3+ on
CAMVID, given 10 labelled pixels per image queried based
on a sampling method and 10 random pixels per image ini-
tially offered at the beginning of AL (i.e. retrain after one
query round). For human-picking, we ask one annotator
to pick 10 pixels per image on CAMVID from the regions
where the model makes wrong predictions, assuming hu-
mans can well recognise the groundtruth annotation from
an image, and thus are able to easily validate the errors from



Sampling method mean IoU (%)

Random 48.1 ± 0.5
Entropy 51.6 ± 0.9

Least Confidence 51.4 ± 0.5
Margin Sampling 50.8 ± 0.2

Human annotator 46.5 ± 0.4

Table 1: Performance comparison between human-
picked and uncertainty-based pixels on CAMVID.

the model prediction. The annotator was encouraged to pick
pixel coordinates that they believe most useful for boosting
segmentation performance from the annotator’s view.

Interestingly, as shown in Tab. 1, we found the per-
formance of the model trained on human-picked pixels is
worse than any other uncertain-based strategies, even lower
than the random baseline by 1.6 mIoU (%). We found this
result surprising—our hypothesis is that human annotators
tend to treat each image independently, and consequently
tend not to take account of the differing degrees of visual va-
riety present in each class (for example, “sky” pixels often
look similar, but the “building” class can vary significantly
in appearance and therefore requires more labels) whereas
the model can determine this information readily (via its un-
certainty) across the full training set. The result highlights a
potential discrepancy between what really helps the model
and what human annotators think useful for solving the task.
A better understanding of the nuances underpinning this ef-
fect would be useful future work.

Method Backbone Training set imgs (anno. type) mIoU

Semi-supervised methods
WSSL [18] VGG16 1.5K (dense) & 9K (classes) 64.6
GAIN [14] VGG16 1.5K (dense) & 9K (classes) 60.5
MDC [22] VGG16 1.5K (dense) & 9K (classes) 65.7
DSRG [9] VGG16 1.5K (dense) & 9K (classes) 64.3
FickleNet [12] VGG16 1.5K (dense) & 9K (classes) 65.8
BoxSup [6] VGG16 1.5K (dense) & 9K (boxes) 63.5
CCT [17] ResNet50 1.5K (dense) & 9K (classes) 69.4

Interactive weak supervision
PixelPick (Ours) ResNet50 1.5K (sparse pixels) 65.6

Table 2: Comparison to semi-supervised methods on
VOC12 validation set. In the third column, we denote the
number of training images with different annotation levels,
e.g. classes, boxes, and dense represent image-, box-level,
and per-pixel-level annotation, respectively.

E. Acquisition functions
Here we provide the formal definitions of the acquisition

functions employed in the main paper. The notation below
uses the variables introduced in Sec. 3.

The Least Confidence acquisition strategy [13, 5] draws,
at each iteration, the pixel coordinate for which the model
has least confidence in its most likely class label:

u∗
LC = argmin

u∈Ω
argmax
c∈{1,...,C}

ŷu(c). (1)

The Margin Sampling strategy [19] looks for samples
that exhibit the smallest difference (i.e. lowest “margin”)
between the first and second most probable labels:

u∗
MS = argmin

u∈Ω

(
argmax

c1∈{1,...,C}
ŷu(c1)− argmax2

c2∈{1,...,C}
ŷu(c2)

)
,

(2)

where the notation argmax 2 denotes the argument with
the second largest value. Intuitively, pixel coordinates with
small margins are ambiguous for the classifier, while those
with large margins represent samples for which the classi-
fier has greater confidence in its correctness.

The Entropy Sampling strategy aims to select the pixel
coordinate with the greatest conditional entropy [21] under
the current model:

u∗
ENT = argmax

u∈Ω
−

C∑
c=1

ŷu(c) log ŷu(c). (3)

F. Comparison to semi-supervised methods
In addition to comparing to weakly-supervised methods

in Tab. 1 of the main paper, we also compare our work to
semi-supervised models in Tab. 2. We train PIXELPICK
using 1.5K sparsely labelled images (20 pixel labels per
image) and compare against semi-supervised methods that
train with 1.5K densely labelled images (i.e., 1.2×105 pixel
labels per image, considering the average spatial resolution
of 308 × 381) and 9K weak labels (classes or boxes). De-
spite using vastly fewer annotations, PIXELPICK performs
competitively.

G. Methods description
To help readers understand the difference in the meth-

ods used for the comparison on PASCAL VOC 2012
validation set in our paper, we categorise them accord-
ing to annotation level they use (i.e., image-, box-, or
scribble-level) and briefly summarise each method. We
also describe CCT [17], which primarily addresses semi-
supervised learning. All weakly-supervised methods train
on VOC12 augmented by SBD [8] (10.5K images). When
they consider semi-supervised setting jointly with their



weakly-supervised approach, they use the original VOC12
1.5K pixel-level annotations for full-supervision and the re-
maining 9K images for weak-supervision. By contrast, our
PIXELPICK framework leverages sparse weak-supervision
on the 1.5K VOC12 images.

• Image-level annotation

– WSSL [18] adopts an EM-approach in which
they estimate segmentation masks given ob-
served image values and image-level labels in the
E-step and optimise model parameters on the es-
timated segmentation in the M-step.

– GAIN [14] proposes to use attention maps to
enable a better quality of localisation maps for
training a segmentation model. To this end, they
train an image classification model with an addi-
tional attention mining loss to enforce the model
to guide itself where to look. To validate their
approach, they evaluate another weakly super-
vised segmentation model, SEC [11] trained on
pseudo-segmentation masks generated by hard-
thresholding their attention maps.

– MDC [22] leverages image-level labels to pro-
duce pseudo segmentation masks. In particular,
they propose to use a convolutional block with
multiple dilated rates in order to transfer the dis-
criminative object region to other parts of the ob-
ject.

– DSRG [9] uses image-level labels and a deep
network pretrained on image classification to
produce seed cues which a segmentation network
is trained on. The seed cues are further extended
to unlabelled pixels by the proposed region grow-
ing algorithm in an iterative manner.

– FickleNet [12] generates localisation maps with
a pretrained image classification network by
saliency, which are further used as pseudo-labels
to train a segmentation network. For this, they
aggregate a variety of localisation maps, which
of each is produced from a single image by ap-
plying stochastic hidden unit selection and Grad-
CAM [20] and highlights different parts of ob-
jects present in the image.

• Box-level annotation

– BoxSup [6] exploits bounding box annotations,
which are much easier to obtain than dense pix-
elwise annotations, at a cost of offering weaker
supervision. For this, they iteratively generate
semantic masks by forming candidate segments
with a unsupervised region proposal method and

assigning a semantic label of a groundtruth box
to the most overlapped segment and train deep
networks on the estimated semantic masks.

• Scribble-level annotation

– ScribbleSup [15] proposes to use scribble anno-
tations and iterate over propagating them to un-
marked regions by optimising a graphical model
and training a segmentation model on the gener-
ated masks.

• Semi-supervised approach

– CCT [17] utilises cross-consistency loss to take
advantage of unlabelled data under the cluster as-
sumption. For this, they enforce invariance be-
tween outputs of auxiliary decoders and main de-
coder, where the former takes a perturbed em-
bedding from the encoder, and the latter receives
clean features from the encoder. They train
on VOC12 for the fully-supervised pixel-wise
cross-entropy loss and on the images from [8] for
the cross-consistency loss.
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