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Abstract

Most deep learning (DL) magnetic resonance imaging
(MRI) reconstruction approaches rely on supervised train-
ing algorithms, which require access to high-quality, fully-
sampled ground truth datasets. In MRI, acquiring fully-
sampled data is time-consuming, expensive, and, in some
cases, impossible due to limitations on data acquisition
speed. We present a DL framework for MRI reconstruc-
tion that does not require any fully-sampled data using un-
supervised generative adversarial networks. We test our
proposed method on 2D knee MRI data and 2D+time ab-
dominal dynamic contrast enhanced (DCE) MRI data. In
the DCE-MRI dataset, as is the case with many dynamic
MRI sequences, ground truth was not possible to acquire
and therefore, supervised DL reconstruction was not fea-
sible. We show that our unsupervised method produces
reconstructions which are better than compressed sensing
in terms of image metrics and the recovery of anatomical
structure, with faster inference time. In contrast to most
deep learning reconstruction techniques, which are super-
vised, this method does not need any fully-sampled data.
With the proposed method, accelerated imaging and ac-
curate reconstruction can be performed in applications in
cases where fully-sampled datasets are difficult to obtain or
unavailable.

1. Introduction

Magnetic resonance imaging (MRI) is a Fourier imaging
modality which enables comprehensive evaluation of soft-
tissue anatomy and physiology. Unfortunately, MRI scans
are intrinsically long because data is acquired sequentially
in the Fourier domain - in contrast with traditional cam-
era imaging, where all pixels are acquired simultaneously.
The acquisition time can be reduced by acquiring less data

through sampling below Nyquist rate in the Fourier domain,
otherwise known as k-space. However, acquisition accel-
eration results in poor image quality when using Fourier
inversion for reconstruction. Many iterative reconstruction
methods, such as parallel imaging (PI) [15, 37] and com-
pressed sensing (CS) [29]. Recently, deep learning (DL)
methods [17,7,32,52, 10, 8, 1,46, 11, 9] have proven to be
more powerful than traditional methods, providing more ro-
bustness for different anatomy and sequences, higher qual-
ity, and faster reconstruction speed.

Most DL techniques for MRI reconstruction must be su-
pervised, involving a large number of high-quality, fully-
sampled acquisitions for training. In MRI, collecting fully-
sampled data is time-consuming, expensive, and, in some
cases, impossible due to physical limitations on data ac-
quisition rate. For example, dynamic contrast-enhanced
(DCE) imaging is a type of MRI exam in which data is ac-
quired during intravenous contrast injection. The goal is
to resolve tissue uptake of a contrast agent; however, of-
ten the data acquisition rate is slower than the contrast dy-
namics. To achieve clinically acceptable temporal resolu-
tions, spatial resolution and/or signal-to-noise ratio (SNR)
must be traded off, impacting downstream interpretation
and ultimately limiting the utility of DCE-MRI in clini-
cal decision-making. DL has the potential to enable high-
value rapid DCE-MRI scans, however; without high-quality
ground truth, the vast majority of existing supervised DL-
based reconstruction methods cannot be used for DCE-MRI
and other types of dynamic MRI acquisitions such as real-
time, cardiac cine, and phase-contrast imaging.

There are a couple current ways to address this prob-
lem. First, parallel imaging-compressed sensing (PI-CS) re-
constructions can be used as the ground truth for a weakly
supervised DL framework [8]. However, the image qual-
ity of PI-CS is potentially an upper bound for the image
quality of the DL model. Another way is to reformulate
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DL training by creating a hybrid supervised-unsupervised
model [48, 57, 23,45, 51, 6, 50, 44, 35, 18].

One such hybrid supervised-unsupervised work by Sim
et al. [44] used unpaired datasets to train Cycle Genera-
tive Adversarial Network (GAN) for inverse problems. This
was a step forward towards MRI reconstruction for applica-
tions where no fully-sampled data is available. However,
the remaining limitation was that this work still used fully-
sampled data from the same type of acquisition as the in-
tended reconstruction task. Therefore, the network had a
strong prior from this ground truth data related to the target
distribution. This method is unproven to work in applica-
tions where no fully-sampled data from the same type of
acquisition is available.

Another hybrid approach, Noise2Noise [23] and simi-
lar variants [18, 26, 27] successfully trained a model for
noise removal based only on noisy training data. One lim-
itation of this method is that it requires at least two inde-
pendent prospectively undersampled scans of the same un-
derlying image, which is clinically impractical due to long
scan times, patient motion between and throughout scans, as
well as changing dynamics from scan to scan. Alternatively,
this method can use two differently retrospectively under-
sampled acquisitions, which defeats the original purpose of
training without clean data. Therefore, this precludes the
use of existing formulations of Noise2Noise for cases where
no fully-sampled data is available.

A promising direction to address MRI reconstruction
without using ground truth is deploying GANs [14, 36].
GANSs have proven very useful in creating visually appeal-
ing natural images [56], modeling underlying data distribu-
tions [ 14, 38], and constructing generative models for MRI
reconstruction [32, 52, 31]. AmbientGAN [4] learns a gen-
erative model from underdetermined linear systems. The
authors attempted to train a generative model on only par-
tial observations with tasks in image inpainting, denoising
and deconvolution. They showed that despite never training
the discriminator network on fully observed data, their gen-
erator network was still able to produce samples which re-
covered the underlying data distribution of small-scale sim-
ulated datasets, such as MNIST [22] and celebA [28].

The objective of AmbientGAN is similar to the problem
we are trying to solve in unsupervised MRI reconstruction,
where we only have undersampled k-space measurements
for our training set. One notable difference, elaborated be-
low, is that our reconstruction model is a conditional GAN
where we directly learn a mapping from the input under-
sampled k-space to the output reconstructed image. In con-
trast, AmbientGAN learns a network which only takes la-
tent codes as inputs.

In this work, we propose a fully unsupervised generative
method for learned MRI reconstruction that only uses un-
dersampled datasets and never uses any fully-sampled data,

with inference and high-quality reconstruction using un-
rolled networks. This enables efficient DL reconstruction
when it is impossible or difficult to obtain fully-sampled
data. To evaluate this method, we first implement the
method on retrospectively undersampled datasets and com-
pare the results to CS and a semi-supervised DL model us-
ing standard image quality metrics. Then, we evaluate on
prospectively undersampled DCE datasets, where a ground
truth was not available; thus, we can only compare our
method against CS.

2. Methods

We consider the standard multi-channel Fourier acquisi-
tion model for MRI, which can be written as:

y=Ax +e. (1)

where y is the measured k-space data, A is the imaging
model, z is the latent true image, and ¢ is the additive com-
plex Gaussian noise. The imaging model A consists of data
subsampling, a Fourier transform, and signal modulation by
coil sensitivity maps. We consider acquisitions with ran-
domized sampling masks; thus, A is a random matrix drawn
from a known distribution p 4, where p 4 is the Poisson-disc
variable density sampling [5] distribution. The overall k-
space data distribution is denoted as p,,.

In GANs [14], a pair of neural networks are jointly
trained. The generator network tries to map samples
from a low-dimensional distribution that is easy to sam-
ple from (such as Gaussian noise) to samples from a high-
dimensional space. Meanwhile, the discriminator network
tries to differentiate between generated and real samples.
To jointly train the networks, a min-max game is employed,
where the loss function of the generator is based on the
output of the discriminator. Convergence of a GAN is sig-
nified by obtaining equilibrium between the generator and
discriminator. Many GAN loss objectives exist, including
those of deep convolutional GAN (DCGAN) [38], least-
squares GAN (LSGAN) [30], Wasserstein GAN (WGAN)
[2], and WGAN with gradient penalty (WGAN-GP) [16].

In a standard DL setting where ground truth is available,
one could formulate a semi-supervised GAN for MRI re-
construction by using fully-sampled reconstructions as the
real images [43]. Figure la illustrates the overall framework
of training a semi-supervised GAN when fully-sampled
datasets are available. However, when we only have access
to training datasets where A is underdetermined due to data
subsampling, we don’t have ground truth to use as those real
images.

AmbientGAN attempts to solve this problem of lack of
clean training data by training the discriminator to differ-
entiate between a real measurement from a simulated mea-
surement of a generated image. The original AmbientGAN
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objective is:
m(%n max Eyp, [a(D(y))] +
D (A(G(2))))]

where G is the generator network, D is the discriminator
network, and y denotes the observed subsampled measure-
ments drawn from the distribution p,. The vector z denotes
a random latent vector of a distribution p, that is easy to
sample from, such as [ID Gaussian noise. A denotes the in-
verse model of a subsampling mask randomly chosen from
a set of subsampling masks. p4 is the Poisson-disc variable
density sampling distribution. ¢ (-) denotes the quality func-
tion used to define the objective. For DCGAN [50], ¢(t) =
t. The generated images are given by G (z) and generated
measurements are given by A (G (z)).

Note that in AmbientGAN, the input vector z is mapped
from a distribution of random latent vectors to a higher di-
mensional image space. However, for reconstruction, we
want a generative mapping from k-space to an image space,
not from a latent distribution to an image space. Therefore,
we propose to use a conditional GAN, where the input is
actually subsampled k-space data y from the distribution p,,
not the noise vector z. Again, y denotes the observed sub-
sampled measurements drawn from the distribution p,. In
our setting, we attempt to reconstruct a set of input subsam-
pled k-space data y*"P"“*. We use a separate training dataset
as the real measurements that are fed into the discrimina-
tor, '™ Both y"P** and y'"**" are drawn from the same
distribution of subsampled k-space y, and are disjoint sets.
G(y™") is the resulting generated high-resolution image
from the input undersampled k-space data.

Concretely, our overall proposed objective is:

(2
EZ~pz,A~pA [q (1-

minmaxE, -y, [¢ (D ()] +
Eyp,, Ampa [9(1 = D (A(G (1))

where the discriminator is trained to distinguish between
real measurements y'"*" and generated measurements
A(G(ymren)).

In this work, we propose to use the adversarial loss of
WGAN-GP because WGAN-GP has been shown to poten-
tially have the best convergence [10]. Later, we compare
our results of WGAN-GP to that of LSGAN. The gradient
penalty loss for WGAN-GP is:

3)

AmaxEy, [(19,D ()], — 1)° “)

where we set A = 10 [16].

A subtle difference between the AmbientGAN setting
and our setting is that all our variables are in the complex
domain instead of real. However, this can be dealt with by
splitting the real and imaginary components into two chan-
nels, or using custom complex-valued building blocks [9].

One potential concern with this objective is that the gen-
erator may directly output the zero-filled reconstruction of
y because both generator and discriminator take undersam-
pled k-space measurements as inputs. The key to address-
ing this problem is that the simulated imaging model A
in the objective is independently drawn with respect to the
generator inputs y. Therefore, the simulated measurements
A(G(y)) are unlikely to be sampled at the same k-space
locations as the input y. The discriminator would likely en-
force the generator to fill in missing k-space measurements,
because otherwise the discriminator can easily classify the
generated data as fake.

Our proposed unsupervised framework is shown in Fig-
ure 1b. The input to the generator network is an undersam-
pled complex-valued k-space data and the output is a recon-
structed two-dimensional complex-valued image. An imag-
ing matrix comprised of coil sensitivity maps, an FFT and
a randomized undersampling mask (drawn independently
from the input k-space measurements) is applied to the gen-
erated image to simulate the imaging process. The discrimi-
nator takes simulated and observed measurements as inputs
and tries to differentiate between them.
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Figure 1. Existing semi-supervised training (a) and our proposed
unsupervised training (b). (a) Framework overview in a semi-
supervised setting with a conditional GAN when fully-sampled
datasets are available. (b) Our proposed framework overview in
an unsupervised setting. The input to the generator network is
an undersampled complex-valued k-space data and the output is
a reconstructed two-dimensional complex-valued image. Next, an
imaging matrix comprised of coil sensitivity maps, an FFT and a
randomized undersampling mask (drawn independently from the
input k-space measurements) is applied to the generated image to
simulate the imaging process. The discriminator takes simulated
and observed measurements as inputs and tries to differentiate be-
tween them.
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Figure 2. Network architectures. (a) The generator architecture,
which is an unrolled network based on the Iterative Shrinkage-
Thresholding Algorithm and includes data consistency. The gen-
erator is trained in both k-space and image domain. (b) The dis-
criminator architecture, which uses leaky ReLU to backpropagate
small negative gradients into the generator. The discriminator is
trained only in image domain.

2.1. Network Details

The WGAN-GP [16] quality and penalty functions are
used in our proposed training objective. We also compare
to the results of using the LSGAN [30] objective functions.
An unrolled network [10] based on the Iterative Shrinkage-
Thresholding Algorithm (ISTA) [3] is used as the generator
architecture, shown in Figure 2a. The unrolled network is a
common data-driven approach to reconstruction which also
incorporates known MR physics [33, 8, 24, 51, 42, 48, 25,

1.

To solve Eq. 1 for an estimate of 2, the problem can be

formulated as a standard algorithm for inverse problems as:

& = argmin, | Az — y|3 + R (x) (5)

where x is the reconstructed set of images, A is the imaging
model, y is the measured data in k-space, and R is some reg-
ularization function. To solve Eq. 5, the unrolled network
repeats two different blocks: a data consistency block and a
de-noising block. The update block of the unrolled network
is used to enforce consistency with the measured data sam-
ples. This block, also known as the data consistency block,
makes sure that the final reconstructed image is consistent
with the measured data to minimize the chance of halluci-
nation. The gradient for the least-squares component in is
computed for the m—th image estimate x™:

v = AT Ag™ — Ay, (6)

where the adjoint of A is denoted as A, The gradient V™"
from Eq. 6 is used to update the current image estimate as:

xm-&-l _ m'rn _’_tvm. (7)

The step size is denoted by ¢. We initialize the step size
t to -2 and learn a different step size, t™, for each iteration
of the unrolled model. The rest of the network uses convo-
lutional layers to de-noise the image estimate. These two
blocks are then repeated as iterations.

The discriminator architecture, based on a simple convo-
lutional neural network with residual structure, is shown in
Figure 2b. Residual connections help to enforce the original
structure of the input image, and accelerate training conver-
gence. Leaky ReLU is used as the final activation function
instead of ReLU (which is more commonly used in CNN5)
in order for the discriminator to be able to backpropagate
small negative gradients into the generator.

The generator and discriminator of both GANs were
each trained with 2D convolutional layers and 256 feature
maps. The generator had 4 residual blocks and 5 itera-
tions of the unrolled network. Parameters were not shared
across iterations of the generator. The number of feature
maps, unrolled iterations, and residual blocks were cho-
sen for each model to maximize the computational capac-
ity of the network, and thus maximize the reconstruction
quality. Many authors have shown that as the size of a net-
work increases, so does its performance [34]. Cheng et al.
specifically showed that for unrolled network architectures,
as the number of iterations increased, the reconstructions’
PSNR and SSIM increased, while the NRMSE decreased
[8]. Therefore, we chose the biggest model that would fit
on our GPUs. We used the performance of our unsupervised
GAN on the knee dataset to obtain an estimate of how long
the GAN needed to train before convergence was reached.

All networks were trained with a batch size of one and
optimized with the Adam optimizer [21]. In all networks,
the generator and discriminator were trained for one iter-
ation per training step. Networks were trained using an
NVIDIA Titan Xp graphics card. The proposed methods
were implemented in Python using Tensorflow. In the spirit
of reproducible research, we will provide a software pack-
age in Tensorflow to reproduce the results described in this
article.

2.2. Dataset Details

Two datasets were obtained with Institutional Review
Board (IRB) approval and subject informed consent. The
first dataset was a set of fully sampled 3T knee images ac-
quired using 8 channel coil arrays and a 3D FSE CUBE
sequence with proton density weighting including fat satu-
ration [20]. Fifteen subjects were used for training and 3
subjects were used for testing. Each subject had a complex-
valued volume of size 320x320x256 that was split across
the readout (X) dimension into slices of size 320x256. Be-
cause a fully-sampled ground truth exists for this scenario,
we can quantitatively validate our results using standard
image quality metrics. We created undersampled images
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by applying pseudo-random Poisson-disc variable-density
sampling masks to the fully-sampled k-space. Acceleration
factors of the sampling masks ranged from 2 to 14. Al-
though we initially use fully-sampled acquisitions to create
sub-sampled acquisitions, it is critical to note that the gener-
ator and discriminator are never trained with fully-sampled
acquisitions.

The second dataset consisted of DCE acquisitions of the
abdomen, with a fat-suppressed free-breathing SPGR ac-
quisition [54]. 886 subjects were used for training and 50
subjects were used for testing. It was impossible to obtain
fully-sampled data for DCE because the dynamics of the in-
travenously injected contrast were faster than could be cap-
tured at full sampling by the imaging hardware. Each scan
acquired a complex-valued volume of size 192x180x80x18,
which was split into images of size 180x80. The raw data
was compressed from 32 channels to 6 virtual channels us-
ing a singular-value-decomposition-based compression al-
gorithm [55]. Data were fully sampled in the ky direction
and subsampled in the ky and k, directions. Images were
prospectively subsampled with an average acceleration fac-
tor of 5.15.

2.3. Experiments

2.3.1 Retrospectively Undersampled Knee Experi-
ments

First, we trained two GANSs, one semi-supervised, and one
using our unsupervised method, on the set of knee scans.
We did this to quantitatively evaluate the reconstruction per-
formance gap between a traditional semi-supervised GAN
and our proposed unsupervised method. We also compared
our proposed unsupervised method to CS with L;-wavelet
regularization, another reconstruction method which re-
quires no fully-sampled data, and which is routinely used in
our clinical practice. For each knee scan, we used a fully-
sampled calibration region of 20x20 in the center of k-
space. To compute image quality, we evaluated average nor-
malized root-mean-square error (NRMSE), peak signal-to-
noise ratio (PSNR), and structural similarity index (SSIM)
[53] between the reconstructed image and the fully-sampled
ground truth on test datasets.

In order to evaluate the two different methods which do
not use ground truth, our proposed unsupervised GAN and
CS, across different acceleration regimes, we evaluated the
reconstruction performance on the set of knee scans of the
unsupervised GAN as a function of the acceleration factor
of the datasets. We compared this to the reconstruction per-
formance of CS. In both experiments, separate training, val-
idation, and test set were used. The hyperparameters of the
training and network architectures were tuned based on the
results of the validation set. The hyperparameters of the CS
reconstruction were determined based on the L1 difference
between the output and the ground truth of the knee val-

idation set, as well as on visual quality for both datasets.
The Berkeley Advanced Reconstruction Toolbox (BART)
[47] was used to estimate sensitivity maps, generate under-
sampling masks, and perform a CS reconstruction of these
datasets for comparison purposes. Coil sensitivity maps was
generated using ESPIRIT [49].

2.3.2 Prospectively Undersampled DCE Experiments

Second, we trained our unsupervised GAN on the set of
abdominal DCE scans. Because DCE must be undersam-
pled for adequate temporal resolution, we have no ground
truth to quantitatively assess reconstruction performance.
Instead, we compare to a CS [29] reconstruction that is used
in our routine clinical practice, and qualitatively evaluate
the sharpness of the vessels and other anatomical structures
in the generated images. Both the networks and CS recon-
structed the DCE data one phase at a time. We calculated
the inference times per slice of CS and our proposed unsu-
pervised method to understand the difference in reconstruc-
tion times and clinical implications.

3. Results
3.1. Retrospectively Undersampled Knee Results

Figure 3 displays a comparison of PSNR, SSIM, and
NRMSE between reconstructions from CS with L-wavelet
regularization, our proposed unsupervised GAN, and a stan-
dard semi-supervised GAN on our test dataset. The pro-
posed unsupervised GAN had superior PSNR, NRMSE,

Test PSNR Test NRMSE
40 06 :
35 T 05 ‘
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: I I | :
z 20 I = 03 T
{15 “ 02
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0 0
Test SSIM
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= 06 W Proposed Unsupervised GAN
a 0.4 m Semi-supervised GAN
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Figure 3. Image metrics calculated on test datasets with recon-
structions from CS with L1-wavelet regularization, the proposed
unsupervised GAN, and the semi-supervised GAN. The error bars
on each series represent the standard deviation of each image met-
ric. The error bars of CS are much larger than the error bars of the
unsupervised and semi-supervised GANs. This suggests that the
unsupervised generative method is more consistent over each test
example than CS.
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Zero-filled Unsupervised Semi-supervised Ground Truth

Figure 4. Knee application representative results, showing recon-
structions, from left to right: zero-filled, compressed-sensing,
our proposed unsupervised, semi-supervised, and fully-sampled
ground truth. The acceleration factors of the input image are 6.5,
9.9, and 15.6, from top to bottom. The quantitative metrics that
are plotted next to the images are for the slice that is shown. In
all rows, the unsupervised GAN has superior PSNR, NRMSE, and
SSIM compared to CS. In the first row, the unsupervised GAN has
metrics that are notably worse than the semi-supervised GAN. In
the middle row and last rows, the unsupervised GAN has metrics
that come close to the performance of the semi-supervised GAN.

and SSIM compared to the CS reconstruction. Additionally,
the proposed unsupervised GAN only had 0.78% worse
PSNR, 4.17% worse NRMSE, and equal SSIM compared
to the semi-supervised GAN. The error bars on each se-
ries represent the standard deviation of each image metric.
The error bars of CS are much larger than the error bars of
the unsupervised and semi-supervised GANs. This suggests
that the unsupervised generative method is more consistent
over each test example than CS.

Representative results in the knee scenario are shown in
Figure 4. The columns represent, from left to right, recon-
structions from zero-filled, compressed-sensing, our pro-
posed unsupervised, semi-supervised, and fully-sampled
ground truth. The acceleration factors of the input images
are 6.5, 9.9, and 15.6, from top to bottom. In all rows,
the unsupervised GAN has superior PSNR, NRMSE, and
SSIM compared to CS. In the first row, the unsupervised
GAN has metrics that are worse than the semi-supervised
GAN. In the middle and last rows, the unsupervised GAN
has metrics that come relatively close to the performance
of the semi-supervised GAN. In the unsupervised GAN, the
generator markedly improves the image quality by recover-
ing vessels and structures that were not visible before but
uses no ground truth data in the training.

The results of the reconstruction performance on the set
of knee scans of the unsupervised GAN as a function of
the acceleration factor of the training datasets is shown in
Figure 5. This figure shows three different image metrics:

Test NRMSE versus Accel
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J—— ¢ J——
——CS s ——CS
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2 M

Test PSR versus A

H ———input
——cs

e Unsupervised
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Figure 5. The results of the reconstruction performance on the set
of knee scans of the unsupervised GAN as a function of the accel-
eration factor of the training datasets. The y-axis represents PSNR,
NRMSE, or SSIM, depending on the plot. The x-axis represents
the acceleration factor of the datasets.

PSNR, NRMSE, and SSIM. The gap between PSNR of CS
and the unsupervised model is negligible over all of the ac-
celeration factors. The gap between NRMSE of CS and the
unsupervised model is negligible at first for low accelera-
tions but becomes significant at an acceleration of 6 and be-
yond. The gap between SSIM of CS and the unsupervised
model is negligible at first for an acceleration of 2 but be-
comes significant at an acceleration of 4 and beyond. This
behavior is consistent with what we would expect because
performance of CS typically drops off at an acceleration of
around 4-6 [41]

3.2. Prospectively Undersampled DCE Results

Representative DCE results are shown in Figure 6.
From left to right, Figure 6 shows reconstructions from
input zero-filled, WGAN-GP (our proposed method), CS
with L1-wavelet regularization, and LSGAN. Our proposed
method, trained under WGAN-GP, greatly improves the in-
put image quality by recovering sharpness and adding more
structure. Additionally, the proposed method produces a
sharper reconstruction in ROIs such as kidneys and liver
vessels compared to CS and LSGAN. For example, in the
first row, the kidneys of our WGAN-GP are sharper than
that of the input, CS, and LSGAN. In the middle row, liver
vessels are more visible in WGAN-GP. In the final row, de-
tails of the pelvis are sharpest in WGAN-GP.

We compared the average inference time per two-
dimensional DCE slice between CS with L1-wavelet reg-
ularization (CS-L1) and our unsupervised GAN. On aver-
age, CS-L1 had an average inference time of 1.39 seconds
per slice, with a standard deviation of 0.23 seconds. On av-
erage, our proposed unsupervised method had an average
inference time of 0.23 seconds per slice, with a standard de-
viation of 0.23 seconds. The inference time of our unsuper-
vised method is approximately 7 times faster than CS-L1.
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Figure 6. 2D DCE application representative results, under two
different adversarial objectives, namely WGAN-GP and LSGAN,
as well as zero-filled and CS with L1-wavelet regularization. Our
proposed method, trained under WGAN-GP, greatly improves the
input image quality by recovering sharpness and adding more
structure, as shown by the green arrows. Additionally, the pro-
posed method produces a sharper reconstruction in ROIs such as
kidneys and liver vessels compared to CS and LSGAN. For ex-
ample, in the first row, the kidneys of the unsupervised GAN are
visibly much sharper than that of the input and CS. In the middle
row, liver vessels are more visible in WGAN-GP. In the final row,
details of the pelvis are sharpest in WGAN-GP.

4. Discussion

4.1. Summary

Our unsupervised generative method allows training
high-quality image reconstruction DL models without ever
using any fully-sampled data. This method differs from the
current paradigm of supervised and hybrid unsupervised-
supervised MRI reconstruction by removing the use of any
fully-sampled data during training. We demonstrate our
method on DCE, a clinically important application where
fully-sampled data is impossible to acquire.

In the knee application, reconstructions from our pro-
posed unsupervised method achieve superior SSIM, PSNR,
and NRMSE compared to a CS reconstruction. The semi-
supervised GAN was slightly superior in comparison to
our proposed unsupervised GAN, with better PSNR, bet-
ter NRMSE, and equal SSIM. This is expected because
the semi-supervised GAN has access to fully-sampled data,
which gives the network a stronger prior.

As the acceleration factor of the training knee datasets is
increased, the reconstruction performance of both our pro-
posed unsupervised method and CS, measured by PSNR,
NRMSE, and SSIM, decreases. This trend is as one would
expect because as the acceleration factor of the training

dataset increases, the GAN has a smaller range of sampled
k-space to learn from.

In the DCE application, generated images of our pro-
posed unsupervised method are sharper than those recon-
structed by CS. This could be because our method learned
a better model of the underlying data distribution of fully-
sampled k-space. Data consistency of the unrolled [ 1 0] gen-
erative network could also play a role in greater sharpness.
Additionally, inference time of our method is 7 times faster
than CS.

In our experimental setup, the respective sizes of the two
datasets are quite different (18 versus 886 subjects). We
could expect that the performance of the proposed method
may be improved by using a larger dataset for the knee ex-
periments. However, it was easier to tune the hyperparame-
ters of the network for the knee dataset because we have the
fully-sampled data to compute model performance metrics
on. The DCE reconstruction is a harder problem because of
the greater variance in anatomy and contrast of this dataset
compared to the knee dataset. Therefore, it potentially re-
quires training with more samples. Additionally, we cannot
compute any quantitative metrics on the DCE dataset due
to lack of fully-sampled data. Therefore, it is more difficult
to optimally tune the hyperparameters of the network with-
out ground truth data to quantitively compare performance
results.

Through our results, we have demonstrated that when
fully-sampled data is available, such as in the retro-
spectively undersampled knee application, semi-supervised
training should still be used for best reconstruction quality.
However, in the situations where fully-sampled data is not
available for training a reconstruction model, our unsuper-
vised method can still produce reconstructions which are
comparable to a semi-supervised counterpart and better, as
well as faster, than CS. Although in this work, we demon-
strated an application to DCE, a common acquisition type
across a wide range of oncologic imaging indications, these
concepts can potentially be leveraged for many other acqui-
sitions where fully-sampled data is difficult or impossible
to acquire, such as in cardiac imaging, including volumetric
cine and 4D flow, as well as in neurologic imaging, such as
DTT and fMRI.

4.2. Advantages

The main advantage of this method over existing DL re-
construction methods is the elimination of fully-sampled
data. Another benefit is that other additional datasets from
the same anatomy or sequence are not needed to use as
ground-truth, as in some other works on unpaired training
[44, 24]. Additionally, our proposed method produces bet-
ter quality reconstruction compared to baseline CS meth-
ods.

Not only does our method produce higher quality recon-
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structions compared to CS, but our model’s inference time
also is much faster (approximately 7 times faster) than the
inference time of CS. Faster reconstruction time is a huge
advantage of our method compared to traditional CS-based
methods. This has implications in higher patient through-
put, faster results for radiologists, and enabling real-time
imaging.

This method is extremely generalizable, and could be
easily extended to other GAN loss objectives such as
WGAN [2] or DCGAN [38] and other network architec-
tures such as variational networks [17], U-Nets [39], or
hybrid-domain networks [!1]. This technique can be ap-
plied to many different dimensionalities and applications,
and could thus be demonstrated for 2D slices, 2D slices plus
a time dimension, 3D volumes, and 4D datasets. Addition-
ally, this method could also be useful for high noise envi-
ronments where the acquisition of high SNR data is diffi-
cult. Other adverse situations where obtaining ground truth
data is precluded include real-time imaging (due to motion)
and arterial spin labeling (due to low SNR). Further applica-
tions where it is hard to fully sample include time-resolved
MR angiography, cardiac cine, low contrast agent imaging,
EPI-based sequences, diffusion tensor imaging, and fMRI.
Outside of MRI, this method can potentially have applica-
tions in other areas where obtaining fully-sampled data is
difficult or impossible, such as dynamic PET [13] or com-
puted tomography (CT) [12].

4.3. Limitations

One limitation of this method is that because our frame-
work uses a GAN, the training of the generator and discrim-
inator must be balanced, so that they don’t become unstable.
This can potentially be done by tuning the number of itera-
tions the discriminator and generator are trained per training
step to balance both networks. Also, the model sizes and pa-
rameters could be optimized for each dataset, although this
was not the main focus of this work.

Because no fully-sampled data existed for our DCE
dataset, it was difficult to quantitatively validate the DCE
experimental results. In the future, we plan to validate these
results against clinically relevant measures. For renal DCE,
this could include glomerular filtration rate (GFR), which is
measured by blood draws.

In the future, image quality could potentially be im-
proved by adding some kind of perceptual loss to the loss
function of the generator, such as a total variation loss
[6, 40] of the generated image, a feature reconstruction loss
between the generated and real images [19], or a style re-
construction loss between the generated and real images

[19].

5. Conclusion

In this work, we propose an unsupervised GAN frame-
work for image reconstruction without ever using ground
truth. We show that our proposed method outperforms ex-
isting traditional methods such as CS, while being 7 times
faster. Our proposed method has NRMSE, PSNR, and
SSIM values which come close to the performance of a
semi-supervised GAN. In contrast to most deep learning re-
construction techniques, which are supervised, this method
does not need any fully-sampled data. With our proposed
method, accelerated imaging and accurate reconstruction
can be performed in MRI applications where fully-sampled
datasets are difficult or impossible to obtain, such as dy-
namic imaging.
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