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Abstract

Single-image high dynamic range (SI-HDR) reconstruc-

tion has recently emerged as a problem well-suited for deep

learning methods. Each successive technique demonstrates

an improvement over existing methods by reporting higher

image quality scores. This paper, however, highlights that

such improvements in objective metrics do not necessarily

translate to visually superior images. The first problem is

the use of disparate evaluation conditions in terms of data

and metric parameters, calling for a standardized protocol

to make it possible to compare between papers. The sec-

ond problem, which forms the main focus of this paper, is

the inherent difficulty in evaluating SI-HDR reconstructions

since certain aspects of the reconstruction problem domi-

nate objective differences, thereby introducing a bias. Here,

we reproduce a typical evaluation using existing as well

as simulated SI-HDR methods to demonstrate how differ-

ent aspects of the problem affect objective quality metrics.

Surprisingly, we found that methods that do not even recon-

struct HDR information can compete with state-of-the-art

deep learning methods. We show how such results are not

representative of the perceived quality and that SI-HDR re-

construction needs better evaluation protocols.

1. Introduction

Deep learning for high dynamic range (HDR) image re-

construction has gained a great deal of attention over the

last few years [9, 5, 6, 10, 3]. With the flurry of recently

published papers, it is necessary to have consistent com-

parisons between them, to ensure progress in a meaningful

direction. The de facto standard is to run reference-based

objective metrics where reconstruction quality is measured

against reference HDR images. Most papers use objective

metrics like peak signal-to-noise ratio (PSNR), and a frac-

tional increase is deemed sufficient to produce state-of-the-

art results. The objective metrics are usually also accom-

panied by example image comparisons for showcasing im-

proved reconstruction performance. However, the example

images selected by authors are not very representative of

overall performance. Due to the stochastic nature of deep

learning, different methods will be better on different test

images and the objective metrics carry the most weight in

demonstrating improvements over previous work.

This paper inspects the commonly used evaluation pro-

tocol for single-image HDR (SI-HDR) reconstruction. We

start by outlining the SI-HDR reconstruction pipeline and

highlight problems with objective evaluations. Next, we

discern problems in the high variability in evaluation condi-

tions between papers, where different data, pre-processing,

and metric calibration make it impossible to compare re-

sults. Furthermore, we point out how differences in the in-

tended use of an LDR-to-HDR method make it difficult to

interpret the results. Our primary focus is on the nature of

the SI-HDR reconstruction problem itself – while SI-HDR

methods typically claim better reconstruction of under- or

over-exposed pixels, the predictions of quality metrics are

predominantly affected by the secondary task of inverting

the camera response function (CRF). This results in a strong

bias towards methods that perform more accurate inversion.

To summarize our contributions, the outline of the pa-

per is as follows: Section 2 briefly summarizes the rapidly

growing area of deep learning for HDR image reconstruc-

tion and points out the lack of structure in evaluations of

deep SI-HDR reconstruction methods. Section 3 outlines

the SI-HDR pipeline, with the different sub-problems of SI-

HDR reconstruction, and provides a necessary distinction in

the intent of single-image LDR-to-HDR methods. Section 4

explains three fundamental problems in the evaluation of

SI-HDR reconstruction methods. Finally, Section 5 com-

pares artificially constructed SI-HDR methods with state-

of-the-art methods to highlight how the different problems

in Section 4 affect the outcome of an objective evaluation.

We point to how the results most often are not representative

of the perceived reconstruction quality.

2. Related work

Early methods combined images of varying exposure to

increase the dynamic range [18, 4], but they only work with

3998



static scenes. The ability to merge dynamic scenes with

misaligned exposures was first provided by optical-flow or

patch-matching algorithms [11, 28, 29]. With the advent of

deep learning, more challenging scenes with large motions

were merged to produce HDR images [9, 30, 31].

Concurrently, single-image HDR methods were intro-

duced to display conventional images on HDR displays af-

ter applying inverse tone-mapping operators (iTMOs) [1,

22, 26, 2]. Estimating HDR pixel values from a sin-

gle image is an under-constrained problem due to miss-

ing information in under and over-exposed regions. Re-

cently, deep neural networks have demonstrated significant

improvements based on a learned high-level understand-

ing of the image content. Following some breakthrough

works [32, 6, 5], a large number of methods have been pro-

posed, each incorporating a different architecture and train-

ing strategy [21, 15, 12, 16, 17, 27]. The improved results

have resulted in single-image LDR-to-HDR methods being

applicable in areas outside HDR display, such as image-

based lighting (IBL) and post-processing. As we discuss

in Section 3.1, it becomes important to distinguish between

different intents when evaluating methods.

Each previous paper on deep SI-HDR provides a sep-

arate evaluation using full-reference objective image qual-

ity metrics. Differences in testing data, camera simulation,

and metric calibration lead to a great degree of variation

between the reported results. Thus, methods considered in

several such evaluations show significant variations in the

reported quality values, making it impossible to draw gen-

eral conclusions across different studies.

To the best of our knowledge, there has been only one

previous attempt at an independent and standardized evalu-

ation of SI-HDR methods [24]. This evaluation accompa-

nied the recent HDR challenge in the New Trends in Image

Restoration and Enhancement (NTIRE) CVPR workshop

on single and multi-image HDR reconstructions with deep-

learning methods. They introduced a new HDR dataset

consisting of real as well as synthesized images and objec-

tively evaluated the reconstructions using PSNR on linear

HDR pixels. Additionally, they compared methods on tone-

mapped images using the µ-law algorithm. Although the

challenge is a step in the right direction towards standard-

ized SI-HDR evaluation, it does not address the problems

with SI-HDR evaluation that we focus on in this paper, such

as the incorrect use of HDR quality metrics, CRF domi-

nance, and sensitivity to camera simulation.

3. Problem formulation

The forward model for HDR reconstruction problems

describes how a camera obtains a low dynamic range (LDR)

image, L, from an HDR ground truth image, H ,

L(x) = q (min{1, g(eH(x) + η(H(x)))}) , (1)

where x denotes pixel index, e is a simulated exposure time,

η is signal-dependent camera noise [8], q performs quanti-

zation to the desired bit depth, and g is a non-linear tone-

mapping or camera response function (CRF). Transforming

a low dynamic range image to high dynamic range (LDR-

to-HDR) aims at approximating the inverse of Eq. (1). This

is a multi-faceted problem that can be divided into the fol-

lowing sub-problems:

R-I Inversion of the CRF – Estimating the inverse g−1 is

a challenging problem and is impossible without the

presence of enough contextual information in an im-

age. At the same time, one can argue that this problem

is not the most important in SI-HDR reconstruction

for at least two reasons. Firstly, a perfect lineariza-

tion/CRF inversion is not necessary for most applica-

tions. This is because some applications are not sensi-

tive to linearization, and for others, some non-linearity

will be applied in the end anyway. Secondly, for many

applications, linear data is readily available (e.g., RAW

images directly from the camera sensor).

R-II Bit-depth expansion/de-quantization – Recovering

higher bit-depth is typically unnecessary for modern

cameras since they are equipped with analog-to-digital

converters with sufficient bit-depth. However, when a

CRF with shallow slopes needs to be inverted, the pro-

cess may introduce visible quantization artifacts.

R-III Reconstructing of under-exposed pixels – These pix-

els are mostly affected by noise, η in Eq. (1), and in

most cases this problem is similar to image denoising.

The details in dark regions can also be lost due to quan-

tization, for example if the pixels are largely under-

exposed and/or aggressively compressed by a CRF.

R-IV Reconstruction of over-exposed pixels – The clip-

ping of information due to sensor saturation, modeled

by min{. . .} in Eq. (1), is most often directly associ-

ated with the SI-HDR reconstruction problem. While

the problem shares some similarities with the recovery

of under-exposed pixels, it also differs significantly in

many aspects. Perhaps the most relevant difference is

the fact that over-exposed pixels often carry most of

the dynamic range. This results in a long-tailed distri-

bution of luminances because specular highlights and

light sources are much brighter than other parts of a

scene. For some applications, such as IBL, this infor-

mation is critical. The problem is also significantly dif-

ferent in terms of solution and is more closely related

to inpainting.

3.1. HDR reconstruction intent

The SI-HDR problem is typically understood as the in-

verse problem of Eq. (1). A closely related problem termed
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Figure 1: Illustration of how the intent of SI-HDR recon-

struction and inverse tone-mapping (iTM) differs. The fig-

ure shows LDR/HDR display as the direct application, but

the HDR images could also be used for other purposes (IBL,

post-processing, etc.). While iTM directly maps LDR con-

tent for HDR display, a similar goal could be achieved by

SI-HDR followed by tone-mapping.

inverse tone-mapping (iTM) aims at enhancing LDR image

L but without the goal of matching the original HDR image

H . The difference between SI-HDR and iTM is illustrated

in Figure 1, and can be defined as follows:

Inverse tone-mapping (iTM): Methods that use an inverse

tone-mapping operator (iTMO) for maximizing subjective

quality on an HDR display. In this scenario, color gamut,

exposure, and local contrast should be correctly tuned for

an improved viewing experience. Recovering information

in highlights is not essential since a rich viewing experience

is possible even if some information is clipped to the peak

luminance of the display. This category includes the ear-

lier heuristic methods [1, 22, 26, 2], as well as more recent

learning-based models [13, 14].

Single-image HDR (SI-HDR) reconstruction: Methods

that aim at recovering the underlying physical light quan-

tities of the captured scene. In this scenario, one of the

most important problems is to recover lost information in

the saturated areas of the image (R-IV).

It should also be noted that an iTMO can be composed by

taking the result of an SI-HDR method and tone-mapping it

for the HDR display, thus potentially disregarding some of

the reconstructed information. In previous work, we rec-

ognize a certain confusion between the two intents, where

some methods are not clear on which objective they aim

for, and where iTM is used to describe methods that aim for

HDR reconstruction.

4. The evaluation problem

The evaluation of iTM is similar to that of conventional

tone-mapping, which aims at displaying HDR images on

LDR monitors. That is, it is difficult to formulate a nu-

merical evaluation measure that reflects subjective prefer-

ences. The evaluation of SI-HDR reconstruction, on the

other hand, is closer to multi-exposure HDR reconstruc-

tion where the underlying luminance values of the scene

are sought. A major problem with recent SI-HDR papers

is confusion in intent, causing methods to be presented as

iTMOs but evaluated by comparing them to reference HDR

images. This, by itself, imposes difficulties in properly as-

sessing a method. However, even if a method is clearly

performing SI-HDR reconstruction, it is still problematic to

numerically evaluate its performance, for a number of rea-

sons. We focus on three problems that obscure proper com-

parisons between methods: CRF dominance, CRF bias, and

proper use of HDR metrics.

4.1. CRF dominance

For a deep-learning SI-HDR reconstruction, a neural net-

work f is trained to invert Eq. (1), providing the estimate

Ĥ = f(L). A natural choice for the evaluation of different

methods is to compare the reconstruction quality in terms

of the difference between a reconstructed HDR image and

the corresponding ground truth, d(Ĥ,H). This difference is

typically an HDR quality metric (discussed in Section 4.3).

The main problem with this approach is that the numerical

difference between Ĥ and H is usually dominated by inac-

curacies in inverting g (R-I), which affects all pixels in the

image. Failure to properly recover clipped pixel values due

to under- or over-exposure (R-III and R-IV) has a relatively

small impact, especially for the moderate amount of satura-

tion found in most images. Thus, a method that accurately

estimates g−1 is likely to perform significantly better in an

objective evaluation compared to one that provides a good

reconstruction of over and under-exposed pixels. In the ex-

periment in Section 5 we will demonstrate this problem.

4.2. CRF bias

The testing datasets of most SI-HDR papers contain im-

ages with a similar formulation of CRFs as the training data.

However, there is no guarantee that contemporary methods

were trained with similar CRFs, so these can potentially

be less suitable for inverting the specific CRFs used in the

evaluation. Thus, it is easy to create a bias towards the pro-

posed method and report improved quantitative results. Due

to CRF inversion being a dominant feature of the inversion

problems (Section 4.1), this type of bias is expected to have

a significant influence on the results of an evaluation.

As an extreme case, consider using a single CRF for

training a deep learning method for SI-HDR reconstruc-

tion and using the same CRF for the testing data. Now,

the method only needs to learn a single linearization func-

tion, g−1(), which is a relatively simple problem. When

compared against other methods that have been trained on a

variety of CRFs, the proposed method will have a strong ad-
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Figure 2: Quality predictions of regular (PSNR) and HDR

image quality metrics (PU21-PSNR and HDR-VDP-3) on

an HDR image in linear color space. The image contains ei-

ther camera noise (left) or a highlight enhancement (right).

PSNR incorrectly predicts that image quality is higher for

the image affected by noise. This is because PSNR com-

puted on linear color values is very sensitive to changes in

the bright parts of an image and is much less sensitive to

changes in dark parts, which are most affected by camera

noise. The HDR image was gamma-encoded (γ = 2.2) for

presentation. Different exposures are shown in the insets.

vantage. In most previous works, the problem is not as ex-

treme because LDR data is usually simulated by a range of

different CRFs. However, since camera simulation is usu-

ally formulated differently in different papers, there could

still be a bias due to a closer similarity between training and

testing CRFs.

4.3. HDR metrics

The final consideration is the proper use of HDR quality

metrics. The images generated by SI-HDR methods are typ-

ically represented in linear RGB color spaces, which lack

the perceptual uniformity of display-encoded color spaces,

such as sRGB. For this reason, standard quality metrics,

such as PSNR or SSIM, cannot be used to assess the quality

of reconstructed HDR images. The problem is illustrated in

Figure 2, in which an image with a high amount of cam-

era noise has a much higher PSNR than the same image

with enhanced highlights (contrast stretched in bright ar-

eas). Such a prediction contradicts what we see in the im-

age in which the noise is much more apparent than highlight

enhancement. This is because the pixel differences in linear

color spaces emphasize the differences in bright areas and
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Figure 3: The selected response function, M-CRF, from the

database in [7], closely similar to the mean of CRFs. The

grey curves are all the 201 CRFs of the database.

de-emphasize the differences in dark areas. To provide a

meaningful prediction of image quality, we can either use

a dedicated HDR quality metric, such as HDR-VDP [19],

or transform an image into a uniform color space using per-

ceptually uniform transform, such as PU21 [20].

Another common problem is the improper use of HDR

metrics. Unlike standard metrics, HDR metrics require

images to be represented in absolute colorimetric values,

which correspond to the light emitted from a display. This

is because such metrics account for the fact that the visual

system is less sensitive to dark (low luminance) colors. To

compute meaningful predictions for an HDR image in a lin-

ear color space, its exposure needs to be adjusted by multi-

plying pixel values by a constant. One common strategy is

to map the peak value of an image to 1000 (for 1000 cd/m2

display), and another is to map diffuse white color to 200

(200 cd/m2 is typical luminance of the white for a monitor

with a comfortable level of brightness). For reproducibility,

the strategy for performing such a mapping and the metric

parameters used (display size, resolution, viewing distance)

should be reported in each paper. For example, the results

for Figure 2 were computed assuming a 24-inch display

with a resolution of 1920×1200 pixels, at a viewing dis-

tance of 0.5 m and the peak luminance of the image mapped

to 400 cd/m2.

5. Evaluation

For demonstrating the aforementioned problems with

CRF dominance and CRF bias, we set up an evaluation that

is formulated to highlight the influence of CRF inversion.

We do this both by testing individually using different CRF

formulations and by creating artificial SI-HDR methods that

can do either perfect CRF inversion or perfect reconstruc-

tion of saturated pixels.
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(a) Camera simulation: M-CRF, EV-5
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(b) Camera simulation: CLAHE, EV-5

Figure 4: The distribution of metric values over the 96 tested scenes, where methods have been color-coded and sorted by

mean value to facilitate comparing differences in ranking. (a) uses camera simulation with M-CRF, while (b) is with CLAHE,

and both have been simulated with EV-5. Left, middle, and right show results with PU-PSNR, PU-SSIM, and HDR-VDP-

3, respectively. The methods are: DrTMO [6], HDR-CNN [5], ExpandNet [21], HDR-GAN [15], Single-HDR [17], and

Mask-HDR [27], as well as 3 reference methods (see Section 5.1 for details). Error bars denote standard errors.

5.1. Experimental setup

Camera simulation: We simulate cameras using two dif-

ferent CRFs. The first one, called M-CRF, is a static CRF

selected from a popular database [7]. It was selected as the

CRF closest to the mean CRF over the set of 201 CRFs

(see Figure 3). This CRF is representative of what was

used when training most SI-HDR methods. The second

one, called CLAHE, is an adaptive CRF that implements

Contrast Limited Adaptive Histogram Equalization [25] and

produces a different CRF for each image. We compute im-

age histograms and create a mapping on logarithmic lumi-

nance values to ensure better perceptual uniformity. The

method is chosen to be representative of the image process-

ing utilized in modern smartphone cameras. For proper sen-

sor simulation, we also include noise simulation according

to [8], which utilizes parameters measured from a Canon

EOS-1Ds with exposure time 1/30 sec and ISO 800. For

each HDR scene, we simulate images at two different ex-

posure value (EV) settings, EV-5 and EV-10, which are

tuned individually for each image to clip 5% and 10% of

the brightest pixels, respectively. We use these to test the

methods’ abilities to perform reconstruction in scenarios of

varying difficulty, where a higher degree of clipped pixels

will make SI-HDR reconstruction more challenging.

HDR metrics: For measuring objective reference-based

quality, we use three common metrics. To use LDR met-

rics PSNR and SSIM, we transform RGB images to percep-

tually uniform units with PU21 (discussed in Section 4.3).

Additionally, we use the latest HDR-VDP [19, 23] release,

HDR-VDP-3, and report the Q JOD-score quality correlate

defined in the range [0, 10]. For each comparison, we scale

the clipping points for EV-5 and EV-10 of each image to

500 cd/m2, i.e., the 95th and 90th percentiles are anchored

to 500 cd/m2, for EV-5 and EV-10, respectively. For HDR-

VDP-3 we specify a 24-inch display with a resolution of

1920×1200 pixels, at a viewing distance of 0.5 meters.

Methods: For comparisons, we focus on 6 of the most

popular and recent SI-HDR reconstruction methods in the
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P-lin ExpandNet P-rec HDR-CNN Naive Mask-HDR Single-HDR DrTMO HDR-GAN

PU-PSNR — M-CRF

PU-PSNR — CLAHE

Figure 5: The rankings provided by PU-PSNR with M-CRF

and CLAHE (the best method on the left). The lines connect

methods where differences cannot be deemed statistically

significant in a t-test, with a p-value threshold of 0.05.

literature, each used with pre-trained weights provided

by respective authors. The methods are: DrTMO [6],

HDR-CNN [5], ExpandNet [21], HDR-GAN [15], Single-

HDR [17], and Mask-HDR [27].

To test the influence of CRF specification, we also create

two artificial SI-HDR methods. The method P-lin performs

perfect linearization (problem R-I), but no reconstruction of

saturated pixel information,

ĤP-lin(x) = q (min{1, eH(x) + n(H(x))}) . (2)

That is, P-lin is a simulated LDR image with no CRF ap-

plied. Although noise and quantization are included, com-

paring this image to the ground truth H will mainly mea-

sure the differences caused by missing information due to

over-exposure (problem R-IV). The second model, P-rec

performs perfect reconstruction of the saturated pixels but

uses an imperfect static inverse CRF Llin = L2,

ĤP-rec(x) = α(x)H(x) + (1− α(x))L(x)2, (3)

where α is a mask that extracts saturated regions in the im-

age, α = max(0, L − 0.9)/0.1. This means that the in-

formation for over-exposed pixels will be taken from the

ground truth image H . Finally, we also include a naive

model that performs no reconstruction and imperfect lin-

earization, Ĥnaive = L2. We include this to highlight how

doing nothing in some circumstances can outperform state-

of-the-art SI-HDR reconstruction methods.

Data: We use 96 images from the test set in [5], which is

a combination of online HDR resources as well as captured

HDR scenes. Although there is a potential risk that some

of the images have been used in training by some of the

compared methods, we regard this aspect as having a minor

influence on the outcome of the experiments – the overlap

between this set and the methods’ training data should be

small, and there are significant differences in camera simu-

lation and cropping. All images are 1024×768 pixels.

5.2. Results

The results separated between each metric and CRF are

presented in Figure 4. We sort the methods according to

the mean performance to highlight how the ranking between

methods changes for different CRFs. Since the performance

5.0 5.5 6.0 6.5 7.0 7.5
HDR-VDP-3  (M-CRF)

5.0

5.5

6.0

6.5

7.0

7.5

HD
R-

VD
P-

3 
 (C

LA
HE

)

 Naive 
  P-lin  
  P-rec  
 DrTMO 
 ExpandNet 
 HDR-CNN 
 HDR-GAN 
 Mask-HDR 
 Single-HDR 
EV-5
EV-10

Figure 6: Differences in HDR-VDP-3 when using M-CRF

and CLAHE. The two points for each method are with EV-

5 and EV-10, demonstrating how several methods do not

show an expected reduction in quality with increased cam-

era exposure (more challenging reconstruction problem).

varies significantly between scenes, the distributions of met-

rics are often wide, but standard errors show that the 96

images provide a good estimate of the mean. To highlight

which of the methods are possible to separate in the rank-

ings, Figure 5 shows the rankings for PU-PSNR. The lines

connect methods where a t-test cannot reject the null hy-

pothesis that methods come from the same distribution, at

the 5% significance level. The differences in performances

between some methods are not statistically different, but

overall there is a clear difference between low and high-

performing methods. For results using all combinations of

camera simulation and evaluation metrics, we refer to the

supplementary material.

The most notable pattern is how the P-lin method out-

performs all other methods with a large margin. This is

consistent across different combinations of camera simula-

tion, EVs, and evaluation metrics, except for M-CRF with

HDR-VDP-3. Since P-lin only inverts the CRF and does not

reconstruct HDR information, the results indicate that the

dominant feature of the reconstruction problem is the lin-

earization of pixel values. Also, this means that if a model

is trained and tested in a way that gives it an advantage in

terms of CRF inversion quality, it will be easy to demon-

strate improvements over previous work without having to

perform successful reconstruction of saturated pixels.

The ranking between the compared methods is sensi-

tive to the formulation of camera simulation. For exam-

ple, DrTMO and the naive model have significantly differ-

ent performances. DrTMO is top 3-4 for M-CRF, while the

naive model shows the worst performance. On the other

hand, with CLAHE, the naive model outperforms DrTMO

and is comparable to the bulk of state-of-the-art methods

(see Figure 5). As the naive model does not perform HDR
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Figure 7: Selected scene areas for different reconstructions, with input LDR images simulated using M-CRF and CLAHE.

The metrics at the bottom show the performance with M-CRF/CLAHE. The exposure time was set such that 5% of pixels are

saturated (EV-5). Ground truth and reconstructed HDR images have been gamma-encoded for display.

reconstruction or estimation of the inverse CRF, this demon-

strates how easy it is to cheat SI-HDR evaluations with dif-

ferent CRFs.

To better demonstrate the disagreement between evalua-

tions with different camera simulations, Figure 6 plots the

mean HDR-VDP-3 score for M-CRF against the score for

CLAHE. This is done both for camera simulations at expo-

sure EV-5 and EV-10, denoted by the different points. For

results to be consistent between camera simulations, we ex-

pect the evaluation done with either CRF to produce very

similar results, but this is not the case. It is apparent how

widely the results differ depending on the CRF formulation.

Also, comparing the different exposures, they do not have

the expected impact on the results. Since the longer expo-

sure (EV-10) generates a more challenging reconstruction

problem with more missing information than the shorter

one (EV-5), the quality should decrease. Such a decrease

is seen for the P-lin results that are not affected by the CRF.

However, on the contrary, for most of the other methods the

quality increases for one or both camera simulations.

Connecting the numerical results to the visual quality of

reconstructions, Figure 7 shows an example scene with re-
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Figure 8: Comparison of a selection of reconstruction methods, on input LDR images simulated with M-CRF and CLAHE.

Camera simulations have been performed using EV-5. Images have been gamma-encoded for display, and the exposure has

been reduced by -2 EV to facilitate comparisons in bright image areas.

constructions in selected areas for all methods, while Fig-

ure 8 shows an example for a selection of methods in full

size. Compared to the ground truth image, it is evident how

the P-rec method has the best HDR quality, while P-lin has

no visual improvements, which is in stark contrast to objec-

tive metrics. Also, the perceived differences between P-lin

and the naive method are marginal, despite the differences

in measured quality. In Figure 8, Single-HDR works well

for the M-CRF case, while not with CLAHE, but this is hard

to decipher from the numbers. ExpandNet, which together

with Single-HDR is one of the best-performing methods

(except for P-lin), shows high PSNR values but recovers

little high-intensity information. The most likely explana-

tion, in this example, is that the method does better CRF

inversion compared to other methods.

6. Conclusion

In this paper, we have focused on common problems

with the objective evaluation of SI-HDR methods. We

have included a specification of the SI-HDR reconstruction

pipeline, pinpointed sub-problems that pose difficulties for

evaluation, and highlighted the differences between intents

of LDR-to-HDR reconstructions. Our experimental results

unveiled a disagreement between the numerical results and

the visual quality of reconstructed images. In terms of

the perceived quality, the P-rec method, which accurately

recovered HDR information in over-exposed image areas,

provided the most successful HDR reconstruction. How-

ever, object metrics did not reflect this. Instead, they favor

the P-lin method, which does not perform HDR reconstruc-

tion but outperformed all other methods due to CRF domi-

nance. Moreover, we demonstrated how results are highly

sensitive to camera simulation and metric calibration, mak-

ing it difficult to draw conclusions from such an evaluation

without a standardized evaluation protocol. The sensitivity

to camera simulation and metric calibration also makes it

easy to cheat by formulating the evaluation in a way that

favors a particular model.

To make progress in deep LDR-to-HDR, it is crucial

to align evaluations for meaningful comparisons between

different methods and between different evaluations. One

strategy for isolating the quality of highlight recovery is to

only evaluate differences in saturated areas. However, this

is not likely to overcome the problem, as incorrect lineariza-

tion will also affect bright pixels, i.e., there will still be a

significant difference between methods with good and bad

linearization, even if these are equally good at reconstruct-

ing the missing information (for an example, we refer to the

supplementary material). To fully overcome the problem,

CRF inversion needs to be more clearly separated. We em-

phasize the importance of focusing on this in future work.
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