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Abstract

This work proposes a deep compressed learning frame-
work inferring classification directly from the compres-
sive measurements. While classical approaches separately
sense, reconstruct signals, and apply classification on these
reconstructions, we jointly learn the sensing and classifica-
tion schemes utilizing a deep neural network with a novel
loss function. Our approach employs a data-driven recon-
struction network within the compressed learning frame-
work utilizing a weighted loss that combines both in-
network reconstruction and classification losses. The pro-
posed network structure also learns the optimal measure-
ment matrices for the goal of enhancing classification per-
formance. Quantitative results demonstrated on CIFAR-10
image dataset show that the proposed framework provides
better classification performance and robustness to noise
compared to the tested state of the art deep compressed
learning approaches.

1. Introduction

Typical approaches transform the signals to a sparse do-
main after acquiring them at a high rate, at least as directed
by the Nyquist rate for further processing. Compressive
sensing (CS) [3,7, 1 1] proposes to acquire linear projections
of the signal onto a lower dimensional space to show that if
the inner distances of signals are not disturbed much by this
projection, the original signals can still be reconstructed.
CS theory provides the theoretical guarantees, as well as
the algorithms, for successful reconstruction of these sparse
signals from small number of linear projections.

The final goal in many area is not to reconstruct the sig-
nal but rather apply a signal processing task such as detec-
tion, estimation or classification. For compressively sensed
signals, a typical implementation of such an effort requires
a two stage approach. First, the signal is reconstructed
and second, the inference is done on the reconstructed sig-
nals. This two-stage approach although allowing already
developed inference techniques to be easily used on recon-

structed signal domains, it requires the burden of heavy
computational complexity due to the nonlinear reconstruc-
tion stage of CS. Hence, approaches that will allow infer-
ence and learning directly from compressed data domain
with computational advantages are utmost important.

Direct inference in CS framework is not entirely a novel
concept where the effect of inference from compressive
measurements is also studied in parallel with the introduc-
tion of CS. In [13], CS projects is studied for M-ary hy-
pothesis testing. The work in [8] introduced smashed filters
to show that we can perform classification task in CS set-
tings if we statisfy Johnson-Lindenstrauss Lemma [ 10, 26].
After the evolution of smashed filters in CS-based classifi-
cation, the term ‘compressed learning’ (CL) was introduced
in [6] where it was theoretically shown a linear support vec-
tor machine (SVM) classifier operating on the compressed
domain performs almost as well as the best linear classi-
fier operating on the original signal space. In [5], a family
of deterministic CS measurement matrices (MM) are ana-
lyzed and presented in terms of CL results. The work in [9]
provides some guarantees on detection, classification, esti-
mation, and filtering taks in compressed domain for a wide
variety of signal classes.

The deep neural networks (DNN) based CL approaches
[2,19,31] utilizes compressive measurements obtained with
a given MM to generate a proxy image as the input to a
convolutional neural network (CNN) followed by fully con-
nected (FC) and softmax layers for the classification task.
In [2,31], the DNN uses two FC layers to denote the sens-
ing MM and adjoint operator prior making the proxy image
to learn the MMs where the work in [19] uses a fixed Gaus-
sian MM. In [28], several updates are proposed on the net-
work of [2] including new ReL.U activations, dropout, and a
regularized loss function including mutual coherence of the
learned measurement matrix. However, the classification
performance of the existing DNN based CL approaches is
low due to the quality of the proxy image used as the input
to their classification networks.

Motivated by the successful enhanced results on utiliz-
ing data driven deep learning based structures to reconstruct
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signals from their compressed measurements [17,18,20-22,

] to learn the mapping from low dimensional data space
to the original signal space for the given signal while also
providing much lower reconstruction time given a trained
model, this paper proposes a new deep joint compressed
learning (DJCL) framework that incorporates a deep re-
construction network within the CL structure to optimize
a novel weighted loss function that combines classifica-
tion and reconstruction losses driving the learning for the
full network. While inferring directly from the compressed
measurements, the DJCL can also derive optimal set of
measurements for the classification task. The proposed net-
work is trained and tested using CIFAR-10 [ 1 6] dataset. The
obtained results are compared with CL based approaches as
well as separately reconstructing images and applying clas-
sification on the reconstructed images. Our results show
that proposed deep joint compressed learning framework
performs better than the state of the art deep CL approaches
surpassing separate reconstruction and classification levels.

The main contributions of this paper can be listed as fol-
lows:

* A new deep compressed learning framework is pro-
posed for direct inference from lower number of linear
measurements jointly utilizing DNN structures for the
learning of measurements, reconstruction, and classi-
fication schemes.

* A novel loss function that is a weighted combination
of cross-entropy and mean square error is proposed to
train the combined deep network structure. This novel
loss results in a higher classification accuracy than us-
ing only cross-entropy for the network for compressed
learning framework.

* The proposed DICL structure is a general framework
that is flexible enough to employ most of the existing
high performing reconstruction and classification net-
works within its structure.

 Task dependent measurement matrices are learned for
the specific goal of classification.

* Detailed performance analysis in comparison to state
of the art deep CL approaches are provided for a vari-
ety of measurement rates.

The rest of the paper is organized as follows: The pro-
posed DJCL framework is detailed in Section 2. The
dataset, experimental settings, and training and testing re-
sults of the proposed method with the compared approaches
have been presented in Section 3. Finally, conclusions are
drawn in Section 4.

2. Proposed Learning Structure

The proposed deep compressed learning network struc-
ture along with recent DNN based CL techniques [19,31]
has been illustrated in Figure 1. It can be seen that the
proposed model differs from existing approaches in sev-
eral fronts. First, while existing approaches only generate a
proxy image through a single FC layer, proposed approach
utilizes a reconstruction network and produces an enhanced
input to the classification network. Second, existing ap-
proaches train network with only a cross entropy loss while
we propose a weighted loss of reconstruction and classifica-
tion costs to train the proposed model. The proposed DJCL
framework is flexible to use most of the existing reconstruc-
tion or classification networks within and it jointly utilizes
its sensing, reconstruction, and classification stages as de-
tailed in the following subsections:

2.1. Sensing: Learning Measurements for Classifi-
cation

The sensing system in the proposed DJCL framework as
shown in Figure 1(c) utilizes a reshaping and a fully con-
nected layer (F'Cy) with linear activations modelling the
sensing system to acquire the data from the original sig-
nal to the compressed domain. Since only linear activations
are used in F'C layer, the output of F'C'y fully models the
y = ®x, CS data acquisition process where entries of MM,
® are the weights used in F'Cy layer where x is obtained
from via reshaping the original signal e.g. image X. Learn-
ing the parameters of this layer corresponds to learning a
linear MM suitable for CS for the task of classification.

2.2. Reconstruction Network

Reconstruction network is the second part of the pro-
posed DJCL framework where we use the compressed mea-
surements y from the sensing stage to reconstruct a signal
estimate X, which will be fed as an input to the classifi-
cation network. The DNN based CL in [19] only uses ad-
joint operators ®7T to generate proxy images by reshaping
# = ®Ty as inputs to the following classification stages.
Learning in [19] is only in the classification network where
this pseudo image is used as the input. In [2,31], a single
FC layer with ReLu activation is used to imitate the adjoint
operator by learning to create a pseudo images.

However, in recent years, studies on DL based signal re-
covery from compressed measurements led to several suc-
cessful DNN structures [17, 18,22-24,27,30]. These DNN
models show enhanced signal recovery performance for the
class of signals as they are trained on with much less com-
putational complexity compared to classical CS recovery
approaches. We propose to utilize a DL based reconstruc-
tion network that maps the compressed measurements to the
original signal domain in our CL framework as opposed to
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Figure 1: CL block diagram for (a) [19], (b) [31] (c) Proposed Method

a single FC layer. For this goal, we specifically focus on
three of the recent and comparably successful reconstruc-
tion networks; ReconNet [17, 18], IstaNet [30], and Con-
vMMNet [22]. Each of these reconstruction networks dif-
fer by their DNN architectures on how they perform recon-
struction from the given compressed measurements. While
ReconNet utilizes convolutional layers working on initial

proxy images, ConvMMNet uses a cascade of an FC layer
with multistage convolutional and ReL U layers trained us-
ing a weighted Euclidean loss jointly learning the measure-
ments as well as the reconstruction scheme. ISTA-Net un-
rolls the iterative shrinkage-thresholding (ISTA) [4] algo-
rithm into a multistage DNN. In general, these networks are
trained with minimizing the Euclidean loss defined as the
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average squared reconstruction error as in (1)

1 T
Lp(©) = 7> I/ (:©) ~Xillp- ()
i=1

where 7' is the total number of training samples, and
f(ys, ©) is the reconstruction network model with parame-
ters ® and the input compressed measurement samples y;.
In addition to the Euclidean loss, an adversarial loss is used
within a generative adversarial network (GAN) in [18] in
ReconNet and ConvMMNet models. More details for net-
work structures of each approach can be found in more de-
tail in their respective publications.

In this study, we utilize parts of these reconstruction net-
work models after the proxy image generation within our
framework. Not all but one of these reconstruction networks
can be selected to be used in final DJCL model. The goal
is to create an enhanced representation of the signal as the
input to the next classification stage in the network. Simu-
lation results presented in section 3 show that the output of
the reconstruction networks have significantly higher peak
signal to noise ratio levels compared to proxy images gen-
erated in compared CL approaches.

Although the specified reconstruction networks are
tested and compared in this study, the general framework
we propose is flexible so that other reconstruction network
models can also be utilized instead of the tested networks.
The generated image from the reconstruction network will
be the input to the next stage of the DJCL framework, which
is the classification network.

2.3. Classification Network

The final stage of our CL framework is the classification
part. For this stage, we utilize one of the existing state-of-
the-art classification networks such as AlexNet [16], VGG
[25], or Wide residual Network (WRN) [29]. AlexNet of-
fers a baseline for DNN based object classification. It uses
five convolutional layers, followed by FC layers with ReLU
activations. While VGG network utilizes convolutional,
pooling, and FC layers like AlexNet, it uses smaller filters
with increased depth. In this work, we opt to use and com-
pare VGG-3 blocks. For compatibility with the input size of
the images from utilized dataset, we use convolutional fil-
ters of size 32, 64, and 128 respectively in consecutive lay-
ers prior to max-pooling operation. WRN is an extension of
residual network (RESNet) [14] utilizing skip connections
and residual blocks. In this study, a WRN of depth 28 and
width 10 is utilized with the same architecture as presented
in [29].

For experimental purposes, we have employed a publicly
available dataset, namely CIFAR-10 [16] to train, validate,
and test the proposed DJCL and the compared approaches.
This dataset has been extensively used to produce the state-
of-the-art results for different kinds of computer vision task

[15]. The details of the dataset with the class information is
given in the Section 3. Next section describes the novel loss
function for training the combined sensing, reconstruction,
and classification networks.

2.4. CL with Weighted Loss function

In the proposed CL approach, we jointly learn a MM that
maps an original signal x; to compressed measurements
y; = ®Pgx; and an inference network mapping y; to a
class label £; over a training set of 1" samples. Learning the
parameters of both sensing and inference networks can be
done jointly through solving an optimization problem mini-
mizing a defined loss. One possible such loss that is also uti-
lized in literature for CL [2, 19, 31] is the one that can mea-
sure only the distance between the predicted and true class
labels through employing a negative log-likelihood func-
tion. For this case, the network parameters can be learned
by solving the following optimization problem:

{&)S,(:)R, (:)C}: argmin Lo (foo(for(®sxs)),li)
q:'sy@R;@C
2

where fe,(®sx;) is the model for the reconstruction net-
work with parameters O, fo (+) is the model for the clas-
sification network with parameters ®¢. The classification
loss function L¢ is the cross entropy loss that is defined as

T C
£C’ (fl, El) = - Z Z ei,clOgS(éi,c)' 3)
i=1 c=1

where S(¢; ) is the soft-max layer output that gives the
probability that sample ¢ belongs to class c.

Minimizing the cross entropy loss in (2) is a natural se-
lection, since the final goal of the CL is to obtain the best
classification performance. However, we propose and show
in our simulation results that reconstructing a better image
estimate as the input of the classification network also in-
creases the classification performance. Only employing the
optimization in (2) does not directly force the DNN struc-
ture to create better reconstruction outputs as a middle prod-
uct of the whole network. Hence, we utilize a hybrid loss
that incorporates a weighted combination of the reconstruc-
tion and classification losses. The goal by injecting the re-
construction loss into the total loss is to force the recon-
struction network to generate better image estimates that
will lead to enhanced classification performance. Thus, the
proposed CL approach solves the following minimization
problem

{®5,0r,0c) = argmin Lr (4)
q)s’gR;QC

where the total loss L is

L1 =Lr(fer (i), x:i) + \Mc(foc(for(Pszi)), i)
&)
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In (5), L is the mean squared reconstruction loss defined in
(1), A is the hyper-parameter that defines the ratio between
Lc and L losses. The parameter A can be selected over a
validation set as shown in Section 3.

Note that the joint learning framework learns both a MM
and an inference network including reconstruction and clas-
sification parts in the training phase. The learned MM can
be detached from the combined network and it can be uti-
lized to sense the signals. It can be seen that different MM
can be learned for different purposes such as classification
or reconstruction minimizing different type of losses such
as Lo, Lg or the total loss L. After the sensing network
is detached, the remaining DNN is the CL network imple-
menting inference directly from the compressed measure-
ments.

3. Simulation Results

In this section, we provide simulation results and quanti-
tative analysis of the proposed DJCL framework compared
with the existing deep CL approaches in [19,31].

3.1. DataSet, Evalaution Metrics, and Learning Pa-
rameters

In this work, CIFAR-10 [16] dataset is used for simula-
tion and quantitative analysis. CIFAR-10 dataset consists of
60000 32 x 32 colour images in 10 classes, with 6000 im-
ages per class. The object classes are airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck. We used
the gray scale versions of all images in the dataset and out
of 60000 total images, 40000 images are used for training,
10000 for validation, and the remaining 10000 are used for
testing in a random manner. We present our results using
two evaluation metrics. The classification results are pre-
sented using accuracy, while reconstruction performance
is measured using peak to signal noise ratio (PSNR) [12].
We have selected a batch size of 32 and epoch size of 500
with the help of ADAM optimization for a varying learning
rate from 0.1 to 0.0001 to determine the network parame-
ters via gradient descent. We have used Tensorflow [1], the
open source deep learning framework, for training, valida-
tion, and testing purposes. All simulations are run on a deep
learning machine with 3 NVIDIA Titan RTX GPUs to carry
out the training, validation, and testing tasks.

3.2. Classification on Original Image Domain

The goal of CL is to provide inference directly from
the low dimensional compressed measurements. To pro-
vide a baseline for the CL performance, we first provide
the classification results on the original signal domain. The
original images in CIFAR-10 dataset is used without any
compression. Three different classification networks, being
AlexNet, VGG-3, and WRN, as described in Section 2.3

are trained and their performances are compared. All clas-
sification network parameters are initialized with random
weights. The obtained accuracy over the test dataset is re-
ported in Table 1. WRN is the best performing network over

Table 1: Classification accuracy on original images

Classification network Accuracy
Simple Deep CNN/AlexNet 79%
VGG-3 88%
Wide Residual Network (WRN) 97 %

original image domain among the compared techniques
with 97% accuracy level. Nevertheless, we utilized both
WRN and VGG-3 networks in our DJCL framework and
provide results for both networks since they provide the two
best accuracy results on the original signal domain.

3.3. Proposed Deep Joint Compressed Learning
Framework

In this part, we present the performance of the proposed
deep joint CL (DJCL) framework along with the compared
deep CL techniques, DCL1 ( [19]) and DCL2 ( [31]). All
compared approaches are trained and tested for the same set
of compressed measurement numbers varying from M =
64 to M = 768. Since the images are 32 x 32, the dimen-
sion of original signal domain is N = 1024 and utilized
measurement rates correspond to M /N ratios of 0.0625
to 0.75. While DCL1 uses compressed measurements that
are created with a random MM, DCL2 and DJCL learn the
MM jointly with its CL inference. DCL1 approach uses an
AlexNet like CNN in its original form. We tested its perfor-
mance with both VGG-3 and WRN networks which gener-
ates comparably higher performance. DCL2 is tested with
WRN as utilized in its original version. The proposed DJCL
framework is implemented with a variety of choices of re-
construction and classification networks. While ReconNet,
ConvMMNet, and ISTANET™ are the reconstruction net-
work choices, VGG-3 and WRN are used as classification
networks. Each combination case is trained and tested over
the grayscale CIFAR-10 dataset using the same set of mea-
surement numbers. We trained each DJCL framework case
with two different loss functions; either only the cross en-
tropy loss defined in (3) or the proposed weighted total loss
defined in (5). For all scenarios, all the network parameters
are randomly initialized before training. Obtained accuracy
results over the test datasets are shown in Table 2 for DCL1
and DCL2 and in Table 3 for DJCL.

It can be seen in Table 2 that DCL2 provides higher ac-
curacy results compared to DCL1 for all tested number of
measurements. This is because of both learning MM and
applying a learnable network layer to reconstruct a proxy
image as input to the classification network. However, the
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Table 2: Comparison of classification accuracy for DCL1
and DCL2 approaches for tested number of measurements.

M | DCL1+VGG-3 | DCL1+WRN | DCL2+WRN
64 23% 26% 29%

128 27% 31% 36%

256 32% 34% 40%

512 43% 54% 61%

768 48% 63% 66%

CL inference results from both approaches are comparably
lower than proposed DJCL classification results presented
in Table 3 for the same number of measurements. This re-
sult shows that utilization of a reconstruction network along
with the proposed weighted loss function in DJCL frame-
work provides much higher accuracy results compared to
existing DCL1 and DCL?2 approaches. One possible reason
these networks to achieve lower accuracy levels is that their
proxy image generations don’t provide enough detailed im-
ages as input to the classification parts.

There are several important conclusions that can be ob-
served from the DJCL results presented in Table 3. First,
if the DJCL network is trained with the proposed weighted
loss (WL) that combines both cross entropy loss (CEL) and
reconstruction loss (RL), the achieved accuracy levels are
much higher than utilizing only the CEL. DJCL frame-
work allows using a choice of reconstruction and classi-
fication networks. It can be seen that from three possi-
ble reconstruction and two classification network combi-
nations ISTANET' and WRN combination generally pro-
vides the best accuracy levels for both loss function cases
and all tested number of measurements. It can also be ob-
served that employing ConvMMNet also achieves similar
performance for several cases. Another important obser-
vation is that achieved accuracy levels with the proposed
networks and training with WL achieves similar accuracy
levels obtained over original image domain for higher num-
ber of measurements. This is because proposed structure
jointly reconstructs and classifies with a loss function that
combines both reconstruction and classification errors in a
weighted manner.

In order to understand the effect of weighting between
CEL and RL, a simulation study is performed. The total
loss is defined in (5) and the parameter A controls how much
CEL is added. If A = 0, total loss is the same as only RL
while for very high X total loss is dominated by only CEL.
For the case of using ISTANET™ and WRN combination
in DJCL framework the achieved validation accuracy levels
for a set of A values is shown in Figure 2. The reconstruc-
tion network generates an image to be the input for the clas-
sification network as a midproduct of DJCL and the PSNR
of that image is also shown in the Figure 2. It can be seen
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Figure 2: Effect of loss ratio parameter A on validation
accuracy and PSNR of reconstruction network output for
M = 256.

that for smaller )\, the network focuses more on reconstruc-
tion and generates a high PSNR midproduct image but final
accuracy levels are low. Increasing A upto a level increases
the achieved accuracy while sacrificing from the PSNR of
the midproduct image. Although increasing A more means
for network to pay much more importance to CEL, the accu-
racy levels decreases since network can not generate higher
PSNR images that will be input to the classification net-
work. Using such analysis an optimal A parameter can be
selected for the weighted loss using the validation set and
the performance of the selected parameter is tested with the
independent test dataset. For our analysis, the parameter
A = 10 is found to be producing the highest accuracy for
the validation set as seen in Fig 2.

3.4. Separate Reconstruction and Classification

In contrary to CL, one typical implementation to achieve
a classification using compressed measurements requires a
two stage approach: first, the image is reconstructed from
the compressed measurements using a known reconstruc-
tion technique, and second, a classification technique is uti-
lized on the reconstructed image. While this two stage
approach require to reconstruct images first, keep them
in memory, and train separate reconstruction and classi-
fication, our goal is to compare the CL framework with
this separate implementation of reconstruction and clas-
sification. For reconstruction, we utilize ¢;-minimization
based basis pursuit as the CS reconstruction technique and
ReconNet [18], ConvMMNet [22], and ISTANET* [30]
structures for DL based reconstruction. We tested scenar-
ios where number of compressed measurements vary from
M = 64 to M = 768. The compressed measurements
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Table 3: Classification accuracy for proposed DJCL framework with all tested reconstruction and classification network
combinations, with cross-entropy or weighted loss functions for different number of measurements.

Acc. Cross-Entropy Loss | Weighted Loss
Reconst. M | VGG-3 WRN VGG-3 | WRN
ReconNet 36% 42% 59% 66%
ConvMMNet | 64 41% 49% 65% 73%
ISTANET™ 43% 50% 66 % 74 %
ReconNet 43% 50% 65% 72%
ConvMMNet | 128 | 48% 55% 69% 79%
ISTANET™ 50% 57% 70% 80%
ReconNet 50% 57% 71% 80%
ConvMMNet | 256 | 55% 61% 76% 83%
ISTANET™ 57% 63% 79 % 85%
ReconNet 59% 65% 80% 86%
ConvMMNet | 512 | 63% 69% 85% 86%
ISTANET™ 63% 69 % 86 % 90 %
ReconNet 63% 72% 85% 91%
ConvMMNet | 768 66% 74% 87% 94%
ISTANET™ 67 % 75 % 88% 96 %

can be generated with a random MM (®g) or a MM can
be learned (®1) for DL based reconstruction. Note that
the DNNs here are employed for image reconstruction only
and trained with minimizing only the reconstruction loss.
The reconstructed images are then separately used to train
WRN or VGG-3 classification networks. Both the recon-
struction PSNR values and the obtained accuracy levels for
compared techniques under random or learned MM are pro-
vided in Table 4. It can be seen that DL based reconstruc-

Table 4: Separate reconstruction and classification results

PSNR(dB) Acc. (VGG-3) | Acc. (WRN)
Method M 3n 3, In T, In 3,
0y 21.08 — 51% — 60% -
ReconNet 64 21.92 | 2281 | 53% | 57% | 62% | 63%
ConvMMNet 2347 | 2434 | 59% | 62% | 67% | 69%
ISTANETF 23.67 | 2547 | 60% | 64% | 69% | 73%
0y 21.84 — 53% — 62% —
ReconNet 128 2385 | 2496 | 61% | 64% | 65% | T1%
ConvMMNet 2543 | 27.19 | 64% | 68% | 3% | T7%
ISTANETF 25.61 | 28.05 | 64% | 69% | 74% | 79%
0y 22.57 — 55% — 65% -
ReconNet 256 25.62 | 28.08 | 64% | 69% | 2% | 79%
ConvMMNet 28.69 | 31.06 | 70% | 74% | 81% | 81%
ISTANETT 2912 | 3217 | 71% | 77% | 82% | 83%
0y 23.05 — 59% — 68% -
ReconNet 512 26.95 | 3328 | 66% | 78% | 73% | 86%
ConvMMNet 34.06 | 36.08 | 79% | 82% | 87% | 88%
ISTANETT 3442 | 3695 | 81% | 83% | 89% | 89%
2 28.98 — 71% — 80% —
ReconNet 768 3531 | 37.81 | 82% | 84% | 89% | 91%
ConvMMNet 4297 | 44.68 | 86% | 86% | 93% | 93%
ISTANETT 4321 | 4532 | 86% | 87% | 95% | 95%

tion approaches provide better reconstruction results com-
pared to ¢1-minimization. The reconstruction performance
also gets better as the number of compressed measurements

increases. In addition, the learned MMs provide 1-3 dB
higher PSNR in average. While WRN providing better ac-
curacy results compared to VGG-3, the accuracy increases
as better reconstructions are achieved with increasing num-
ber of measurements. Higher PSNR on image reconstruc-
tion is directly correlated with higher accuracy with a cor-
relation coefficient of 0.97 for compared techniques and
measurement numbers. For the measurement number of
M = 768, close to original image domain accuracy levels
are obtained. While WRN achieved 97% accuracy on un-
compressed original images, 95% accuracy can be achieved
with WRN when it is trained on reconstructed images with
ISTANET™ for M = 768.

In Figure 3, the achieved accuracy levels as a function
of number of measurements for the proposed DJICL ap-
proach using the weighted loss (DJCL+WL) is compared
with DCL1, DCL2, DJCL using only cross-entropy loss
(DJCL+CEL) and two stage approach of separately re-
constructing all images first and applying classification on
them. The classification accuracy achieved on the full origi-
nal image domain is also shown. It can be seen that the pro-
posed DJCL with WL achieves significantly better than only
employing CEL or compared DCL1 or DCL2 approaches.
It also offers slightly better accuracy than the two stage im-
plementation nearly achieving the original image domain
classification performance for higher number of measure-
ment cases.

Although main task of the CL approaches is classifica-
tion, we compare the mid-product images from proposed
DIJCL approach with CEL and WL cases with the proxy
image from DCL2 approach in Figure 4. The direct recon-
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Figure 4: Average PSNR of reconstruction network out-
puts as a function of measurement number for compared
approaches.

struction performance of ISTANET™ structure with only re-
construction loss is also shown as a bound to the compared
CL cases. It can be seen that proxy image of DCL2 or image
output of DJCL+CEL has comparably much lower PSNR
values than proposed DJCL+WL. It is expected that direct
reconstruction provides best PSNR since DNNs are trained
for minimizing the reconstruction loss only as also illus-
trated in Figure 2. While proposed DJCL+WL approach
produces high PSNR images close to direct reconstruction,
its final classification accuracy, which is the main task of
compressed learning, is higher.
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Figure 5: Accuracy as a function of SNR for compared ap-
proaches at M=256.

3.5. Noise Performance

In this part, we compare the robustness of tested ap-
proaches to additive noise in compressed measurements.
White Gaussian noise (WGN) is added to compressed mea-
surements of test dataset images with a varying level of
signal-to-noise (SNR) ratios from —10dB to 20dB. The sim-
ulations are done for M = 256 number of measurements.
The noisy compressed measurements are classified with the
compared CL networks. The achieved accuracy levels for
DCLI1, DCL2, and the proposed DJCL framework with WL
are shown in Figure 5 along with the case of separate re-
construction and classification. While every approach per-
forms better with increasing SNR, it can be seen that the
proposed DJCL outperforms compared CL approaches sig-
nificantly and performs slightly better than separate imple-
mentation. All approaches nearly achieve their zero noise
performances given in Tables 2 and 3 for higher SNR.

4. Conclusions

In this work, a deep joint compressed learning (CL)
framework is proposed where it utilizes a deep reconstruc-
tion network within the compressed learning structure along
with a novel weighted loss function to achieve classifica-
tion from the low number of compressed measurements.
The performance of the proposed approach is compared
with the existing state-of-the-art CL approaches on CIFAR-
10 image dataset. Proposed structure allows direct infer-
ence from compressed measurements with enhanced classi-
fication performance with robustness to noise compared to
tested deep compressed learning approaches. In addition,
optimal measurement matrices for the goal of enhancing
classification performance are learned.
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