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Abstract

Cryogenic electron microscopy (cryo-EM) provides im-
ages from different copies of the same biomolecule in ar-
bitrary orientations. Here, we present an end-to-end unsu-
pervised approach that learns individual particle orienta-
tions directly from cryo-EM data while reconstructing the
3D map of the biomolecule following random initialization.
The approach relies on an auto-encoder architecture where

the latent space is explicitly interpreted as orientations used
by the decoder to form an image according to the physi-
cal projection model. We evaluate our method on simulated
data and show that it is able to reconstruct 3D particle maps
from noisy- and CTF-corrupted 2D projection images of un-
known particle orientations.

4066



1. Introduction
Determining the structure of biomolecules is an impor-

tant step towards understanding their functional mechanism
or designing new drugs. Structural determination tech-
niques such as nuclear magnetic resonance spectroscopy,
X-ray diffraction (XRD) crystallography or cryogenic elec-
tron microscopy (cryo-EM) have been very successful over
the years [1]. Of those techniques, cryo-EM has been used
increasingly in recent years to determine structures of many
biomolecules at near-atomic resolution. This revolution has
been possible because of better hardware and software tech-
niques [18]. Cryo-EM is the fastest growing technique in
terms of structures deposited in the Protein Data Bank, pro-
jected to be comparable to XRD within a few years. While
the typical resolution reported for cryo-EM structures is still
worse than those reported for XRD structures, recent de-
velopments have proven possible to distinguish individual
atoms in cryo-EM maps [25]. Whereas XRD simultane-
ously measures millions of copies of a molecule, cryo-EM
is a single-particle imaging (SPI) technique, with each cryo-
EM image corresponding to a single molecular copy. While
SPI reconstruction methods must learn the conformation
and orientation of individual particles, this challenge is also
an opportunity: rather than learning an average structure,
SPI methods can resolve biologically relevant dynamics and
avoid blurring from averaging over heterogeneous particles
[27]. In this paper, we discuss a new approach to solving the
single-particle orientation problem using a neural-network
auto-encoder.

1.1. Cryo-EM 3D Reconstruction

In cryo-EM, a large number (104 −107 ) of identical
copies of the same biomolecule are first frozen in a thin
vitreous layer of ice. A beam of electron then goes through
this sample and is acquired by a detector. It is typically as-
sumed that only the phase of the incoming beam has been
changed by the electrostatic potential of the sample, not its
amplitude. Since the sample is typically prepared so the ma-
terial that the electrons go through is very thin, it is also usu-
ally assumed that the linear projection approximation can be
used to model the image formation process. The resulting
image is called a micrograph. Individual particles are lo-
cated and extracted from the micrograph as square patches
of identical size N × N resulting in a particle stack which
constitutes the starting dataset for tomographic reconstruc-
tion of the particle N×N×N volume. Tomographic recon-
struction is an ill-posed problem that faces multiple chal-
lenges. The individual pose (orientation and translational
shift) of each particle in the stack is not known and needs
to be estimated from images that have been corrupted in
two different ways. First, the image is convolved with the
point-spread function (PSF) of the microscope which acts
as a filter reducing the information content of each image

across its spectrum. Second, the main part of the signal in
the image comes from the surrounding ice which is a major
source of noise, in addition to other sources of noise such
as shot noise resulting from dose fractionation and detector
response. Indeed a balance between radiation damage and
getting signal at all needs to be found during data collection.
These difficulties make cryo-EM 3D reconstruction a very
challenging inverse problem.

1.2. Related work

Many methods have been developed to tackle cryo-EM
tomographic reconstruction [43, 11, 37, 44, 14, 35, 6, 31],
including common-lines approaches [47, 21, 41, 51, 10,
29, 53], projection-matching strategies [28, 2], or Bayesian
formulations [7, 40, 35, 31]. The Bayesian approach has
been popularized by the widely used software RELION [34]
which performs maximum-a-posteriori (MAP) optimization
through Expectation-Maximization (EM) to reconstruct a
map which maximizes the likelihood of the acquired data
while still meeting some a priori condition about the map.
In EM, during the Expectation-step, a conditional distribu-
tion over the poses and shifts is estimated for each pro-
jection using the current estimate of the map. In the next
Maximization-step, these estimated distributions are used to
update the map. These two steps are performed iteratively
until meeting a convergence criterion. MAP optimization
does not guarantee global convergence and therefore its re-
construction is dependent on the quality of the initial map.
First implementations of the method suffered from their
lack of robustness to map initialization, so a competing soft-
ware cryoSPARC [31] proposed optimizing a MAP solution
ab initio through stochastic gradient descent (SGD) - how-
ever, in doing so, individual poses are not estimated explic-
itly, thereby limiting the achievable resolution. The result-
ing low-resolution map can then be further refined with the
EM algorithm. Because the EM reconstruction approach
requires estimation of conditional distribution on poses for
each measurement, the number of variables to determine
grows directly with the number of measurements.

Neural networks (NNs) with their state-of-the-art perfor-
mance on various different inverse problems [42, 26, 19, 5,
52, 20, 22] have recently been introduced in the cryo-EM
processing pipeline, mainly in pre-processing steps such
as denoising of the micrograph [3] and particle picking
[50, 55, 45, 49, 4]. More recently a few methods using
NNs have been proposed to solve the cryo-EM reconstruc-
tion problem [54, 32, 12, 13, 30, 23]. These methods require
no prior training and are fully unsupervised. In [54] a mod-
ified variational autoencoder (VAE) [16] is used to recon-
struct continuous conformations of dynamic biomolecules.
In [12, 13], generative adversarial networks (GANs) [9] are
modified to reconstruct structure of biomolecules with sin-
gle and continuous conformations, respectively. In [23] a
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composition of GANs and VAE is used to find the latent
variables that explain the data, which then can be further
used for reconstruction. In contrast to these methods, [30]
argues that amortized inference as done by VAEs does not
yield results that are precise enough and instead perform
direct inference of the conformational coordinate using an
auto-decoder approach. None of these methods use NNs to
estimate the poses for each projection. Instead they either
use an external traditional pose estimation routine [54] or
bypass the pose assignment step altogether [12, 13].

1.3. Contributions

In this paper, we propose CryoPoseNet, a method which
uses a modified auto-encoder [48, 39, 38] to simultaneously
reconstruct the 3D map and estimate individual poses. Our
method is fully unsupervised, and does not require any prior
training nor an ab-initio solution. We use a combination of
an encoder parameterized by an NN and a cryo-EM physics
based decoder parameterized by a learnable 3D structure.
The encoder outputs the estimated pose for a given input
measurement, which is then fed to the decoder that outputs
the simulated cryo-EM projection from the current struc-
ture. The encodings are constrained to correspond to the
pose by the physics-based decoder. The weights of the en-
coder and the 3D structure in the decoder are simultane-
ously optimized in order to decrease the error between the
given projection (input of the encoder) and the output of the
decoder.

We leverage this auto-encoder approach to skip the EM-
like step in traditional methods for estimating poses. As
opposed to an EM approach, the number of encoder pa-
rameters is fixed and we do not require explicit estimation
of pose distribution for each measurement. Therefore, the
number of variables to be estimated in our method does not
grow with the number of measurements.

2. Background and Current Methods
The reconstruction problem of cryo-EM requires esti-

mation of the structure x ∈ RN×N×N from the measure-
ments {y1, . . . ,yM}. The acquisition of each measurement
ym ∈ RN×N can be modeled as

ym = Cdm
∗ Stm{Pθm

{x}}︸ ︷︷ ︸
Hφm

+nm, (1)

where nm ∈ RN×N is the additive noise. The imag-
ing operator Hφm

depends on the imaging parameters
φm = (θm, tm,dm) ∈ R8. The imaging operator con-
sists of the projection operator Pθm which outputs the to-
mographic projection of the structure rotated by the Euler
angles θm = (θm,1, θm,2, θm,3); the shift operator Stm ,
which shifts the projection by tm = (tm,1, tm,2) consist-
ing of horizontal and vertical directions, respectively; and

the convolution operator Cdm which corrupts the image
by the contrast transfer function (CTF) with parameters
dm = (dm,1, dm,2, αm) that consists of major defocus, mi-
nor defocus, and astigmatism angle, respectively.

As discussed earlier, the imaging parameters, θm and
tm, are unknown for each measurement. This coupled with
the loss of information due to the CTF, and the high level of
noise, makes the reconstruction of x a challenging problem.

Maximum Likelihood. A naive approach to solving the
reconstruction problem would consist in searching for the
unknown imaging parameters for each measurement and a
global structure which maximizes the likelihood of the mea-
surements. This quest can be described as

xrec, φ̃1, . . . , φ̃m = arg max
x,φ̃1,...,φ̃M

M∑
m=1

log p(ym|x, φ̃m),

(2)

= arg max
x,φ̃1,...,φ̃M

M∑
m=1

∥ym −Hφ̃m
x∥2,

(3)

where p(ym|x, φ̃m) denotes the likelihood of the measure-
ment ym given the imaging parameter φ̃m and the structure
x. For an independent white Gaussian noise model, it takes
the form (3).

However, since the formulation (3) is highly non-convex
and filled with poor local minima [46], this naive approach
would rarely give a reasonable solution. A brute-force ap-
proach to solving the reconstruction problem would follow
an iterative procedure where instead of estimating all the pa-
rameters at the same time, the structure would be updated
using the current estimates of the poses which would be up-
dated in turn using the current estimate of the structure. At
iteration k, this is given by

φ̃m,k = argmax
φ̃m

log p(ym|xk, φ̃m)∀m ∈ [1, . . . ,M ],

(4)

xk+1 = argmax
x

log p(ym|x, φ̃k,m) (5)

This approach would not guarantee to find a global opti-
mum either and the quality of the reconstruction would be
highly dependent on the initialization. Moreover, the high
level of noise makes the pose estimation error-prone.

Maximum Marginalized Likelihood. To remedy these is-
sues, current methods use a marginalized likelihood formu-
lation which instead of estimating a single pose for each
measurement, effectively weighs the contribution of the
poses from the whole search space. This is given by Eq.(6)
where p(ym|x) denotes the probability of the projection
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given the structure.

xrec = argmax
x

M∑
m=1

log p(ym|x), (6)

= argmax
x

M∑
m=1

log

∫
p(ym|x,φ)p(φ) dφ,

Formulation (6) can be solved in two stages. First, a reason-
able approximation to the global maximum can be found
through SGD or some other method. Next, this ab-initio
structure x0 is used to initialize an iterative EM procedure
(also called iterative refinement) which will refine the solu-
tion further, at the cost of doing more operations for pose
estimation.

The expectation step of the k-th iteration estimates a con-
ditional distribution on the space of poses for each projec-
tion given the current estimate of the structure xk. This
estimate is given by

p(φ|xk,ym) =
p(ym|xk,φ)p(φ)∫

φ
p(ym|xk,φ)p(φ) dφ

. (7)

The maximization step then uses these poses to update the
structures by solving

xk+1 = argmax
x

M∑
m=1

Ep(φ|xk,ym)[log p(ym|x,φ)]. (8)

For feasibility, the space of φ is discretized to compute the
integrals in (7) and (8). This weighted form of pose estima-
tion is less sensitive to the initial reference and yields better
quality reconstructions. In most methods, prior knowledge
over the structure is used to obtain a modified MAP formu-
lation. However, the traditional approaches just described
are computationally intensive procedures because estimat-
ing poses or conditional distributions over them against an
ever changing reference structure scales poorly - the num-
ber of variables to estimate grows directly with the size of
the data.

3. Proposed Method

To solve the scaling problem, we propose a neural net-
work based representation of poses where we consider the
unknown poses φ̃m as the output of a tunable function Eγ

for a given input measurement (as defined in (9)). In this
work, we consider the shifts tm and defocus parameters
dm known, but in principle they could also be added to Eγ

outputs.

For a general error function R, we solve (10) which be-
comes (11) (similar to (3)) when a Gaussian noise model is

assumed

φ̃m = Eγ(ym) ∀m ∈ [1, . . . ,M ]. (9)

xrec = argmax
x,γ

M∑
m=1

R(ym,HEγ(ym)x). (10)

= argmax
x,γ

M∑
m=1

∥ym −HEγ(ym)x∥2. (11)

We minimize (10) using SGD as described in Algo-
rithm 1. At each iteration, for a batch of measurements
{y1, . . . ,yB}, we get the empirical estimate of the loss
function in (10) by

L(x, γ) =

B∑
b=1

R(yb,HEγ(yb)x). (12)

The structure and the encoder weights are optimized using
the gradients ∇xL(x, γ) and ∇γL(x, γ), respectively. In
summary, simultaneously with structure estimation we
tune the weights of a neural network so that the imaging
parameters maximize the likelihood of the measurements.
Our scheme is shown in Figure 1.

Algorithm 1 Reconstruct cryo-EM data
Input: acquired dataset {y1, . . . ,yM} ; number of recon-
struction iterations, nrec; size of the batches used for SGD,
B; optimizer parameters; Error function R;
Initialization: xrec with a uniform random distribution, and
Eγ with random weights

1: for nrec do
2: From acquired dataset, sample a

batch{y1
batch, . . . ,y

B
batch}

3: Obtain φ̃b = Eγ(y
b
batch)∀b ∈ [1, . . . , B]

4: Compute L(x, γ) =
∑B

b=1 R(yb
batch,Hφ̃b

xrec)
5: Update xrec using ∇xL(x, γ)
6: update γ using ∇γL(x, γ)

Output: xrec, φ̃1, . . . , φ̃M .

Encoder. The encoder NN is composed of a convolu-
tional neural network (CNN) followed by a multilayer
percepetron (MLP), also known as a fully-connected
layer. The CNN extracts shift-invariant features from
the measurements, which are then transformed by the
MLP into orientation parameters as described below. We
use a standard CNN encoder architecture of a conv2D
→ conv2D → maxpool block repeated three times. All
convolution layers use 3 × 3 filters, and maxpooling
downsamples by a factor of 2. The number of convolution
filters per block is 32, 64, 128, respectively, and the MLP is
composed of two layers, each containing 512 units/neurons.
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Figure 1. CryoPoseNet architecture.The input image y is encoded into a pose φ by the encoder. The decoder outputs the tomographic
projection of the structure oriented at φ, and then corrupted by the CTF. The image formation is implemented using the Fourier-slice
theorem, with the estimated 3D structure x Fourier transformed, sliced into a plane normal to φ, and corrupted by a known CTF with
parameter d. The parameters of the encoder and decoder are respectively the weights γ of the CNN and MLP and the structure x. They
are optimized during reconstruction through minimization of the loss L that measures the dissimilarity between the input image y and the
reconstructed one Hφx.

Differentiable cryo-EM physics model. The cryo-EM
physics operator Hφ uses the output of the encoder as
the pose parameters φ. In order to compute the gradients
∇xL(x, γ) and ∇γL(x, γ), the operator Hφ needs to be
differentiable with respect to the structure as well as the
imaging parameters. We therefore implement a differen-
tiable cryo-EM physics model which enables the learning of
encoder weights using backpropagation. The image forma-
tion model is implemented in reciprocal space, in which the
the 3D Fourier transform of x is computed once per batch.
Predicted/Decoded projections are generated by the 2D in-
verse Fourier transform of a slice in the 3D Fourier volume
extracted using the corresponding predicted pose. Since the
encoder is optimized using backpropagation, the parame-
terization of the poses directly affects the encoder’s perfor-
mance and thereby, the quality of the reconstruction. We
use the following parameterizations in our experiments:

• Euler Angles: For each measurement, the encoder
yields a 3-dimensional output which is then fed to the
imaging model as Euler angles (commonly used in
cryo-EM software). The structure is then rotated us-
ing these angles.

• Quaternions: The three-dimensional MLP output is
transformed into a 4-dimensional vector using a fixed
transformation which has the properties of a unit
quaternion q = (q1, q2, q3, q4). The imaging model
then rotates the structure by 2 cos−1 q1, around the axis
(q2, q3, q4).

• S2 × S2 (s2s2): The MLP outputs two 3-dimensional
vectors. These are then orthonormalized to obtain w1

and w2. A third vector is then computed by the cross
product of the first two, w3 = w1 ×w2. These three
vectors define a local coordinate system that relates

to a 3 × 3 rotation matrix. This matrix is then used
to rotate the structure. Formally, this case is an alge-
braic parameterization of the Lie group of 3D rotations
SO(3), using two orthonormal vectors w1 and w2.

NN pose estimation offers many advantages. First,
instead of searching for individual independent poses
{φm}, we estimate a global function that maps the mea-
surements to their respective poses. Since this mapping is
global, it indirectly integrates the information from all the
projections for each pose estimation. Second, since the
information of poses has been condensed in the fixed size
γ, the number of variables to estimate does not grow with
the size of the data. Finally, the universal approximation
property of the neural networks lets us learn complicated
mappings between projections and their poses.

Simulation of datasets. All the experiments presented
here used datasets generated from the atomic model
4AKE1 of E.coli adenylate kinase [24], a small 47 kDa
protein. TEM simulator [33] was used to generate a
128 × 128 × 128 electrostatic potential map with pixel
size 0.8 Å. Images associated with pose φ were obtained
by rotating the centered map with φ and projecting it
along the z-direction in real space after resampling on the
original grid. To account for CTF corruption, the resulting
image was Fourier transformed, padded to double length,
multiplied by a pre-computed 2D CTF image with given
defocus d. Gaussian white noise is added a posteriori. For
each dataset, 10,000 images were generated by sampling
SO(3) uniformly, out of which 9,000 images were used for
reconstruction and the rest 1,000 were kept to assess the
quality of pose estimation by the encoder. When relevant,
the CTF range [0.4 µm, 1.2 µm] is sampled uniformly. The

1https://www.rcsb.org/structure/4AKE
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noise is sampled from the normal distribution and scaled to
match the desired signal-to-noise ratio (SNR). Table 1 lists
the datasets generated.

Table 1. Datasets used in the numerical experiments. All datasets
are comprised of a training set of 9,000 images, a held-out set of
1,000 images, with images being made of 128×128 pixels of size
0.8 Å. Abbreviations: (SNR) Signal-to-Noise Ratio. (CTF) Con-
trast Transfer Function. (MAE) Mean Absolute Error. (RMSE)
Root Mean Square Error.

Parameters Performance

A
B
C
D
E
F
G

SNR
(dB)

CTF
(µm)

- -
10 -
5 -
0 -
-5 -
-10 -
0 U(0.4, 1.2)

Res.
(Å)

MAE
(degrees)

RMSE
(×10−5)

1.79 0.62 6.2
2.13 0.69 7.3
2.28 0.84 8.7
2.43 0.86 10.2
2.56 2.04 13.2
2.78 3.20 17.5
2.57 1.12 15.9

Reconstruction. For all the described datasets, reconstruc-
tion was carried with the following parameters: we use the
Adam (Adaptive Moment Estimation) [15] optimizer with a
learning rate of 5× 10−4 , minibatch size B = 32, number
of minibatch update steps nrec = 10, 000 which is equiva-
lent to approximately 35.5 epochs or passes over the whole
dataset. The framework is implemented using Tensorflow
and runs on an NVIDIA Tesla V100 GPU in around 5 hours
for a full reconstruction run.

4. Results

We evaluated the performance of our method on simu-
lated datasets. We detail below how the methods performed
in the absence of noise, in the presence of increasing
noise, and in a more realistic setting with noise and CTF
corruption.

SO(3) parameterization. In the absence of noise (dataset
A), reconstruction converged in a few thousand steps, as
can be seen from the loss curve on Fig.2-A. Following a
similar convergence pattern, the MAE between estimated
and ground truth poses φ decreased drastically in the first
few hundred steps (see Fig.2-B). Three different approach
to SO(3) parameterization have been tried, of which the
Euler representation converges the slowest and s2s2 the
fastest and ultimately most accurate. On close inspection
(data not shown), the main reason for this discrepancy is
attributed to parameterization singularities arising from
both the Euler and quaternion formulations that could
affect the numerical stability of gradients computed under
such discontinuous representations. For a more in depth

proof of those formulations the reader is referred to these
publications [8, 17]. In all the subsequent experiments we
adopt s2s2 as the chosen orientation parameterization.

Comparison to Automatic differentiation. To provide
points of comparisons with previous work, we considered
the following two scenarios. First, we monitored the
performance of our approach when poses were known
(see tomo curve in Fig.2). In this case, as expected, the
network converges almost instantly to what we consider
a lower bound for the loss. We also considered the case
where the poses and map were solved through stochastic
gradient descent, similar to [31]. In this case, the loss
hardly decreases over a few thousand steps of optimization,
mainly due to attempting to solve for orientation and
structure simultaneously, which is difficult without careful
initialization of the solved variables or alternating the
updates between them. Additionally, as mentioned earlier,
the number of orientation variables to be solved by AD
scales with the dataset size.

Reconstruction quality. To measure the reconstruction
quality of the estimated map x, we compute the Fourier
shell correlation (FSC) every 200 steps between the current
and the ground truth map (see Fig.3-A). In the first few
hundred steps, the FSC curve intersects the 0.5 cutoff at
resolutions worse than 3.2 Å and converges rapidly to ∼1.8
Å which is close to the Nyquist-Shannon limit of 1.6 Å.

Effect of noise on reconstruction. We tested the ability of
our method to handle realistic noise typically encountered
in cryoEM data. Figure 3-B summarizes our findings.
As expected, adding noise is detrimental to the quality of
the reconstruction. Yet, even at realistic value of -10 dB
we see that the effective resolution of the reconstruction
is still better than 2.8 Å. Visual inspection of the recon-
structed maps (see Fig.4) is consistent with this observation.

Effect of CTF. Finally, we tested the ability of our method
to reconstruct images that were both degraded by added
noise (0 dB) and by CTF corruption (dataset G). The FSC
curve of the resulting reconstruction is very similar to
the one obtained without CTF corruption (see Fig.3-C).
However, the shape differs slightly, with higher correlation
in the highest resolution shells and lower correlation
in the medium-resolution range. Visual inspection of the
resulting map is consistent with this observation (see Fig.4).

Limits of the current implementation. In order to dis-
entangle the various factors that could lead to a deteriora-
tion of the FSC curve in response to added noise or CTF
corruption, as observed in Fig.3, we carried out the recon-
struction of Datasets A and G with known orientations. The
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Figure 2. SO(3) parameterization and convergence. (A) Projection 2D L2 loss convergence for various representations of SO(3): Euler
angles (euler), quaternions (quat) and s2s2. Each corresponds to 10 independent reconstruction runs (average and standard deviation). For
comparison, the loss curves obtained through automatic differentiation (AD) or with known poses (tomo) are also shown. (B) Evolution of
the mean absolute error (MAE) over the poses.

Figure 3. Fourier-Shell Correlation to ground truth. The dotted red line indicates the FSC threshold used to estimate the map resolution.
(A) FSC curves at regular intervals, from black to white, during optimization in the absence of noise (dataset A). (B) FSC curves for final
models at various noise levels (datasets B-F), in the absence of CTF corruption. Signal-to-Noise Ratio (SNR) is given in dB. The tomo
baseline represented with a dotted line corresponds to reconstrution with known poses. (B) FSC curves for final models at zero SNR
with (dataset D) and without CTF (dataset G) corruption of the dataset. The tomo baseline represented with a dotted line corresponds to
reconstrution with known poses

resulting FSC curves are denoted ”tomo” in Fig.3-B,C. In-
terestingly, the resulting reconstructions are very close to
their counterpart where the orientations had to be learned,
suggesting that pose estimation is not a limitation in our
framework. This is also supported by the mean absolute er-
ror measured on the pose estimates, summarized in Table
1 where in the worst case angles are off by a few degrees.
This result is expected mainly due to the simplicity of the
implemented forward model. The current forward model
relies on tri-linear interpolation to extract a 2D slice from
the 3D Fourier volume, which can cause projection arti-
facts. Ideally, appropriate interpolation kernels and Fourier
gridding/resampling techniques [36] should be employed to

reduce such artifacts. We are currently developing more
realistic image formation models that can be directly incor-
porated in the presented framework.

5. Conclusion
In this paper we presented a new method for solving the

pose estimation problem in cryoEM using an autoencoder
architecture employing a differentiable forward model de-
coder. We showed, on simulated data, that the method is
able to reconstruct high-resolution 3D map from simulated
data in the presence of noise or CTF corruption and without
any prior structural knowledge. We have recently become
aware of contemporaneous work using a VAE for estima-
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Figure 4. Reconstructions. The left column shows samples from their respective datasets (A-top, F-center, G-bottom). The center column
shows the final reconstructed image. The right column shows the reconstructed map at the same contour level.

tion of pose and conformation[32]. While this approach
also uses NNs to estimate poses, it shares with [54, 30] the
limitation that it relies on a consensus structure initializa-
tion, the quality of which might impact the ability of the
methods to reliably learn poses and conformations, in par-
ticular for highly flexible systems. We hypothesize that the
methods presented here would provide a solution to this is-
sue. Because the computational cost is independent of the
number of images, we also envision this method to be the
basis of a new pipeline for the large datasets expected to be
needed to resolve continuous conformations.
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