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Abstract

Deep Learning (DL) based reconstruction using unrolled
neural networks has shown great potential in accelerat-
ing magnetic resonance imaging (MRI). However, one of
the major drawbacks is the loss of high-frequency details
and textures in the output. In this paper, we propose a
novel refinement method based on SPIRIT (Iterative Self-
consistent Parallel Imaging Reconstruction from Arbitrary
k-Space) formulation to reduce the k-space errors and en-
able reconstruction of improved high-frequency image de-
tails and textures. The proposed scheme constrains the DL
output to satisfy the neighborhood relationship in the fre-
quency space (k-space) which can be easily calibrated in
the auto-calibration (ACS) lines, and corrects the underes-
timation in the peripheral region of the k-space as well as
reduce structured k-space errors. We show that our method
enables the reconstruction of sharper images with signif-
icantly improved high-frequency components measured by
HFEN and GMSD while maintaining overall error in the
image measured by PSNR and SSIM.

1. Introduction

Following the success of deep learning (DL) in a
wide range of applications, neural network-based machine-
learning techniques have received keen interest as a means
of accelerating magnetic resonance imaging (MRI) [1, 2,
3,4,5,6,7, 8. Among various network architectures,
unrolled neural networks have shown superior efficacy as
demonstrated in large-scale MRI reconstruction challenges
[9, 10]. Unrolled neural networks enabled significant im-
provement with ideas borrowed from compressed sensing
(CS) reconstruction in the form of unrolled iterative opti-

mization [7, 8, 11], which we will refer to as the DL-based
method for abbreviation. For details on the developments of
unrolled neural networks, refer to suggested survey papers
[12, 13].

While the DL-based methods showed significantly im-
proved image quality compared to the traditional CS meth-
ods, one of the major drawbacks of these methods is the
over-smoothing behavior and the loss of high-frequency de-
tails [9, 10, 14]. Global or quantitative measures such as
MSE and SSIM are commonly used as loss functions for
training the networks. However, they are known to rep-
resent the human perceptual system poorly and tend to be
oblivious of important local features such as subtle details,
often resulting in blurry images [5, 11, 14].

There have been several studies that explored feature
losses with generative adversarial networks (GANs), which
are notable for generating high-quality realistic images
[4, 5]. However, GAN-based methods are shown to have
the possibility of creating hallucinations of artificial struc-
tures [15] and increase ambiguity in the reconstructed re-
sults [16]. Perceptual losses, which use pre-trained net-
works on a large data-set to compute the feature loss [5, 17]
have recently gained interest in this context.

Recently, DL-based methods that operate both in k-
space and image domains (also called dual-domain meth-
ods) have gained interest in single-coil MR reconstruction.
These methods are based on the intuition that aliasing arti-
facts generated in the image domain are structural and non-
local, and sole image domain restoration may be insufficient
[3, 18, 19]. However, these approaches require more param-
eters and higher computation load during training. Thus, it
is also an open question how well these dual-domain ap-
proaches may perform for multi-coil MR reconstruction or
how well they can generalize to anatomical changes and
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Figure 1. The overall scheme of the current method. (A) The proposed SPIRiT-based refinement is applied on DL-reconstructed k-space to
improve and refine. The additional input to the refinement is the acquired k-space and the SPIRIT kernel (G — I), which is auto-calibrated
in the center lines of the k-space. (B) The underlying principle of the method is to reduce the residual signal when convolving the k-space
with the SPIRIT kernel. This can constrain the resulting k-space by enforcing self-consistency (or neighborhood consistency). As can be
seen, our method greatly reduces the Frobenius norm of the residual signal.

variations in training and test domain at a large scale, due to
a high number of parameters.

Traditionally, in the context of multi-coil k-space
restoration, GRAPPA [20] is an auto-calibrating technique
based on the local k-space kernels, which utilizes the
learned correlation between multiple channels in local areas
and fill the missing k-space values by a linear combination
of the acquired local data from multiple coils. Iterative self-
consistent parallel imaging reconstruction (SPIRiT) [21] is
based on the GRAPPA framework but formulated as an
inverse problem that can reconstruct data from arbitrary
k-space trajectories. Extended versions of SPIRIiT such
as ACS-LORAKS [22] and ESPIRIT [23] have been pre-
sented, utilizing more structured matrices and eigenvalue
decomposition using the information of limited spatial sup-
port or slowly varying phase.

This work aims to introduce a novel k-space refinement
approach based on self neighborhood consistency from
SPIRIT formulation that reduces the structured k-space er-
ror from the DL-based method. The main advantage of
this method is that it can significantly enhance the texture
and high-frequency image features without using sophisti-
cated GAN loss, or dedicated neural networks. Our method
is highly flexible for adding on to already trained neural
networks as it directly uses the output from the DL-based
method, and doesn’t require knowledge of the network or

retraining.

Moreover, we want to point out that our method has
room for improvements using various k-space-based paral-
lel imaging schemes that have been vastly explored in the
last decades [21, 24, 25]. We hope that our work may help
to rediscover traditional MR physics-based parallel imaging
methods that have been replaced by the surge of deep learn-
ing techniques. Moreover, we want to emphasize that with
the benefit of improved textures and high-frequency details,
this method may provide a path for increased adoption of
DL for accelerated MR applications in the clinics.

Our codes will be released after the double-blind review
process.

2. Related works
2.1. DL MRI reconstruction

Here, we will shortly review DL-based MR reconstruc-
tion methods based on unrolled neural networks inspired by
CS. An MR scanner images a patient’s anatomy by acquir-
ing measurements in the frequency domain using multiple
receiver coils. Each coil acquires k-space samples modu-
lated by the sensitivity of the coil. For ¢-th coil, the acquired
signal can be denoted as:

k; = DF(S;z) + € (1
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where D is an binary mask operator that selects acquired k-
space locations, F is the Fourier transform operator, S; is a
complex-valued sensitivity map of the ¢-th coil.

Classical CS enables reconstruction of under-sampled k-
space measurements by employing a regularization func-
tion. CS methods solve the following optimization problem:

’ +AT(x) (2

. .1 -
% = argmin, 5 XZ: HD]—" (Six) — k;

_ argmin, %HAX SR AT (), 3)
where U is a predetermined regularization function, A is a
linear operator that is composed of sensitivity map projec-
tion, Fourier transform, and discrete sampling. k is a vector
of acquired k-space. The goal of the optimization is to re-
construct an image z that best matches the measured data
k. The regularization function ¥, and the regularization
parameter A incorporate image priors to help constrain the
problem.

Unrolled neural networks go beyond CS by extending
the regularization function to be data-adaptive and highly
nonlinear. The regularization function can be set to have a
CNN structure, and the iterative reconstruction algorithm to
solve the optimization problem can be unrolled to a deep
neural network, where the free parameters and the function
can be learned by training end-to-end with a fully sampled
training dataset.

While various architectures have been proposed [1, 7],
the neural network operates on the coil-combined interme-
diate image-domain, and intermediate k-space output is un-
touched. Moreover, the loss is mostly determined by only
the image domain, and the k-space output is not well exam-
ined or constrained.

2.2. K-space domain parallel imaging: SPIRiT

In order to better embrace the underlying principle of
our refinement method, we will revisit SPIRIiT [21], a
well-established k-space domain parallel-MRI reconstruc-
tion method. SPIRIT reconstructs the parallel MRI image
by enforcing the self-consistency (or neighborhood consis-
tency) of multi-coil k-space data. It is based on the fact that
each k-space data point of a given coil can be formulated as
a linear combination of the multi-coil signals of its neigh-
boring k-space points [20].

SPIRIT first estimates the linear relation of the intra- and
inter-coil k-space data from a small area of the fully sam-
pled k-space center, which is also called ACS, and then ap-
plies this relationship to the rest of the k-space data.

In an operator form, this can be expressed as:

K =0K “4)

where K denotes k-space data for all coils, and G is an op-
erator that convolves the k-space data with a series of cali-
bration kernels that are estimated from the ACS. Then, the
reconstruction can be performed by solving an optimization
problem given by,

minimize ||(G — I)k|? 5)
s.t. Dk —y|* <e,

where k is the reconstructed k-space, y the acquired data
and D is an operator that selects only the acquired k-space
locations. Eq. 5 can be reformulated in the unconstrained
Lagrangian form,

argminy, | Dk — y||* + \||(G — Dk|*. (6)

One can also include additional penalty term R(-) in Eq. 3
in the objective function that expresses the prior knowledge
in the reconstruction by,

argming, | Dk — y||? + M\ [[(G — DE||* + MaR(k). (7)

For example, in the /;-SPIRIiT model, I; wavelet operator
is chosen as the additional penalty term. Here, the SPIRiT
kernel(G — I) is often referred also as the annihilating fil-
ter in the frequency domain, where the reconstruction can
be performed by exploiting the null-space constraint for the
missing k-space recovery.

Similar methods can also be used for refining or correct-
ing k-space errors, such as ghosting artifacts in EPI [26],
phase errors in multishot MRI [27] and k-space outliers [28]
which may be analogous to our work.

3. Proposed refinement method

The refinement requires three inputs: acquired under-
sampled k-space, SPIRIT kernel that is derived from the
ACS line of the undersampled k-space, and the DL recon-
structed k-space. The overall scheme of the proposed re-
finement method and inputs required for the refinement are
demonstrated in Fig. 1A.

Before delving into implementation details, we want to
clarify that the main objective of the refinement is to fur-
ther constrain the DL estimated k-space to satisfy the neigh-
borhood relationship of GRAPPA/SPIRIT. For example in
Fig. 2, the DL estimated k-space tends to contain struc-
tural artifacts as well as line-like discrepancies between ac-
quired and estimated k-space lines. Enforcing the neighbor-
hood constraint can reduce the artifacts and improve high-
frequency k-space, as demonstrated by the refined k-space
in Fig. 2.

First, we will explain how to obtain the SPIRIT kernel
(denoted as auto-calibration in Fig. 1A). Prior to calibra-
tion, the virtual conjugate coil (VCC) concept [29] is em-
ployed to further double the number of channels. VCC is
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Figure 2. The top row (left to right) shows undersampled k-space with R=6, estimated k-space from Variational Network, refined k-space
with the proposed method, and fully sampled k-space. The bottom row shows the magnified view of each result.

a technique to improve the conditioning of the SPIRIT re-
construction problem by exploiting the neighborhood con-
straint of the conjugate symmetric counterpart. The calibra-
tion region (orange box in Fig. 1A) is then converted to cal-
ibration matrix by sweeping the kernel, constructing block-
Hankel structure [23]. The calibration matrix is then further
denoised via singular value thresholding with a value sug-
gested by [30]. The SPIRIT kernel can then be estimated
via Tikhonov regularized least-squares, which has an ana-
lytic solution [21].

Second, we consider the following optimization prob-
lem:

argming, [|Dk — y|I* + A1[|(G — DE|I* + Xo[|De(k — E)||?,

®)
where D, is an operator that selects un-acquired k-space
locations, k is the DL-estimated k-space, assuming that the
DL estimation has estimated k-space with some degree of
precision in mean squared error.

The Ay and A\, parameters are tunable and can determine
the level of image quality of the refinement. Increasing \;
puts more constraint on the k-space neighborhood relation-
ship, and Ao emphasizes DL estimation. Typically, the ac-
curacy of DL reconstruction decreases with increased accel-
eration factors, therefore we decreased Ao for high acceler-
ation cases. In our experiments, we empirically selected
A1 =5, Ay = 0.05 for R = 4; and Ay = 15, Ay = 0.01 for
R =6.

For solving the optimization problem, we used the con-
jugate gradient (CG) algorithm with 300 iterations to ensure
convergence. Pseudo-code for implementation is presented
in Algorithm 1.

In current refinement, we have separated the two stages

— reconstruction of the under-sampled k-space and the cor-
rection of the high-frequency k-space. Following optimiza-
tion may also be considered if DL reconstruction network
has been trained for general MR reconstruction for various
accelerations such as plug-in-prior approach [31].

argming, | Dk—yl*+A1 [ (G—1)k|*+ 2| De(k—DL(K))|*.
€))

Algorithm 1 k-space refinement using SPIRiT

Inputs:
y = Acquired k-space,
k = DL-estimated k-space

Output:
Refined k-space

1: VCC:

Apply virtual conjugate coil augmentation

onvy,k
2: Calibrate:

Calibrate SPIRIT kernel using y

G — I + Auto-calibration line
3: Refine:

minimize Eq.8 with CG

4. Experiments

In our experiments, we tested our method with two
different datasets in order to explore the potential of
our refinement method. We tested our refinement
method on the Variational Network [32] available at
https://github.com/facebookresearch/fastMRI. We will de-
scribe precise details in the following sections.
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Figure 3. The top row (left to right) shows zero-filled reconstruction, Variational Network reconstruction, reconstruction from refinement,
and reconstruction from fully-sampled k-space. The bottom row shows the error maps (10x) corresponding to each reconstruction result

above.

4.1. Dataset

In our experiments, we used two knee datasets described
in [7], which are also shared at mridata.org. Two datasets
include fully-sampled k-space of Sagittal Proton Density
(PD) Weighted dataset (knee dataset-1), and Sagittal Fat-
Saturated T2 Weighted dataset (knee dataset-2). In these
datasets, each subject was scanned with a 15- channel knee
coil. Sequence parameters are described in the paper [7].

Each dataset includes a total of 600 images from 20 sub-
jects. We divided the datasets for training: 14 subjects, val-
idation: 2 subjects, and testing: 4 subjects.

The sensitivity maps were computed from a block of size
24 x 24 using nonlinear inversion [33], which is available
in SigPy library [34].

4.2. DL reconstruction

We used the k-space-based Variational Network (Var-
Net) as the baseline DL Reconstruction [32]. This network
differs from end-to-end Variational Networks in that sensi-
tivity maps are pre-calibrated and fed to the network. The
reason for using this network instead of the original Varia-
tional Network [7] is that we want to leverage the improve-
ments reported in the newer version, which was updating
the soft data consistency directly in the k-space. U-Net was
chosen as the CNN architecture in VarNet, and 10 unrolls
were used.

We separately trained networks for the two datasets with
equispaced sampling patterns, which samples [-th low fre-
quency lines from the center of the k-space and every r-th
line from the remaining k-space. We chose [, r randomly to
match the overall acceleration. For each dataset, two net-
works corresponding to two acceleration factors (R = 4, 6)
were individually trained.

4.3. Refinement

As demonstrated in Algorithm 1, the inputs to the refine-
ment are DL-reconstructed k-space and original undersam-
pled k-space. For each slice, DL-reconstructed k-space was
obtained by forward-propagating the undersampled k-space
with the trained Variational network, and Fourier transform-
ing the multi-coil reconstructed images right before the final
coil-combination stage at the Variational Network.

For evaluation, we transformed the three multi-coil k-
spaces (DL-reconstructed k-space, refined k-space, fully
sampled k-space) to corresponding final images with in-
verse Fourier Transform and performed coil combination
using root-sum-squares for each pixel:
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General IQM High Freq IQM
Contrast Acceleration Method PSNR (dB) 1 \ SSIM 1 | HFEN | \ GMSD |
4 VarNet 42.23 0.9767 | 0.3776 | 0.009974
Sagittal PDw VarNet + Refine 42.29 0.974 0.3461 | 0.008474
6 VarNet 37.97 0.9558 0.707 0.02791
VarNet + Refine 37.75 0.9449 | 0.6278 | 0.02181
4 VarNet 40.34 0.9687 | 0.4987 | 0.01757
Sagittal T2w VarNet + Refine 40.33 0.9639 | 0.4188 0.0124
6 VarNet 36.64 0.9385 | 0.9088 | 0.03948
VarNet + Refine 37.22 0.9411 0.7656 | 0.03071

Table 1. Quantitative image quality assessment on the two test datasets for R = 4, R = 6. Average values of PSNR, SSIM, HFEN, and
GMSD are reported. The higher the PSNR and SSIM, the better the image quality. The lower the HFEN and GMSD, the better.

4.4. Evaluation Metrics

To evaluate the impact of the proposed refinement on
the high-frequency image details, we adopt two metrics:
high-frequency error norm (HFEN) and Gradient Magni-
tude Standard Deviation (GMSD) [35]. The HFEN metric
was used in DLMRI work [36] and GSMD in [37]. Both
metrics were used to assess the reconstruction quality of
edges and high-frequency image details.

The HFEN metric is formulated as the L2 norm of the
difference between the filtered reconstructed image and fil-
tered fully sampled image. It uses the Laplacian of Gaus-
sian (LoG) filter. The GMSD metric is the standard devi-
ation of the gradient magnitude similarity maps of the two
images. The default parameters in [35, 36] were used for
calculating the metrics. Widely used general image quality
metrics (IQM)—i.e., PSNR (Peak Signal to Noise Ratio)
and SSIM (Structural Similarity Index)—were also com-
puted to assess the overall quality of the reconstructed im-
ages.

5. Results

The performance of the proposed refinement method was
tested on the examples in the test dataset. Figure 2 compares
the k-spaces of zero-filled reconstruction with a net accel-
eration of 6, Variational Network reconstruction, our pro-
posed refinement, and the fully sampled k-space. For bet-
ter visualization, the k-spaces only for the 1°? coil are dis-
played in log scale. We observed that the Variational Net-
work reconstructions tend to produce under-estimation in
the peripheral region (lower pixel values compared to fully
sampled k-space), corresponding to high frequency band
(Yellow arrow). Also, the DL estimated k-space contains
line-like discrepancies between acquired and non-acquired
k-space lines. As can be seen, the proposed refinement
successfully recovers the underestimation and reduces the
structural k-space error to some extent compared to DL-
estimated k-space.

Figure 3 displays the effect of the refinement method in

the final reconstructed image with a net acceleration of 6.
We observe that the refinement method produces sharper
images and better textures than the Variational Network. In
the error map, the proposed method has errors that are more
incoherent than the Variational Network results.

Measures of the four IQMs—i.e., PSNR, SSIM, HFEN,
and GMSD—are summarized in Table 1 for the test dataset.
For general IQMs such as PSNR and SSIM, the refined
method shows competitive results compared to Variational
Network. For high-frequency IQM (HFEN and GMSD) our
method shows significantly improved values. Specifically,
for all cases, HFEN decreased by nearly 10% and GSMD
decreased by nearly 20%. This indicates that our method
improves the high-frequency details.

Figure 4 displays the result of a slice containing ligament
of the knee at the sagittal view of Proton Density weighted
image (red box). As can be seen, the refinement method
recovers the intricate texture of the ligament which is miss-
ing in the Variational Network result. Also, the refinement
result shows sharper images with better texture details.

Figure 5 displays the result for a Fat-saturated T2-
weighted image with a net acceleration of 4. It can be seen
that occluded vessels—e.g., the yellow arrow on the lower
left—and fine details of the knee joints—e.g., articular car-
tilage indicated by the yellow arrow on the upper right—
have been recovered with the proposed method. Overall,
the refined reconstruction produces images that are sharper
and contain better textural details.

Figure 6 demonstrates multi-slice results within a single
subject in the sagittal T2 weighted dataset for a net accel-
eration of 4. It can be seen that the proposed refinement
method consistently improves high-frequency image details
for different slice positions.

6. Discussions and Conclusion

This paper proposes a SPIRIT based refinement scheme
that can be added to DL-based methods to improve high-
frequency image quality and texture. Our results demon-
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Figure 4. On the top row (left to right), zero-filled reconstruction, Variational Network reconstruction, reconstruction from refinement,
and reconstruction from fully-sampled k-space are shown for an example slice from knee-dataset 1. The bottom row shows the magnified
images for the ROI drawn in the images above.
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Figure 5. On the top row (left to right), zero-filled reconstruction, Variational Network reconstruction, reconstruction from refinement,
and reconstruction from fully-sampled k-space are shown for an example slice from knee-dataset 2. The bottom row shows the magnified
images for the ROI drawn in the images above.

strate that refining DL output with traditional k-space inter- of the Variational Network output both visually and quan-
polation methods can improve DL reconstruction, and sug- titatively for the two datasets. It produces sharper images
gest that it may be valuable to consider using the proposed and better preserves subtle details such as microvascular
refinement with DL-based reconstructions. structures and boundaries between different tissues. Some

The proposed method enhances high-frequency details textures that are blurred in Variational Network reconstruc-
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Figure 6. Results of slices from a single subject in the test set are shown. The first, second, and third rows show results of five slices from
the Variational network, our refined method, and fully-sampled reference, respectively.

tion are recovered after refinement. IQMs indicate that the
proposed method is highly effective for improving high-
frequency image details without sacrificing general image
quality metrics.

The constraint we used in this work was k-space neigh-
borhood consistency, which can be easily obtained from
the auto-calibration lines that are typically acquired in an
MRI scan. Our refinement method uses the unique local
neighborhood relationship of k-space [20, 21]. Exploring
other constraints (e.g., finite image support, slowly varying
phase) [25] may improve the refinement for certain MRI
applications. Moreover, embedding such relationships in
the network architecture or losses might regularize the net-
works to learn better reconstructions. These might be new
research directions that future studies can focus on.

This method may have advantages in clinical settings
such as in the identification of detailed ligaments and mi-
croscopic structures inside the joint due to the clearer tissue
boundaries. Future study will include cases that has lesions
such as meniscus tear and run blind tests between the ex-
isting and proposed methods assessed by multiple muscu-
loskeletal radiologists.

One limitation of our method is the extended infer-
ence time. The current implementation is based on the
naive SPIRIiT implementation and requires about 20s for

each slice. Using preconditioned conjugate descent algo-
rithms and converting the convolution operator to image-
domain multiplication will greatly accelerate our method.
Moreover, as Eq.8 is in the form of a convex optimization
problem, it is relatively much faster and more stable than
non-convex optimization problems. Moreover, using ad-
vanced optimization schemes such as parallelization may
be beneficial for further accelerating our method within a
clinically feasible runtime.[38]. Moreover, thorough com-
parison studies with various UNN architectures, GAN-
reconstruction, and dual-domain approaches will be needed
to be performed to validate the efficacy of our method.
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