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1. Introduction
We introduced a novel thermal imaging pipeline called

DeepIR that combined the physics of an uncooled mi-
crobolometer camera and regularization via deep networks.
We motivated our problem and demonstrated the efficacy of
DeepIR with several results on simulated and real data. The
supplementary document provides details about the learn-
ing procedure including the specific neural network archi-
tecture, and a more detailed study of some of the real ex-
periments. We also hosted our code online1 for further re-
search.

2. Learning Details
All the results in the paper were regularized with a deep

image prior based regularize. Our goal was to demonstrate
the advantages of combining physics and deep networks,
and hence our network architecture was an unmodified ver-
sion of the architecture utilized in the original paper [1].
Specifically, we used a convolutional network with skip
connections shown in Fig. 1. We note that alternate net-
works are possibly and potentially capable of giving better
results but was not the focus of our paper.

Optimization details. As mentioned in the paper, we
jointly optimized the parameters of the neural network, 6
parameters for each of the N affine matrices, H × W di-
mensional gain and offset terms. The input to the neural
network was a H ×W × 8 shaped noise that was not opti-
mized along with other parameters. We found that random
initialization for affine matrices sufficed – however to accel-
erate convergence we first registered the images to the first
image using a pyramidal registration algorithm [2].

Details about super resolution. The image formation
model relating the low resolution image xk and high res-
olution image xHR is,

xk = g � (DMkxHR) + o, (1)

where D is the downsampling operator, and Mk is the trans-
formation matrix. To prevent aliasing artifacts endemic to

1https://github.com/vishwa91/DeepIR
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Figure 1: Network architecture. We used the default network
architecture proposed in [1] for super resolution.

downsampling, we chose D as the following operation,

XLR(u, v) =
1

Q2

Q∑
p=1

Q∑
q=1

XHR(u+ p, v + q) (2)

for downsampling by a factor of Q.

Learning parameters. We set the learning rate to 10−3 and
trained for a total of 2, 000 iterations. For non-uniform cor-
rection, there was no penalty for optimizing beyond 2, 000
iterations. However increasing the number of iterations
proved to be detrimental for super resolution by producing
checker-like artifacts in the final reconstruction This is ex-
pected, as deep image prior tends to overfit to noise if run
for too many iterations.

https://github.com/vishwa91/DeepIR
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Figure 2: NUC on diverse scenes. Our approach is capable of non-uniformity correction for a wide variety of noise levels and scene
complexities.
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Figure 3: Suppressing narcissus effect. Since we model both gain and offset terms, DeepIR is capable of removing narcissus effects due
to external optics like polarizers.

Our loss function consisted of MSE loss between pre-
dicted image g � Mk (xo + o) and the ground truth xk, a
2D total variation (TV) prior on the latent image, and a TV
loss on the offset term. The motivation behind the TV loss
for the offset is due to it arising from reflections off of op-
tics which tend to be spatially smooth. We found this to be
an effective strategy in separating the gain and offset terms.
We set the weight of the TV loss on the latent image to be
10−5, and the weight of the TV loss on the offset term to
be 10. We used a batch size equal to the number of input
images. The model was trained a system with Nvidia RTX

2080 GPU with 8GB memory along with 48GB RAM. The
optimization was implemented with the pytorch frame-
work [3]. The code ran for 10 minutes on our computer
for five images of size 640 × 512 for a total of 2, 000 iter-
ations. We will release our optimization code to the public
for further research in this direction.

3. Real Results
We demonstrate some more results and provide sensitiv-

ity to parameters.

Hardware details. We used the FLIR Boson camera with



640× 512 spatial resolution capturing images at 60 frames
per second (fps), and the FLIR Lepton camera with 160 ×
120 spatial resolution capturing images at 9 fps. We used
the flirpy [4] package to control the cameras which al-
lowed us to disable periodic NUC and capture images at
full frame rate of the individual cameras. The Boson cam-
era was equipped with inbuilt flat field correction (FFC),
supplementary correction for lens reflections, and temporal
noise reduction. We showed results with and without FFC
in the main paper. In all cases, we disabled temporal noise
reduction, as we found that enabling it produced ghosting
artifacts.

Non-uniformity correction. We showed NUC results on
some scenes with the Boson camera in the main paper. We
next demonstrate some more experiments to underline the
advantages of DeepIR. Figure 2 shows the non-uniformity
correction with the various scenes at varying levels of scene
complexity. All experiments included recovery with five
images. We found the offset to be nearly zero and hence
did not visualize it. DeepIR performs promisingly in low
contrast conditions, absence of inbuilt NUC, low and low
radiance levels.

Suppressing narcissus effect. Figure 3 shows the images
with and without polarizer. Since we model both gain and
offset, we were able to suppress the narcissus effect aris-
ing out of back reflections from the polarizer. Notice the
defocused edge that is visible in the estimated offset in the
image captured with a polarizer. The edge artifacts looking
like the hard were due to minor motion between frames, and
can be corrected with a more accurate model of transforma-
tion such as optical flow.
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