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Abstract

Food image classification is challenging for real-world
applications since existing methods require static datasets
for training and are not capable of learning from sequen-
tially available new food images. Online continual learn-
ing aims to learn new classes from data stream by using
each new data only once without forgetting the previously
learned knowledge. However, none of the existing works
target food image analysis, which is more difficult to learn
incrementally due to its high intra-class variation with the
unbalanced and unpredictable characteristics of future food
class distribution. In this paper, we address these issues by
introducing (1) a novel clustering based exemplar selection
algorithm to store the most representative data belonging
to each learned food for knowledge replay, and (2) an effec-
tive online learning regime using balanced training batch
along with the knowledge distillation on augmented exem-
plars to maintain the model performance on all learned
classes. Our method is evaluated on a challenging large
scale food image database, Food-1K1, by varying the num-
ber of newly added food classes. Our results show signif-
icant improvements compared with existing state-of-the-art
online continual learning methods, showing great potential
to achieve lifelong learning for food image classification in
real world.

1. Introduction
Food classification serves as the first and most crucial

step for image-based dietary assessment [3], which aims to
provide valuable insights for prevention of many chronic
diseases. As shown in Figure 1, ideally food classification
system should be able to update using each new recorded
food image continually without forgetting the food class
that has been already learned before. Achieving this goal
would bring significant advantage for deploying such a sys-
tem for automated dietary assessment and monitoring.

From the perspective of visual food classification, al-

1https://www.kaggle.com/c/largefinefoodai-iccv-recognition/data
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Figure 1: Continual learning for food image classifica-
tion. The model h learns new food class sequentially over-
time without accessing to already learned class data for each
continual learning step. The updated model can classify all
food classes seen so far.

though recent works [41, 27, 32, 31] have been proposed
using advanced deep learning based approaches to increase
model performance, they use only static datasets for train-
ing and are not capable of handling sequentially available
new food classes. Therefore, the classification accuracy
could drop dramatically due to the unavailability of old data,
which is also known as catastrophic forgetting [29]. Al-
though retraining from scratch is a viable option, it is im-
practical to do whenever a new food is observed, which is
time consuming and require high computation and memory
resource especially for large scale food image datasets. For
example, a model already learned 1, 000 food classes need
to retrain from scratch for only 1 new observed food.

From the perspective of continual learning, an increas-
ing number of approaches [9, 5, 7, 34] have been proposed
to address catastrophic forgetting and to learn new knowl-
edge incrementally in online scenario. Compared to offline
scenario where data can be used multiple epochs for train-
ing, online scenario is more challenging where each new
data is observed only once by the model, but is more prac-
tical for real-life application such as food image classifica-
tion system. Representative techniques to mitigate forget-
ting include (1) storing a small number of learned data as
exemplars for replay [35], and (2) applying knowledge dis-
tillation [13] using a teacher model to maintain the learned
performance. However, continual learning for food image
classification is still lacking and there are two major ob-
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stacles which make the above mentioned techniques less
effective for food images. (i) Food images exhibit higher
intra-class variation [27] compared with commonly seen
objects in real life, which is due to different culinary culture
and cooking style. Most existing continual learning meth-
ods [35, 4, 42, 43, 9, 15] apply herding algorithm [40] to
select exemplars for each learned class based on class mean
only, which is difficult to cover the diversity for food types
within the same class. Therefore, catastrophic forgetting
could become worse if stored exemplars are not good repre-
sentations of learned classes. (ii) The distribution of future
food classes is usually unpredictable and imbalanced due to
the variance of consumption frequencies [23] among differ-
ent food categories. Nevertheless, most online approaches
only study continual learning on balanced datasets contain-
ing the same number of data per class such as CIFAR [18]
and MNIST [19] without considering the class-imbalance
problem that is common for food images. In addition, as in-
dicated in [2], the knowledge distillation term becomes less
effective if teacher model is not trained on balanced data.

In this work, we address the challenging problem of food
image classification for online continual learning by first in-
troducing a novel exemplar selection algorithm, which clus-
ters data for each class based on visual similarity and then
selects the most representative exemplars from each gen-
erated cluster based on cluster mean. We apply Power It-
eration Clustering [22], which does not require the num-
ber of cluster beforehand. Therefore, our algorithm can
adapt to different food categories, i.e., food with higher
variation will generate more clusters and vice versa. In
addition, we propose an effective online learning regime
by using balanced training batch for old and new class
data and apply knowledge distillation loss between origi-
nal and augmented exemplars to better maintain the model
performance. Our method is evaluated on a large scale real
world food database, Food-1K [32], and outperforms state-
of-the-arts including ICARL [35], ER [5, 7], ILIO [9] and
GDUMB [34], which are all implemented in online scenario
and use exemplars for replay during continual learning.

The main contributions are summarized as follows.

• To the best of our knowledge, we are the first to study
online continual learning for food image classification.
We propose a novel clustering based exemplar selec-
tion algorithm and a new online training regime to ad-
dress catastrophic forgetting.

• We conduct extensive experiments on a challenging
class-imbalanced food image database to show the
effectiveness for each component of our proposed
method. We show that our method significantly out-
performs existing approaches, especially for larger in-
cremental step size.

2. Related Work
2.1. Food Classification

Food classification refers to the task of labeling im-
age with food category, which assumes each input image
contains only one single food item. Earlier work [14]
use fusion of features including SIFT [25], Gabor, and
color histograms for classification. Later, the modern deep
learning models have been widely applied as backbone
network to extract more class-discriminative features as
in [17, 37, 28, 32, 10, 8, 31, 36], which significantly im-
proves the performance. Recent works [41, 27] leveraging
hierarchy structure based on visual information are able to
achieve further improvements. However, all these methods
use static food image datasets for training and none of them
is capable of learning from sequentially available data, mak-
ing it difficult to apply in real life applications as new foods
are observed over time.

2.2. Continual Learning

The major challenge for continual learning is called
catastrophic forgetting [29], where the model quickly for-
gets already learned knowledge due to the unavailability
of old data. Below, we review and summarize existing
knowledge-preserving techniques that are most relevant to
our proposed method.

Replay-based methods store a small number of represen-
tative data from each learned class as exemplars to perform
knowledge rehearsal during the continual learning. Herding
dynamic algorithm [40] is first applied in ICARL [35] to se-
lect exemplars that are closer to the class mean. It has grad-
ually became a common exemplar selection strategy that is
being used in most existing methods [35, 4, 42, 43, 9, 15],
where ICARL adopts a nearest class mean classifier [30]
while others use softmax classifier for classification. In ad-
dition, reservoir sampling [39] along with random retrieval
is applied in Experience Replay (ER) based methods [5, 7],
which ensures each incoming data point has the same prob-
ability to be selected as exemplar in the memory buffer. A
greedy balancing sampler with random selection is recently
used in GDUMB [34] to store as much data as memory al-
lowed, which also achieves competitive performance.

Regularization-based methods restrict the impact of
learning new tasks on the parameters that are important for
learned tasks. Knowledge distillation [13] is a popular rep-
resentative technique, which makes the model mimic the
output distribution for learned classes from a teacher model
to mitigate forgetting during continual learning [21, 35, 4,
42, 15, 20, 11]. For most recent work, He et al. proposed
ILIO [9], which applies an accommodation ratio to gener-
ate a stronger constraint for knowledge distillation loss to
achieve improved performance.

However, among these methods, only a few [35, 9, 34,
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Figure 2: Overview of proposed method. The left side shows our exemplar selection algorithm, which selects the most
representative data from center of each cluster generated based on visual similarity in feature space. Right part shows our
online learning regime where each new class data is paired with one randomly selected exemplar to produce the original
balanced training batch BO. We perform data augmentation on selected exemplars to generate contrastive training batch BC

and the distillation loss LD is applied between the output of the teacher model using BO and the output of the current model
using BC . n and m denote the number of already learned classes and new added classes, respectively. β is a hyper-parameter
to combine LD with cross-entropy loss LC . (Best viewed in color)

5, 7] are feasible in online scenario to use each data only
once for training. In addition, none of the existing meth-
ods focus on food images and as introduced in Section 1,
the high intra-class variance and imbalanced data distribu-
tion make both exemplar and distillation based techniques
less effective to address catastrophic forgetting. Therefore,
we propose a novel exemplar selection algorithm to se-
lect exemplars from each generated cluster based on visual
similarity to adapt to the variability of different food cat-
egories. Besides, we propose an effective online learning
regime using balanced training batch and apply distillation
on augmented exemplars to better maintain performance on
learned classes, which is described in details in Section 4.

3. Problem Statement For Online Continual
Learning

Continual learning has been studied under differ-
ent scenarios. In general, it can be divided into (1)
task-incremental (2) class-incremental and (3) domain-
incremental as discussed in [16]. Methods for task-
incremental problem use a multi-head classifier [1] for each
independent task while task index is not available in class-
incremental problem, which applies a single-head classi-
fier [26] on all learned classes. Domain-incremental aims
to learn the label shift instead of new classes. In addition,

depending on whether each data is allowed to use more than
once to update model, it can be categorized into (1) on-
line learning that use each data once and (2) offline learning
with no epoch restriction. In this work, we focus on online
continual learning under class-incremental setting, which is
more related to real life applications. The objective is to
learn new class from data stream using each data once and
to classify all classes seen so far during inference.

Specifically, the online class-incremental learning prob-
lem T can be formulated as learning a sequence of N
tasks {T 1, ..., T N} corresponds to N incremental learning
steps with model updating from h0 to hN , where the initial
model h0 is assumed to be trained on T 0 before continual
learning begins and hN should be able to perform classi-
fication on test data belonging to {T 0, T 1..., T N}. Each
task T i ∈ T for i = {0, 1, ...N} contains fixed M non-
overlapped new classes, which is defined as incremental
step size. Let {D0, D1, ..., DN} denotes training data cor-
responds to N incremental steps plus the initial step D0,
where Di = {(xi1, yi1)...(xi

ni
, yini

)}, x and y represent the
data and the label respectively, and ni refers to the num-
ber of total training data in Di. In online scenario, the new
class data for each incremental learning step becomes avail-
able sequentially and one does not need to wait until all data
has arrived to update the model as in offline case. The on-
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line learner observes each data (xi, yi) ∈ Di only once for
incremental step i.

4. Our Method
An overview of our proposed method is illustrated in

Figure 2, including a novel exemplar selection method and
an effective online training regime. Specifically, instead of
selecting exemplars based on class mean as in herding [40],
we first generate clusters based on similarity and then select
exemplars from each cluster using the corresponding cluster
mean. During the continual learning phase, each new class
data from data stream is paired with one randomly selected
exemplar from exemplar set to produce balanced training
batch Bo that contains the same number of original new
and old class samples. Then we apply data augmentation on
selected exemplars in Bo to generate a contrastive training
batch Bc and the knowledge distillation term is applied be-
tween the teacher output of Bo and the current model output
of Bc to maintain the already learned knowledge. Details of
each component is described in the remaining section.

4.1. Exemplar Selection From Clusters

The main challenge of existing exemplar selection meth-
ods is that they cannot adapt to the intra-class variation es-
pecially for food images due to its high variability. For
example, the images in apple category may contain many
types such as green apple, red apple, sliced apple, diced ap-
ple, whole apple and etc. Therefore, selecting from class
mean as in Herding [40] will not work well when there ex-
ists more than one main types within that food class. Our
proposed method addresses this problem by first clustering
the data for each class based on visual similarity and then
select exemplars from each generated cluster. We consider
Power Iteration Clustering (PIC) [22] as our clustering ap-
proach, which is a graph based method and shown to be
effective even in large scale database [6]. But other cluster-
ing methods are also feasible such as K-means [24]. One
advantage of PIC is the number of generated clusters are
not set beforehand, so there is more clusters if one class
contains more main types and vice versa.

Given nc images {(x1, y), ...(xnc , y)} for one new class
c, we first generate nearest neighbor graph by connecting to
their 10 neighbor data points in the Euclidean space using
extracted feature embeddings. Let f(xi) denotes the ex-
tracted feature for the i-th image, we apply the sparse graph
matrix G = Rnc×nc with zeros on the diagonal and the re-
maining elements of G are defined by

ei,j = exp−
||f(xi)− f(xj)||2

σ2

where σ denotes the bandwidth parameter and we empiri-
cally use σ = 0.5 in this work. Then, we initialize a starting

Algorithm 1 Selecting exemplars for a new class c
Input: New class data: {(x1, y), ...(xnc , y)} ∈ T k

Require: Clustering algorithm : Θ
Require: Number of exemplars per class : q
Output: Exemplar set for new class : Ec

1: Ec ← ∅ ▷ initialization of exemplar set for new class c
2: f ← hk ▷ use current model as feature extractor
3: C1, ...Cn ← Θ(f(x1), ...f(xnc)) ▷ generated clusters
4: qe ← floor( q

n
) ▷ number of exemplar for each cluster

5: for i = 1, 2, ... n do
6: µi =

1
|Ci|

∑
x∈Ci

f(x) ▷ cluster mean
7: for j = 1, 2, ... qe do
8: vj ← argminx∈Ci

||µi − f(x)||2
9: Ec ← Ec ∪ vj

10: Ci ← Ci− vj ▷ remove stored exemplar from cluster

vector snc×1 = [ 1
nc
, ..., 1

nc
]T and iteratively update it using

Equation 1

s = L1(α(G+Gt)s+ (1− α)s) (1)

where α = 0.001 refers to a regularization parameter and
L1(•) denotes the L-1 normalization step. The generated
clusters are given by the connected components of a di-
rected unweighted subgraph of G denoted as G̃. We set
G̃i,j = 1 if j = argmaxjei,j(sj − si) where si refers to the
i-th element of the vector. Note that there is no edge starts
from i if {∀j ̸= i, sj ≤ si}, i.e. si is a local maximum.

The general process to select exemplars for a new class c
after incremental step k is illustrated in Algorithm 1, where
we select the same number of exemplars qe from each clus-
ter generated using PIC based on cluster mean. Note that
for the special situation when a cluster Ci contains very few
data with |Ci| < qe, we store all data from that small cluster
at first and then evenly select from the remaining clusters.

4.2. Online Learning Regime
Since future food class distribution is usually unpre-

dictable and imbalanced, it becomes more challenging to
maintain the learned knowledge due to potential class-
imbalanced problem. However, almost all existing online
continual learning methods use balanced datasets such as
MNIST [19] and CIFAR [18] which contain the same num-
ber of training data for each class. In addition, the knowl-
edge distillation term also becomes less effective when the
teacher model is not trained on balanced data [2]. There-
fore, we propose a more effective online learning regime,
which consists of two main parts: using balanced training
batch and applying knowledge distillation on augmented
exemplars.

Suppose the model is already trained on n classes and
the data stream {(xk1 , yk1 )...} ∈ Dk for incremental step
k contains m newly added classes where yk ∈ {n +
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1, n + 2, ..., n +m}. We pair each new class data (xki , yki )
with a randomly selected exemplar (vj , yj) ∈ Ek−1 where
Ek−1 denotes exemplar set containing stored exemplars for
classes {1, 2, ..., n} belonging to {T 0, ..., T k−1}. There-
fore, each training batch B contains exactly b

2 new class
data and b

2 augmented old class exemplars given batch size
b = |B|.

To make the distillation term more effective, instead of
using the identical training batch for both current model and
teacher model as done in existing approaches, we propose to
apply data augmentation on selected exemplars in original
training batch Bo to generate its corresponding contrastive
training batch Bc where Bc and Bo are used as input to
current model and teacher model, respectively.

The output logits of the current model is denoted as
p(n+m)(Bc(x)) = (o(1), ..., o(n), o(n+1), ...o(n+m)), the
teacher’s output logits is p̂(n)(Bo(x)) = (ô(1), ..., ô(n))
where Bc(x) and Bo(x) denote the data in augmented and
original training batch. The knowledge distillation loss [13]
is formulated as in Equation 2, where p̂

(i)
T and p

(i)
T are the

i-th distilled output logit as defined in Equation 3

LD(Bc(x), Bo(x)) =
n∑

i=1

−p̂(i)T (Bo(x))log[p
(i)
T (Bc(x))]

(2)

p̂
(i)
T =

exp (ô(i)/T )∑n
j=1 exp (ô

(j)/T )
, p

(i)
T =

exp (o(i)/T )∑n
j=1 exp (o

(j)/T )
(3)

T > 1 is the temperature scalar used to soften the distri-
bution, which forces the network to learn more fine grained
knowledge. The cross entropy loss to learn new classes can
be expressed as in Equation 4

LC(Bc(x)) =
n+m∑
i=1

−ŷ(i)log[p(i)(Bc(x))] (4)

where ŷ is the one-hot label for input data x. The overall
cross-distillation loss function is formed as in Equation 5
by using a hyper-parameter β to tune the influence between
two components.

LCD(Bc(x)) = βLD(Bc(x), Bo(x)) + (1− β)LC(Bc(x))
(5)

In this work, we set T = 2 and β = 0.5. We also notice
that using stronger random data augmentation techniques
to generative contrastive training batch can achieve better
performance to maintain the knowledge for learned classes.
Therefore our data augmentation pipeline includes random
flip, random color distortions and random Gaussian blur.

5. Experimental Results
In this section, we first compare our proposed online

continual learning method with existing approaches includ-

ing ICARL [35], ER [5, 7], GDUMB [34] and ILIO [9],
which all have already been discussed in Section 2. We
also include Fine-tune and Upper-bound for comparison.
Fine-tune use only new class data and apply cross-entropy
loss for continual learning without considering the previ-
ous task performance, i.e., neither exemplar set nor distilla-
tion loss is used and it can be regarded as the lower-bound.
Upper-bound trains a model using all the data seen so far
for each incremental learning step using cross-entropy loss
in online scenario. Results are discussed in Section 5.3.

In the second part of this section, we conduct ablation
study to show the effectiveness of each component of pro-
posed method including exemplar selection algorithm and
online training regime, which is illustrated in Section 5.4.

5.1. Datasets

In this work, we use Food1K to evaluate our method,
which is a recently released challenging food dataset con-
sisting of 1, 000 selected food classes from Food2K [32].
The dataset is originally divided as 60%, 10% and 30% for
training, validation and testing, respectively. Note that no
class label is given in test set so we use images in validation
set as testing data. In addition, we also construct a subset of
Food1k using 100 randomly selected food classes denoted
as Food1K-100 for experiment. Specifically, for Food1K-
100, we randomly arrange 100 classes into the splits of 1, 2,
5, 20 as step size (number of new class added for each step)
and for Food1K we perform large scale continual learning
using 100 new classes for each incremental step.

5.2. Implementation Details

Our implementation is based on Pytorch [33]. We use
ResNet-18 as our backbone network by following the set-
ting suggested in [12] with input image size 224× 224. We
use stochastic gradient descent optimizer with fixed learn-
ing rate of 0.1 and weight decay of 0.0001. We store q = 20
exemplars per class in exemplar set as suggested in [35] and
the batch size is set as 32 (with 16 new class data paired with
16 randomly selected exemplars). For all experiments, each
data (except stored exemplars) is used only once to update
the model in online scenario.

Evaluation protocol: after each incremental learning
step, we evaluate the updated model on test data belong-
ing to all classes seen so far and we use Top-1 accuracy for
Food1K-100 and Top-5 accuracy for Food1K. Besides, we
also report average accuracy (Avg) and last step accuracy
(Last) for comparison where Avg is calculated by averaging
the accuracy for all incremental steps to show the overall
performance for entire continual learning process and Last
accuracy shows the final performance on the entire dataset
after the last step of continual learning. We repeat each ex-
periment 5 times using different random seeds to arrange
class and the average results are reported.
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Datasets Food1K-100 Food1K
Step size 1 2 5 10 20 100
Accuracy Avg Last Avg Last Avg Last Avg Last Avg Last Avg Last
Fine-tune 0.043 0.009 0.081 0.029 0.182 0.018 0.379 0.134 0.497 0.233 0.265 0.099

Upper-bound 0.805 0.759 0789 0.752 0.807 0.743 0.827 0.749 0.813 0.744 0.788 0.805
ICARL [35] 0.619 0.539 0.694 0.615 0.581 0.502 0.729 0.603 0.769 0.660 0.573 0.474

ER [5, 7] 0.645 0.586 0.612 0.582 0.528 0.520 0.694 0.599 0.728 0.633 0.533 0.428
GDUMB [34] 0.606 0.430 0.612 0.441 0.573 0.507 0.591 0.456 0.754 0.623 0.506 0.289

ILIO [9] 0.695 0.670 0.681 0.643 0.501 0.452 0.703 0.633 0.708 0.596 0.515 0.428
Ours 0.692 0.661 0.702 0.641 0.643 0.563 0.762 0.669 0.786 0.699 0.612 0.504

Table 1: Average accuracy and Last step accuracy with step size 1, 2, 5, 10, 20 on Food1K-100 and step size 100 on
Food-1K. Best results (except upper-bound) are marked in bold.

step size - 100step size - 20step size - 10step size - 5

(a) (b) (c) (d)

Figure 3: Accuracy for each incremental step with step size (a) 5 (b) 10 (c) 20 on Food1K-100 and (d) step size 100 on
Food-1K. (Best viewed in color)

5.3. Comparison With Existing Methods

Table 1 summarizes the average accuracy (Avg) and last
step accuracy (Last) for all incremental step sizes. Overall,
we notice that the online continual learning performance
vary a lot for different step sizes. Given fixed total num-
ber of classes to learn, smaller step size will produce more
incremental steps so catastrophic forgetting appears more
frequently. On the other hand, for larger step size, although
there will be less incremental steps, learning more classes
for each step is also a challenging task especially in online
scenario to use each data only once for training. Specif-
ically, we observe severe catastrophic forgetting problem
by using Fine-tune where both Avg and Last accuracy are
much lower compared with Upper-bound due to the lack of
training data for learned tasks during the continual learn-
ing process. All existing methods achieve significant im-
provement compared with Fine-tune especially for ILIO [9],
which works more effectively when step size is very small
as their final prediction is given by the combination of out-
puts for both the teacher model and current model. Note that
ILIO requires the teacher model for both training and in-
ference phases which greatly increases the memory storage
while other methods included ours only use teacher model
during the training phase. However, as incremental step
size increase, our method achieves best performance even
for very large scale continual learning for 1, 000 classes in

Food1K. We also show the accuracy evaluated after each
incremental learning step with step size 5, 10, 20 and 100
in Figure 3. Our method outperforms state-of-the-art for
all learning steps with smallest performance gap compared
with upper-bound. Note that we did not provide the figures
for step size 1 and 2 as they contain too many learning steps
(100 and 50 respectively), which is difficult for visualiza-
tion.

5.4. Ablation Study

In this part, we conduct ablation studies to analyze
the effectiveness of (1) component-1: our proposed ex-
emplar selection algorithm that selects representative data
from clusters generated based on visual similarity and (2)
component-2: our online training regime using balanced
training data for new and old class, and contrastive training
batch for knowledge distillation. Specifically, we consider
the following methods for comparisons:

• baseline: removing both component-1 and
component-2 from our method, i.e., use herd-
ing [40] for exemplar selection instead and pair new
class data in training batch with the random number
of exemplars

• baseline + our exp: baseline + component-1

• baseline + our training regime: baseline +
component-2
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step size - 100step size - 20step size - 10step size - 5

(a) (b) (c) (d)

Figure 4: Ablation study with step size (a) 5 (b) 10 (c) 20 on Food1K-100 and (d) step size 100 on Food-1K. (Best viewed
in color)

Herding Ours

class 1 class 2 class 3 selected exemplar

Figure 5: A t-SNE [38] visualization by comparing herding [40] with our proposed exemplar selection algorithm. We
randomly select three classes from Food1K corresponds to three different colors and the red dots represent the selected
exemplars. The black box indicates the area where most exemplars are located for each class. (Best viewed in color)

• Ours: baseline + component-1 + component-2

Figure 4 shows the results for each incremental step with
step size 5, 10, 20 and 100. Compared with baseline, we
observe performance improvement by incorporating each
component of proposed method. The best performance is
obtained when combining both components. In addition,
we notice that our training regime using balanced training
batch performs more effectively than our exemplar selec-
tion since severe class-imbalanced problem exists in this
Food1K dataset, where the number of training data ranges
from [91, 1199] per food class.

5.4.1 Influence of Exemplar Size

For experiments in Section 5.3, we follow the protocol [35]
to use 20 exemplars per class. In this part, we vary the num-
ber of exemplar stored for each class q ∈ {10, 50, 100}
and compare baseline + our exp using our proposed ex-

Method q = 10 q = 50 q = 100

baseline 0.486 0.629 0.697
baseline + our exp 0.527 0.651 0.706

Table 2: Average accuracy on Food1K-100 with step size
5 by varying exemplar size. Best results marked in bold.

emplar selection algorithm with baseline using Herding se-
lection [40]. We use Food1K-100 with step size 5 and the
average accuracy are shown in Table 2. In general, the per-
formance becomes better for both methods when more ex-
emplars are used. However, the memory storage capacity is
one of the most important factors for continual learning es-
pecially in online scenario and we observe that our proposed
approach is more efficient which outperforms baseline for a
larger margin when using less exemplars.
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Figure 6: Visualization of contrastive training batch generated by our proposed data augmentation pipeline including
random flip, random color distortions and random Gaussian blur. (Best viewed in color)

5.4.2 Visualization of Selected Exemplars

A t-SNE [38] visualization comparing herding [40] and our
proposed exemplar selection method is shown in Figure 5
where we randomly select three food classes from Food1K
as denoted by blue, green and orange dots, respectively and
red dots refer to the selected exemplars. As shown in the
left half of the figure, most exemplars selected by herding
are concentrated in a small area for each class as indicated
by the black box. Therefore, the model gradually forgets
the knowledge outside the black box during the continual
learning process, leading to catastrophic forgetting. Our
method addressed this problem by performing clustering at
first based on visual similarity and then select exemplars
from all generated clusters to better represent the intra-class
diversity for each food class as illustrated in Section 4.1. In
the right half of this figure, we find that the exemplars se-
lected by our method covers a wider region for each food
class, which helps to produce higher quality classifiers to
retain the learned knowledge due to better generalization
ability of our selected exemplars as shown in Figure 4 by
comparing baseline with baseline + our exp.

5.4.3 Visualization of Contrastive Training Batch

Figure 6 shows the exemplars for learned food classes in
original and contrastive training batch using our proposed
data augmentation pipeline including random flip, random
color distortions and random Gaussian blur. By comparing
results of baseline with baseline + our training regime as
shown in Figure 4, we observe that using augmented data
is more effective to help retain the already learned knowl-
edge to achieve better performance. One explanation is that
each exemplar stored in the exemplar set can be selected for
more than once to pair with new class data during the online

training phase, so the data augmentation step helps to im-
prove the classifier’s generalization ability to obtain higher
accuracy on learned classes. In addition, the knowledge
distillation term also becomes more efficient to maintain
the performance for old classes by using balanced training
batch for old and new class data and transferring the learned
knowledge from teacher model using original training batch
to the current model using contrastive training batch as for-
mulated in Equation 2.

6. Conclusion

In summary, we studied online continual learning for
food image classification in this work and proposed a novel
exemplar selection algorithm that selected representative
data from each cluster generated based on visual similarity
to alleviate the high intra-class variation problem of food
images. In addition, an effective online learning regime
was introduced using balanced training batch for old and
new class and we proposed to apply knowledge distillation
using contrastive training batch to help retain the learned
knowledge. Our method achieved promising results on a
challenging food dataset, Food1K, with significant perfor-
mance improvement compared with existing state-of-the-art
especially when the number of new food classes added for
each incremental step increased, showing great potential for
large scale continual learning of food image classification in
real life.

For future work, although achieving promising results,
our method still require storing part of original learned data
as exemplars for replay during continual learning, which
may not be feasible in many real scenarios due to the pri-
vacy issue or memory constraint. One possible solution is
to use class prototype as recently introduced in [44].
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