
Post-training deep neural network pruning via layer-wise calibration

Ivan Lazarevich
Intel Corporation

ivan.lazarevich@intel.com

Alexander Kozlov
Intel Corporation

alexander.kozlov@intel.com

Nikita Malinin
Intel Corporation

nikita.malinin@intel.com

Abstract

We present a post-training weight pruning method for
deep neural networks that achieves accuracy levels tolera-
ble for the production setting and that is sufficiently fast to
be run on commodity hardware such as desktop CPUs or
edge devices. We propose a data-free extension of the ap-
proach for computer vision models based on automatically-
generated synthetic fractal images. We obtain state-of-
the-art results for data-free neural network pruning, with
∼1.5% top@1 accuracy drop for a ResNet50 on ImageNet
at 50% sparsity rate. When using real data, we are able
to get a ResNet50 model on ImageNet with 65% sparsity
rate in 8-bit precision in a post-training setting with a ∼1%
top@1 accuracy drop. We release the code as a part of the
OpenVINOTM Post-Training Optimization tool1.

1. Introduction

Deep neural network (DNN) models have achieved un-
precedented accuracy in several crucial domains such as
computer vision and natural language processing. Despite
the success of DNN models, an unreasonably large amount
of computations and memory required for their inference
limits their deployment on edge devices, such as smart cam-
eras equipped with low-power CPUs, GPUs or ASIC accel-
erators. Significant efforts in recent years have been de-
voted to both hardware design and algorithmic approaches
to DNN model compression to enable inference speedups
for various model architectures and use cases. Some of
the DNN compression methods, such as 8-bit quantization,
were adapted to the post-training setting where the origi-
nal DNN model to be compressed could come from any
software framework and no access to the original training
pipeline and the training dataset is given. One of the promis-
ing approaches to reduce the memory footprint and infer-
ence latency of DNNs is weight pruning [2, 4], which re-
sults in models with sparse weight matrices. Recently, a lot
of research and development has been aimed at leveraging

1https://docs.openvinotoolkit.org/latest/pot README.html

weight sparsity to achieve inference speedups on a range of
hardware platforms [3, 6]. However, relatively little effort
was devoted to providing accurate sparse DNN models in
the post-training scenario.

In this work, we propose a recipe for fast post-training
pruning of DNNs that produces models with significant
sparsity rates (e.g. 50%) but negligible accuracy drops.
Furthermore, if combined with weight quantization tech-
niques, the proposed method could reduce the model
memory footprint by a factor of 6-8x [16]. We propose
a fast data-free extension of our weight pruning pipeline
which allows getting state-of-the-art accuracy levels for a
range of computer vision models. To streamline the de-
ployment process of sparse quantized DNNs on hardware,
we have implemented the proposed method as a part of the
OpenVINOTM Post-Training Optimization tool.

We summarize our contributions as follows:

• A recipe for post-training weight pruning with demon-
strated results on a wide range of models and datasets.

• State-of-the-art results for data-free weight pruning of
computer vision models using synthetic fractal images
for model compression.

• An ablation study of the proposed post-training weight
pruning pipeline demonstrating the effects of particu-
lar components such as per-layer sparsity rate selection
criteria, bias correction and layer-wise fine-tuning set-
tings.

2. Related work
Neural network weight pruning is a technique used to

produce lightweight models by removing (zeroing out) a
certain percentage of unimportant weights. In this work,
we focus on unstructured pruning (weight sparsification)
whereby no structural constraints on the sparsity pattern
are imposed and a subset of weights determined to have
the lowest importance score values is removed regardless
of position in weight tensors. Various definitions of weight

798

Table 1. Accuracy values of the sparse 8-bit quantized DNN models obtained with the proposed post-training method. Metric values were
measured on a CPU. The same is for other accuracy values reported in the paper unless specified otherwise.

Model Dataset (acc. metric) Sparsity rate, % Compressed model
acc.

Absolute acc. drop

ResNet50 ImageNet (top@1 acc.) 65 75.09 1.04
ResNet18 ImageNet (top@1 acc.) 50 68.93 0.81
GoogleNetV4 ImageNet (top@1 acc.) 50 78.96 0.94
MobileNetV2 ImageNet (top@1 acc.) 40 70.29 1.51
MobileNetV1-SSD VOC07 (mAP) 50 71.53 0.98
TinyYOLOv2 COCO (AP) 50 28.29 0.83
NCF MovieLens 20M (hit ratio) 70 64.67 0.93
BERT-base MRPC (acc.) 50 82.50 0.63

Table 2. Accuracy of sparse computer vision models obtained with layer-wise fine-tuning on different input data. Note that accuracy
levels are very similar when fine-tuning on original validation or training datasets, suggesting the absence of overfitting during layer-wise
fine-tuning. ”FractalDB-1k(c)” denotes the colored FractalDB-1k dataset.

Model (sparsity rate, dataset/acc. metric) Orig.
model acc.

Val. data Training
data

FractalDB
1k(c)

White
noise

ResNet18 (50%; ImageNet top@1) 69.75 68.94 68.92 68.27 66.90
ResNet50 (50%; ImageNet top@1) 76.13 75.51 75.57 74.50 73.89
MobileNetV2 (40%; ImageNet top@1) 71.81 70.04 70.12 68.94 66.84
MobileNetV1-SSD (50%; VOC07 mAP) 72.51 71.37 71.53 71.13 69.52
TinyYOLOv2 (50%; COCO AP) 29.12 28.06 28.29 28.18 27.10
RetinaFace-ResNet50 (50%; WIDER FACE mAP) 87.29 87.40 87.41 87.45 86.87

importance functions have been proposed in the literature
[4, 23], the simplest baseline being magnitude-based weight
pruning, as well as various heuristics to determine per-layer
sparsity rates [13, 7]. Magnitude-based sparsification via a
global importance threshold was found to be a strong base-
line in the compression-aware training regime for a range of
models [4, 20]. These weight pruning approaches typically
imply compression-aware model re-training, which means
existing access to the training code, the training dataset and
appropriate compute resources. Other DNN compression
techniques, such as 8-bit quantization, however, have been
successfully applied in a less restrictive setting – in the
post-training or data-free regimes [18]. The post-training
compression regime is favorable from a practical perspec-
tive, since model compression could be ultimately imple-
mented via a single API call rather than via the modifica-
tion of the original model training code. There, however,
have been few attempts to implement post-training or data-
free weight pruning of DNNs, primarily due to the large
accuracy drop incurred during sparsification [8, 21]. Re-
cently, there have also been developed layer-wise gradient
optimization-based methods for post-training compression
[9, 15, 17, 8] with applications to low-bitwidth quantiza-
tion and weight pruning. These methods are promising be-
cause they allow restoring compressed model accuracy in
the post-training setting in many cases. Nevertheless accu-
racy degradation was still found to be significant for sparsity
rates above 40%. In this work, we propose a post-training

sparsification recipe that allows insignificant accuracy drops
on a range of DNN models at sparsity rates of 50% and
higher. We also suggest a straightforward and fast extension
of the method for the data-free compression of computer vi-
sion models, using synthetic fractal image data, that allows
getting state-of-the-art accuracy on a range of natural image
datasets.

3. Post-training sparsity pipeline
The proposed post-training sparsity pipeline consists of

three basic steps: (i) layer-wise sparsity rate selection given
a global sparsity constraint, (ii) bias & variance correc-
tion steps, and (iii) layer-wise fine-tuning using auxiliary
knowledge distillation losses. We introduce a progressively
increasing sparsity schedule for each layer whereby these
three steps are performed iteratively and the global spar-
sity rate in the model is increased on each iteration (see the
flowchart in Fig. 1). The global sparsity rate for the model
on the tth iteration of the pipeline is determined via the fol-
lowing polynomial (cubic) sparsity schedule [23]:

st = sf + (si − sf)

(
1− t

T

)3

(1)

where si and sf are the initial and final global sparsity rates
of the model, respectively, and T is the total number of it-
erations of the pipeline. After the original floating-point
precision model with the target global sparsity rate is ob-

799

per-layer sparsity
level selection

bias & variance
correction

increase sparsity
level according
to the schedule

layer-wise tuning
via auxiliary losses

apply
quantization

target
sparsity
rate

is reached

initial sparsity
rate

Figure 1. Flowchart of the proposed post-training sparsity pipeline.
The process begins with a small initial global sparsity value, the
model is fine-tuned in a layer-wise manner, the sparsity level is
increased and the fine-tuning is repeated. This iterative process is
carried out until the target sparsity level or the maximal allowed
accuracy drop is reached (either of these parameters is set in ad-
vance).

tained, the standard procedure of post-training quantization
is performed to prepare the model to be executed in 8-bit
precision. We found that performing post-training quanti-
zation on the pruned model does not incur significant accu-
racy degradation compared to the original-precision sparse
model (see Fig. 2 for results on ResNet18/50 on ImageNet),
probably due to reduced quantization noise of sparse weight
matrices. We are using the following quantization configu-
ration throughout the paper: symmetric per-tensor quantiza-
tion of activations (except for specific per-channel cases like
e.g. depthwise convolutions) and symmetric per-channel
quantization of weights. We further provide details on
all the steps performed on every iteration of the pruning
pipeline in the corresponding sections below.

3.1. Layer-wise sparsity rate selection procedure

The problem of selecting an optimal (in terms of model
accuracy) layer-wise sparsity rate configuration given a cer-
tain global sparsity constraint is a widely discussed prob-
lem in the literature [13]. The proposed approaches range
from simple heuristics (e.g. pruning uniformly except for
the first and the last layers in the network [4]) to making
per-layer sparsity rates learnable [12] or searching for the
best configuration via global non-gradient optimization or
reinforcement learning [7]. The heuristic approaches also
include finding a global threshold for weight importance
scores and pruning all the weights with importances below

Table 3. Impact of per-layer sparsity selection criteria on a pre-
trained ResNet50, ResNet18 and MobileNetV2 models. ResNets
are pruned at a 50% sparsity rate, while the sparsity rate for Mo-
bileNetV2 is 30% and bias correction is applied to MobileNetV2
(see main text for details).

Sparsity
selection
criterion

BN-fusing Top@1
accuracy, %

Original model
(ResNet50)

76.13

Magnitude Yes 0.3814
L2-normalized

magnitude
Yes 72.544

LAMP Yes 72.328
Magnitude No 72.831

L2-normalized
magnitude

No 72.244

Original model
(ResNet18)

69.75

Magnitude Yes 0.418
L2-normalized

magnitude
Yes 64.856

LAMP Yes 64.866
Original model
(MobileNetV2)

71.81

Magnitude Yes 18.386
L2-normalized

magnitude
Yes 69.528

LAMP Yes 69.524

this threshold. This naturally leads to a non-uniform pat-
tern of per-layer sparsity rates. The importance score func-
tion in this case might be the absolute weight magnitude
or a normalized version thereof (like e.g. the LAMP score
[13]). We compared several variations of importance score
functions in the global threshold approach, namely (i) the
absolute weight magnitude, (ii) the absolute weight magni-
tude normalized by the L2 norm of the corresponding layer,
(iii) the LAMP score (Table 3). We initally observed that
the global magnitude criterion led to much worse accuracy
comprared to the normalized criteria (Table 3). This effect
was found to be caused by the fusing of the BatchNorm
layers into preceding convolutions, which was performed
in the model prior to compression. BatchNorm fusing re-
sulted in different layer-wise weight scales compared to the
original model, an effect easily counteracted by per-layer
normalization of weight magnitudes. In the case where the
normalization layers were not fused into convolutions, how-
ever, we found that the vanilla global magnitude criterion
performed the best compared to LAMP and L2-normalized
magnitude (Table 3 and Figure 3). We further assumed that
the fusing could generally occur prior to model compres-
sion and the original normalization layer parameters might

800

50 55 60 65 70 75 80
Sparsity level, %

0

2

4

6

8

10

A
cc

u
ra

cy
 d

ro
p
,
%

ImageNet accuracy drop for ResNet50
at different sparsity levels

top@1 accuracy sparse
top@1 accuracy sparse + int8
top@5 accuracy sparse
top@5 accuracy sparse + int8

50 55 60 65 70 75 80
Sparsity level, %

0

2

4

6

8

10

A
cc

u
ra

cy
 d

ro
p
,
%

ImageNet accuracy drop for ResNet18
at different sparsity levels

top@1 accuracy sparse
top@1 accuracy sparse + int8
top@5 accuracy sparse
top@5 accuracy sparse + int8

Figure 2. Accuracy drop/sparsity rate curves for a ResNet18 (top)
and a ResNet50 (bottom) model obtained with our post-training
pruning and quantization pipeline. The horizontal dashed red line
indicates the level of 1% absolute accuracy drop. Note that post-
training quantization of the pruned model does not lead to a huge
accuracy drop increase for both models at different sparsity rate
levels.

be unknown, hence we picked the per-layer L2-normalized
magnitude criterion as our sparsity rate selection heuristic.
It performed better than LAMP in our post-training scenario
on most of the models with BatchNorm fusing. The weight
importance criterion for the ith weight in the lth layer wl

i

we use in our pipeline thus reads

I(wl
i) =

|wl
i|√∑

j∈l |wl
j |2

(2)

We pool the importance scores from all the layers and find
the threshold value corresponding to the set sparsity rate.
The weights with importance values below the threshold are

pruned.

3.2. Weight and activation bias correction

Once the layer-wise pruning rates have been determined,
the weights are zeroed out based on the intra-layer abso-
lute magnitudes. This pruning operation distorts the weight
distribution, introducing bias and scale shifts. It is benefi-
cial to carry out a bias correction procedure on the weights
in order to restore the original mean and variance values
in all of the convolutional layer filters and fully-connected
layer weight matrices [1]. We perform the following affine
transformation on all of the pruned weight tensors in a per-
channel/per-feature fashion:

W s
corr = λW s + E(Wdense)− E(λW s) (3)

λ =
σ(Wdense)

σ(W s) + ϵ
(4)

where W s
corr is the weight tensor after the correction proce-

dure, and Ws and Wdense are the weight tensors of sparse
and original dense models, respectively, and E and σ are the
mean and standard deviation operators, ϵ = 10−9 is a small
constant added for numerical stability. The resulting sparse
weight tensor has the same mean and variance values as
original dense model weights for each output kernel/feature,
since this correction is applied to every output feature in-
dependently. Output activations at each pruned layer are
also suffering from a bias introduced by the zeroed weights,
which can be compensated by altering the bias parameters
of the convolutional and fully-connected layers. Nagel et al.
[18] proposed to perform this operation to mitigate biases
introduced by quantization in an iterative fashion, correct-
ing the first layer and then calculating the bias shift factors
for the second layer using this corrected model. We found
that a one-shot version of the bias correction procedure was
sufficient for post-training sparsity, whereby we perform a
forward pass of the original model and calculate the input
activation tensors Xdense for each layer. The corrected bias
parameters are then determined as

bcorr = bdense + E(f(Wdense, Xdense))−
E(f(W s

corr, Xdense)) (5)

where f(W,X) is the convolutional or matrix-multiply op-
eration of the layer acting on inputs X with weights W ,
bdense are the original bias values in the layer, Xdense is the
set of input activation tensors for the corresponding layer
in the original dense model. In other words, we are using
the input tensors from the original model to calculate bias
shifts, not from the iteratively corrected compressed model.
We found no significant difference in the resulting accu-
racy between the two approaches, with the one-shot one
being faster since it requires a single forward pass of the

801

alexnet

densenet121

densenet161

densenet169

densenet201

googlenet

mnasnet0_5

mobilenet_v2

resnet101

resnet152
resnet18

resnet34
resnet50

resnext101_32x8d

resnext50_32x4d

shufflenet_v2_x0_5

squeezenet1_0

squeezenet1_1
vgg11

wide_resnet101_2

wide_resnet50_2

DNN architecture

0

20

40

60

80

100
Im

ag
eN

et
 to

p@
1

ac
cu

ra
cy

 d
ro

p,
 %

magnitude
L2-normalized magnitude
LAMP

Figure 3. Absolute top@1 accuracy drops for a range of models from the torchvision package pruned with a 50% global sparsity rate
depending on the per-layer compression level selection criterion. BatchNorm fusing was not performed in the networks. Pruning is done in
the post-training regime (without any fine-tuning), BatchNorm adaptation is performed after weight pruning. Global magnitude criterion
is optimal in most cases in this setting except for lightweight models such as MobileNets, SqueezeNets and ShuffleNets. BatchNorm
adaptation is a procedure analogous to bias correction whereby the BN statistics are recollected after the model has been compressed [14].
Accuracy drops are measured relative to the original pre-trained weights using PyTorch on a GPU.

model. Results of the weight & activation bias correction
procedures are shown in Table 4 for a ResNet18 model at
50% sparsity rate. Both procedures cumulatively improve
the pruned model accuracy and top@1 accuracy drops are
not exceeding several percent for many ImageNet models at
the sparsity rate of 50% just after layer-wise sparsity selec-
tion and bias correction. Accuracy can be further improved
by local layer-wise fine-tuning using auxiliary knowledge-
distillation losses, which is described in more detail below.

3.3. Local layer-wise fine-tuning with auxiliary
losses

Gradient-based fine-tuning with auxiliary loss functions
was previously successfully applied for post-training quan-
tization [17, 15, 9] and, to a smaller extent, to post-training
weight pruning [8] and even filter pruning in convolutional
networks [5]. In this work, we follow a similar approach
whereby we define a local knowledge distillation loss for
every pruned layer (see Figure 4). These losses serve as
a measure of how close the output activation feature maps
of the original (unpruned) and pruned layers are. Suppose
the pruned layer weights and biases are W s and bs, then
the knowledge distillation mean-squared error loss for that

fine-tuning phase inference phase

layerwise
loss

layerwise
loss

convolution

softmax softmax

fully-conn.

... ...

Figure 4. Schematic description of the layerwise fine-tuning ap-
proach for post-training sparse model calibration. Input and dense
model output tensors are pre-computed and stored in memory for
each tuned layer. The red arrows depict the local flow of gradients
during weight and bias optimization. Red pixels indicate sparsity
masks in the compressed layers (sparsity levels are individually
selected for each layer).

layer is defined as

L =
∑

i∈batch

(Y i
dense − f(W sMs, Xi

dense)− bs)2

Y i
dense = f(Wdense, X

i
dense) (6)

802

where f(X,W) is the convolutional/matrix-multiply oper-
ation represented by the layer with weights W acting on
inputs X . The input tensors Xdense used to calculate the
output activations above are constructed by running a for-
ward pass of the original, unpruned model. Ms is the bi-
nary mask layer which is equal to one if the corresponding
weight is not pruned and zero otherwise. We fix the sparse
binary mask and run a gradient descent of the loss functions
defined above for each layer independently to find the opti-
mal weights and biases W s, bs.

3.4. Ablation study

3.4.1 Layer-wise fine-tuning settings.

We run several ablation experiments to establish the best
optimization settings for the layer-wise fine-tuning proce-
dure, since it is inherently different from full model training
via backpropagation. We used a batch size of 50 samples in
our experiments, and found the optimal learning rate values
across different models to be 10−5 for weights and 10−4

for bias parameters. We found that using the Adam opti-
mizer outperforms alternatives, such as SGD with momen-
tum or Adadelta, and techniques for better generalization
in the vicinity of local minima, like Lookahead [22] and
Stochastic Weight Averaging [10] were also not found to be
beneficial in the layer-wise fine-tuning case. The MSE loss
function also was found to be a better choice than e.g. L1
loss, Huber loss or cosine similarity between feature maps.
We did not observe significant over-fitting present in layer-
wise optimization (we discuss this phenomenon in more de-
tails below) and in particular we found that even low values
of weight decay/L2 weight regularization strength such as
10−6 could hurt the resulting model accuracy (see Table
5). Thus, we set the weight decay strength to 0 in all our
experiments. Increasing model sparsity rate using a cubic
schedule throughout the pruning pipeline also turned out to
improve accuracy for most models compared to the constant
sparsity baseline (Table 6). Overall, we were able to prune
and quantize a wide range of models with resulting spar-
sity rates ranging from 40% to 70% and an absolute accu-
racy drop not exceeding or close to 1% with our layer-wise
fine-tuning recipe using images from the respective models’
training datasets (Table 1 and Figure 2).

3.4.2 Source of input data used for fine-tuning.

Throughout experiments, we noticed that the set of input
samples to be used for fine-tuning does not have to be nec-
essarily large (we used a pool of randomly selected sev-
eral hundred samples in our experiments) and can come
either from the training or the validation dataset, with no
significant accuracy difference between the two (see Table
2). These results suggest that this fine-tuning regime is not
as prone to over-fitting compared to full model training, a

Table 4. Impact of bias & variance correction for weights and
activations on a ResNet18 model on ImageNet with 50% of the
weights pruned.

ResNet18 50%
sparse

Top@1
accuracy

Top@5
accuracy

L2-normalized
magnitude

64.856 86.126

L2-normalized
magnitude (+

act. bias
correction)

66.852 87.438

L2-normalized
magnitude (+
act. & weight

bias correction)

67.46 87.794

Table 5. Impact of L2 weight regularization on the fine-tuned
model accuracy for a ResNet18 model at 50% sparsity on Ima-
geNet. Even small weight decay values result in significant accu-
racy loss compared to the baseline with no regularization in place.

L2-reg. strength Top@1 / Top@5
accuracy, %

λ = 0.0 68.97 / 88.77
λ = 1e-6 67.78 / 87.96
λ = 1e-5 38.14 / 64.49

Table 6. Impact of the sparsity schedule vs. constant sparsity
throughout fine-tuning. All metrics are reported at 50% sparsity
rates. The cubic schedule was initialized at 10% sparsity rate
which was increased in 10 iterations. The same number of op-
timizer steps was used for both fine-tuning modes.

Model Top@1 accuracy
w/o schedule

Top@1 accuracy
with schedule

ResNet18 68.76 68.91
ResNet50 75.43 75.60
GoogleNetV4 79.37 78.10

fact that was also previously reported for layer-wise tuning
of a quantized model [9]. We observed no difference be-
tween fine-tuning on a batch of training or validation sam-
ples not only for the ImageNet dataset but also for object
detection models trained on the Pascal VOC, COCO and
WIDER FACE datasets. This lack of over-fitting is not sur-
prising since no annotation is used during fine-tuning and all
the layers are optimized independently, which reduces the
amount of tuned parameters per single optimization prob-
lem. The amount of supervision signal is also high because
the difference between whole activation tensors produced
by a set of input samples is used as a loss function. We fur-
ther verified whether we could utilize arbitrary input data
for bias correction and layer-wise fine-tuning, not related
to the original dataset that the model has been trained and
tested on. The intuition behind this is that once the output

803

Table 7. Accuracy of models pruned in the post-training regime using different types of synthetic data: randomly-colored FractalDB1k
images, (original) grayscale FractalDB-1k, and generated white noise images. Note that colorization of FractalDB images leads to increased
resulting accuracy in most models.

Model (sparsity rate, dataset/acc. metric) FractalDB-1k(c) FractalDB-1k White noise
ResNet18 (50%; ImageNet top@1) 68.27 67.94 66.90
ResNet50 (50%; ImageNet top@1) 74.50 74.46 73.89
MobileNetV2 (40%; ImageNet top@1) 68.94 68.47 66.84
MobileNetV1-SSD (50%; VOC07 mAP) 71.13 70.79 69.52
TinyYOLOv2 (50%; COCO AP) 28.18 28.28 27.10

activation feature maps produced by these arbitrary data are
similar to the ones produced by running model inference
on its original dataset, the layer-wise fine-tuning procedure
could produce a model that is sufficiently accurate on the
validation data. In particular, we tested several computer
vision models trained on different datasets (ImageNet, Pas-
cal VOC, COCO, WIDER FACE; see Table 2); the mod-
els were pruned using our post-training pipeline, but the
input images used to calculate activation statistics and fea-
ture maps for fine-tuning consisted of synthetically gener-
ated white noise (each pixel value in every color channel is
independently sampled from a uniform distribution from 0
to 255). We observed certain accuracy degradation when
fine-tuning on white noise images compared to tuning on
original data, but typically not exceeding several percent.
We further tested whether these results could be improved
by using synthetic images producing activation distribu-
tions closer to those generated by natural images in corre-
sponding datasets. We took images from the FractalDB-1k
dataset [11], which is comprised of automatically-generated
grayscale images of fractals. These images and their gener-
ated annotation were used to pre-train strong backbones for
computer vision, including Vision Transformers [11, 19].
We found that using these fractal images as input sam-
ples to computer vision models during post-training weight
pruning significantly improves the resulting model accuracy
compared to the white noise baseline (Table 2). We took
the original 512x512 images from FractalDB-1k, randomly
colored them by performing random shift-scale operations
on the color channels and used the same pre-processing
strategy as for the original datasets that the models were
trained on. Overall, we were able to achieve an accuracy
degradation of absolute 1-3% at 50% sparsity rates in the
data-free pruning regime by using synthetically-generated
fractal images as model inputs. The results generalized
beyond ImageNet to other natural image datasets like Pas-
cal VOC, COCO and WIDER FACE. Random colorization
of FractalDB images consistently yielded better accuracy
compared to using the (original) grayscale images (Table
7). The proposed data-free pruning approach leads to bet-
ter accuracy values compared to the existing state-of-the-
art [8] and is also fast and less restrictive since it does not
include a resource-consuming data distillation process that

relies on backpropagation through the model graph. This
can be seen by comparing our results from Table 2 for mod-
els like ResNet18 and MobileNetV2 to those in Figure 3 of
Horton et al. [8].

4. Conclusion
In this work, we have presented a novel post-training

pruning recipe for deep neural networks that allows zero-
ing out a significant proportion of model weights without
significant accuracy drops. We demonstrated efficiency of
the proposed pipeline on ImageNet models, object detection
models on Pascal VOC and COCO datasets as well as deep
NLP and recommendation models. We proposed a data-free
formulation of the method by using synthetic fractal images
to compress computer vision models, which led to state-
of-the-art results in data-free weight pruning. We demon-
strated that the proposed pruning method can also be safely
combined with post-training quantizaton, further increasing
its applicability in production settings.

References
[1] Ron Banner, Yury Nahshan, Elad Hoffer, and Daniel Soudry.

Post-training 4-bit quantization of convolution networks for
rapid-deployment. arXiv preprint arXiv:1810.05723, 2018.
4

[2] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Fran-
kle, and John Guttag. What is the state of neural network
pruning? arXiv preprint arXiv:2003.03033, 2020. 1

[3] Erich Elsen, Marat Dukhan, Trevor Gale, and Karen Si-
monyan. Fast sparse convnets. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14629–14638, 2020. 1

[4] Trevor Gale, Erich Elsen, and Sara Hooker. The state
of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019. 1, 2, 3

[5] Hui Guan, Xipeng Shen, and Seung-Hwan Lim. Wootz: A
compiler-based framework for fast cnn pruning via compos-
ability. In Proceedings of the 40th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementa-
tion, pages 717–730, 2019. 5

[6] Cong Guo, Bo Yang Hsueh, Jingwen Leng, Yuxian Qiu,
Yue Guan, Zehuan Wang, Xiaoying Jia, Xipeng Li, Minyi
Guo, and Yuhao Zhu. Accelerating sparse dnn models with-

804

out hardware-support via tile-wise sparsity. arXiv preprint
arXiv:2008.13006, 2020. 1

[7] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and
Song Han. Amc: Automl for model compression and ac-
celeration on mobile devices. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 784–
800, 2018. 2, 3

[8] Maxwell Horton, Yanzi Jin, Ali Farhadi, and Mohammad
Rastegari. Layer-wise data-free cnn compression. arXiv
preprint arXiv:2011.09058, 2020. 2, 5, 7

[9] Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and
Daniel Soudry. Improving post training neural quantiza-
tion: Layer-wise calibration and integer programming. arXiv
preprint arXiv:2006.10518, 2020. 2, 5, 6

[10] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry
Vetrov, and Andrew Gordon Wilson. Averaging weights
leads to wider optima and better generalization. arXiv
preprint arXiv:1803.05407, 2018. 6

[11] Hirokatsu Kataoka, Kazushige Okayasu, Asato Matsumoto,
Eisuke Yamagata, Ryosuke Yamada, Nakamasa Inoue, Akio
Nakamura, and Yutaka Satoh. Pre-training without natural
images. In Proceedings of the Asian Conference on Com-
puter Vision, 2020. 7

[12] Aditya Kusupati, Vivek Ramanujan, Raghav Somani,
Mitchell Wortsman, Prateek Jain, Sham Kakade, and Ali
Farhadi. Soft threshold weight reparameterization for learn-
able sparsity. In International Conference on Machine
Learning, pages 5544–5555. PMLR, 2020. 3

[13] Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, and
Jinwoo Shin. A deeper look at the layerwise sparsity of
magnitude-based pruning. arXiv preprint arXiv:2010.07611,
2020. 2, 3

[14] Bailin Li, Bowen Wu, Jiang Su, and Guangrun Wang. Ea-
gleeye: Fast sub-net evaluation for efficient neural network
pruning. In European Conference on Computer Vision, pages
639–654. Springer, 2020. 5

[15] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi
Zhang, Fengwei Yu, Wei Wang, and Shi Gu. Brecq: Pushing
the limit of post-training quantization by block reconstruc-
tion. arXiv preprint arXiv:2102.05426, 2021. 2, 5

[16] Xiao Liu, Wenbin Li, Jing Huo, Lili Yao, and Yang Gao.
Layerwise sparse coding for pruned deep neural networks
with extreme compression ratio. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, pages
4900–4907, 2020. 1

[17] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Chris-
tos Louizos, and Tijmen Blankevoort. Up or down? adap-
tive rounding for post-training quantization. In International
Conference on Machine Learning, pages 7197–7206. PMLR,
2020. 2, 5

[18] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and
Max Welling. Data-free quantization through weight equal-
ization and bias correction. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1325–
1334, 2019. 2, 4

[19] Kodai Nakashima, Hirokatsu Kataoka, Asato Matsumoto,
Kenji Iwata, and Nakamasa Inoue. Can vision trans-

formers learn without natural images? arXiv preprint
arXiv:2103.13023, 2021. 7

[20] Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient
second-order approximation for neural network compres-
sion. Advances in Neural Information Processing Systems,
33, 2020. 2

[21] Suraj Srinivas and R Venkatesh Babu. Data-free param-
eter pruning for deep neural networks. arXiv preprint
arXiv:1507.06149, 2015. 2

[22] Michael R Zhang, James Lucas, Geoffrey Hinton, and
Jimmy Ba. Lookahead optimizer: k steps forward, 1 step
back. arXiv preprint arXiv:1907.08610, 2019. 6

[23] Michael Zhu and Suyog Gupta. To prune, or not to prune: ex-
ploring the efficacy of pruning for model compression. arXiv
preprint arXiv:1710.01878, 2017. 2

805

