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Abstract

Neural architecture search can discover neural net-
works with good performance, and One-Shot approaches
are prevalent. One-Shot approaches typically require a su-
pernet with weight sharing and predictors that predict the
performance of architecture. However, the previous meth-
ods take much time to generate performance predictors thus
are inefficient. To this end, we propose FOX-NAS that
consists of fast and explainable predictors based on sim-
ulated annealing and multivariate regression. Our method
is quantization-friendly and can be efficiently deployed to
the edge. The experiments on different hardware show that
FOX-NAS models outperform some other popular neural
network architectures. For example, FOX-NAS matches
MobileNetV2 and EfficientNet-LiteO accuracy with 240%
and 40% less latency on the edge CPU. Search code and
pre-trained models are released at https://github.
com/great8nctu/FOX-NAS. !

1. Introduction

Deep learning has been applied in various fields in the
past decade, including image classification [21, 23], object
detection [6, 18], semantic segmentation [15, 19], and nat-
ural language processing [22,26]. Many exemplary archi-
tectures have been proposed in image classification. For
example, AlexNet [12] and VGGNet [21] showed that the
depth of convolutional neural networks is vital for achiev-
ing higher performance; ResNet [7] showed that identity-
based skip connections are suitable for training deep neural
networks; MobileNet [8,9,20] proposed the depthwise sep-
arable convolutions to build a lightweight model for edge
devices.

With the success of deep neural nets, the demand for de-
ploying deep learning algorithms to the edge rises rapidly.
Compared with cloud platforms, edge devices have the ad-

'FOX-NAS is the 3rd place winner of the 2020 Low-Power Computer
Vision Challenge (LPCVC), DSP classification track. See all evaluation
results at https://lpcv.ai/competitions/2020.

Quantization- Multivariate
Friendly Regression Simulated Optimal Subnet
Search Space Based Predictor  Annealing Architecture

<_AC(: @
©) =
el

Figure 1. We define a quantization-friendly search space (cf. Sec-
tion 3.2), predict the subnet’s performance by proposed multi-
variate regression (cf. Section 3.3), and use simulated annealing
guided by our explainable predictors to avoid local optimal sub-
nets and quickly find the global optimal subnet (cf. Section 3.4).

vantages of low cost, energy-saving, but with limited com-
putation resources. Quantization [11] is an essential tech-
nique to make the neural network run more efficiently on
edge devices. Previous works [10, 20, 28] address the is-
sues and handcraft edged device-friendly models. However,
since there are infinite candidate neural architectures, it is
inefficient to find the optimal model relying on the man-
ual trial and error method. As a result, neural architecture
search (NAS) is proposed to find the optimal model archi-
tecture more efficiently using machine learning.

Neural architecture search is a technique for finding the
optimal network architecture based on the search goal in
the search space. The search goal can be accuracy, infer-
ence time, or any user-defined constraint. The most naive
method is to exhaustedly instance models with different ar-
chitectures from the search space and then train each model
to estimate its performance. Since there are countless per-
mutations and combinations of architectures and it is un-
likely to train every candidate model, methods based on re-
inforcement learning [24,29,30] were proposed to do NAS.
More NAS methods that effectively reduce the requiring
time for NAS were then proposed. For example, Progres-
sive NAS [13] uses the sequential model-based optimization
(SMBO) method as the search strategy; AmoebaNet [17]
proposed using the evolutionary algorithm to find the op-
timal network architecture. However, these NAS methods
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take a lot of GPU time to complete the training.

Recently, One-Shot NAS has been proposed to make
NAS more efficient and effective. For example, ENAS [16]
proposed to use the method of sharing weight in the train-
ing process of searching an architecture, so that the search
time can be reduced to 16 GPU hours; DARTS [14] pro-
posed an algorithm of gradient based optimization for dif-
ferentiable NAS; ProxylessNAS [2] proposed an effective
solution that can directly search the architectures for large-
scale datasets and target hardware platforms. Additionally,
Once-for-All [1] proposed a method that is different from
the previous NAS. They decouple the training of the su-
pernet from the architecture search and directly get a spe-
cialized subnet by selecting from the well-trained supernet
without retraining. After the supernet training is completed,
subnets are randomly sampled from the supernet to measure
the performance, and then these data are used to do the ar-
chitecture search. However, training the predictor required
by the architecture search is time-consuming.

In this work, we propose a novel method for NAS
named FOX-NAS, which has the advantages of being fast,
on-device, and explainable. We continue the previous
method [1] and reduce the time required for architecture
search to complete the architecture search process directly
on edge devices, as shown in Figure 1.

The contribution of this work has four aspects:

1) We adopt multivariate regression analysis as our pre-
dictors that reduce the time and data than the deep
learning approach. In addition, the results of the pa-
rameters are explainable and controllable, which al-
lows us to optimize the model for a variety of objec-
tives, e.g., power consumption, accuracy, latency.

2) We use simulated annealing as our search algorithm,
which can complete the search within 1 minute and
avoid suboptimal network structures.

3) We design quantization-friendly search spaces that
adapt for CPU and TPU so that the resulting models
are easily deployed to edge devices.

4) Our extensive experiments are shown in Table 1,
demonstrating that the architecture we found is 4.2%
higher than MobileNetV3-small [8] under the same la-
tency, and in the edge TPU environment, the accuracy
of our model is also higher than MobileNetEdgeTPU.

2. Preliminaries

NAS can be divided into three parts: search space, search
strategy, and performance estimation.

Search Space. Since there are infinite combinations of
neural network architectures, we first need to define the

architecture’s scope, called search space. In image clas-
sification, the backbone of the convolution model archi-
tecture, such as ResNet [7], MobileNet [8, 20], is used
most frequently in NAS. In this work, we also adopt Mo-
bileNetV3 [8] as our backbone with quantization-friendly
modules (e.g., change the activation function to ReLUG6).

Search Strategy. The search strategy is a key to an op-
timal network search since the search space is enormous
(approximately 4 x 10?2 in this work). In previous work,
they used reinforcement learning [24,29, 30], SMBO [13],
and the evolution algorithm [17]. In this work, to avoid the
local optimal solutions, we use the simulated annealing al-
gorithm as our search strategy. Compared with other search
strategies, simulated annealing has a higher probability of
finding the global optimal solution. Moreover, coupled with
the guidance of multivariate regression analysis, we can find
the optimal solution more quickly.

Performance Estimation. We evaluate the perfor-
mance of the architectures sampled by the search strategy to
find the optimal network architecture. However, this is in-
feasible, especially when the search space and target dataset
are large. Therefore, proxy tasks (e.g., CIFAR-10) are often
used to evaluate neural architecture performance. However,
the optimal neural architectures found on the proxy tasks
are not guaranteed to be the optimal architecture found in
the target task [2]. Once-for-all [1] proposed using a neural
network to generate accuracy and latency predictors, and it
took 40 GPU hours to collect data. In this work, we propose
to use multivariate regression to generate predictors, which
can collect enough data for training in just 3.5 GPU hours.

3. Method
3.1. Problem Statement

Given a targeted latency on the specific hardware, we
aim to find an optimal neural network, based on the neural
architecture search (NAS) techniques, with the highest ac-
curacy while meeting the constraints. Figure 2 is our flow
chart.

3.2. Search Space

Regarding the famous CNN model architectures [8,20],
we also divide the CNN model into a sequence of units, and
we have three types of CNN units, as shown in Figure 3.
To make its operations faster and more efficient for differ-
ent hardware, we design two different search spaces and re-
place the activation function with ReLU6 to make our neu-
ral architecture have the advantage of being quantization-
friendly. We use the results of multivariate regression anal-
ysis, which allowed us to explain the impact of each control
parameter on the performance of a neural network.

Search Space for CPU. The CPU-like hardware uses
the first and second types of CNN units, as shown in Fig-
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Performance Training Cost | Search Cost
Model Search Strategy Search Space Estimation Strategy (GPU hours) | (GPU hours)
NASNet [30] Remforc.ement arch Train and evaluate 48000N
learning
MnasNet [24] Relnforc'ement arch Train and evaluate 40000N
learning
AmoebaNet [17] EVO]I%UOH arch Train and evaluate 75600N
algorithm
DARTS [14] Gradient arch Train and evaluate 250N 96N
optimization
ProxylessNAS [2] G'rac.hen.t arch Train and evaluate 300N 200N
optimization
Once-for-All [1] S.upernet/ . arch Performance predictor 1200 + 40 ~0
Evolution algorithm
FBNetV3 [4] S;?zglgt/ arch/recipe Performance predictor 10700 ~0
Supernet/ Quantization Explainable -
FOX-NAS Simulated annealing | friendly arch | performance predictor 1200+ 3.5 ~0

Table 1. The search method comparison between FOX-NAS and the state-of-the-art NAS on ImageNet. We propose new methods in all
three parts of NAS. FOX-NAS only needs to train the supernet once, which takes 1200 GPU hours, and then it only takes 3.5 hours to train

performance predictors.
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Figure 2. Flowchart of FOX-NAS. We collect data of subnet infor-
mation from our quantization-friendly supernet first, then use mul-
tivariate regression to generate performance predictors, and then
use the simulated annealing algorithm to find the optimal neural
network architecture. After quantized the searched subnet into 8-
bit integer format, it can directly deploy the subnet to the specific
edge device.

ure 3a and Figure 3b. The memory access and computa-
tion of CPU-like hardware are expensive, so the separable
convolution is needed to reduce the computation of CNN.
Therefore, we refer to the backbone of MobileNetV3 [8]
and the supernet of Once-for-All [1]. Table 2 lists the can-
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Figure 3. CNN units. FOX-NAS has three CNN units for different
hardware.

didate of all the architecture parameters in our search space.
We found that the number of channels of the previous units
significantly impacted the latency on the CPU-like hard-
ware through the multivariate regression analysis. As a
result, when designing the search space, we set the mini-
mum expansion ratio to 2 while making more choices for
our subnet. In addition, to find the subnet with a broader
accuracy range, our input image size is changed from 128
x 128 to 320 x 320. Finally, we adopt the quantization-
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Search Space CPU TPU
Backbone | Backbone
Image Size Candidate 128~320 | 128~320
Kernel Size Candidate 3,5,7 3
Expansion Ratio Candidate | 2,3,4,6 4,6,8
Depth Candidate 2,3,4 3,4,5
Type of CNN Unit 1,2 2,3

Table 2. FOX-NAS has two search spaces for different hardware.
The adjustable architecture parameters of the search space include
image size, kernel size, expansion ratio, depth, and type of CNN
unit.

friendly activation function to achieve a better quantization
effect, which enables our subnet to control the accuracy loss
within 1% when quantizing. The number of different neural
network architectures in our CPU search space is approxi-
mately 4 x 10%2.

Search Space for TPU. The TPU-like hardware uses
the second and third types of CNN units, as shown in Fig-
ure 3b and Figure 3c. The TPU-like hardware has a high
degree of parallelism in matrix operations, so the higher the
processor utilization, the higher the computing efficiency.
Therefore, we refer to the model architecture of Mobilenet-
EdgeTPU and replace the separable convolution of the pre-
vious unit with the traditional convolution. As shown in Ta-
ble 2, we fix the kernel size of search space at 3 x 3 because
the 5 x 5and 7 x 7 kernel sizes are not friendly for the edge
TPU. TPU has excellent parallelism, so we change the can-
didate of expanding ratio to 4, 6, 8. The number of different
neural network architectures in our TPU search space is ap-
proximately 3 x 10'3. The effect of different backbones on
different hardware is different, and the related experimental
results and analysis are in Section 4.1.

3.3. Performance Prediction Based on Multivariate
Regression

Multivariate regression analysis is a machine learning al-
gorithm based on supervised learning, which can analyze
multiple variables (e.g., the impact of each layer’s kernel
size and expansion ratio on performance). We adopt multi-
variate regression to generate performance predictors. This
method is not data-hungry, and it is fast and explainable.
Compared with the method based on deep learning, multi-
variate regression analysis can better understand the effect
of each variable on the results and create promising pre-
dictors with much fewer data. Furthermore, the results of
multivariate regression analysis make the parameters of a
network architecture explainable, which provides a hint of
twisting the architecture for target constraints. We trained
a total of 7 predictors for different image sizes, and each
predictor only needs 300 pieces of data to train. Using a

consumer-level GPU only takes 3.5 GPU hours (the previ-
ous method needs to collect 16K data, a total of 40 GPU
hours [1]). To collect the training data for multivariate re-
gression, we first randomly sample different sub-networks
from the super-network and record their network architec-
tures, characterized by 25 variables, including the number
of layers, widths, and kernel sizes. We then use 50K val-
idation data to measure the accuracy of each sub-network.
Meanwhile, we run each sub-network on the target hard-
ware to collect the latency data.

Assuming that the estimated multivariate linear regres-
sion model is:

Y = Bo+ Bi X1 + BaXo + ... + BrXx (1)

B; are slope parameters or called correlation coefficients,
representing the impact of the variable, Y is the dependent
variable, X; are independent variables, the symbol A indi-
cates an estimate for the variables. Moreover, taking our
CPU search space as an example, the performance predic-
tion model equation can be expressed as follows:

Perf. = Bo+ Bp, Di + By B{" + Biep K170 +
BE, . B2 + B, , K12 + EEiotalEimml n
Bgorar p, B! - Dy + Bycgvo.p, Ki¥9 - Dy ... +
Bicavs.p, K& - Dy,

2

FOX-NAS-CPU has five types of CNN units with differ-
ent input channels, so m equals 5 in this case. j represents
the type of CNN units, D; are the number of depth of each
CNN unit, EY"Y are the average expansion ratio of each
CNN unit, K]’-“’g are the average kernel size of each CNN
unit, F; ;1 and K ;11 are the expand ratio and kernel size
of each CNN unit with different input and output channels,
Ef-"tal are the total number of expansion ratio of each CNN
unit, and E°! - D; and K37 - D; represent the interaction
between total expansion ratio and number of depth of each
CNN unit and the interaction between the average kernel
size and number of depth of each CNN unit, respectively.

In addition, we can analyze and explain our neural net-
work architecture through some statistics. .S 5; are the stan-

dard deviation of estimate coefficients 57, called the stan-
dard error. The t-value is a commonly used statistic, and its
formula is as follows:

~

_ B
Sz,

t 3)

The p-value is the probability density value > t-value
under the T-distribution, representing whether the impact
of the variable on the output variable is highly correlated.
For example, the p-value less than 0.05 indicates that the
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variable is highly correlated with the output variable. In
addition, we can look up the t-value in the T-distribution
table with the given degrees of freedom to get the p-value.
The R? value measures the percentage of the variation in
Y being explained by the fitted regression model. Thus,
the larger the R? value, the better the fit of the regression
model, and its formula is as follows:

TSS =Y (V;=Y)? “)
i=1
SSE =Y (Y; - Yi)? ©)
i=1
2 4 SSE
R =1- 22 ©6)

TTS is the total sum of squares, SSE is sum of squares
errors, Y is the mean of Y. When adding more indepen-
dent variables, R will be larger, showing an overestimation
phenomenon. Adjusted R? has been adjusted in degrees of
freedom to avoid the expansion, and its formula is as fol-
lows:

SSE x (n—1)

2
:1——
R TSS x (n—k)

adj (7)

n is the number of collected data, k is the number of
correlation coefficients. The adjusted R? value of the re-
gression model we generate can reach above 92, indicating
that our predictor is accurate. The variables in the predictor
are highly correlated and explainable, so we can more ef-
fectively control performance by adjusting the architecture
parameters.

When an optimal subnet is proposed from our predic-
tors, we can further twist the architecture to make the per-
formance of the subnet meet our target constraint since the
impact of each architecture parameter on the subnet perfor-
mance is explainable. We choose the architecture parameter
with a sufficiently small p-value and then compare the cor-
relation coefficients of the parameter to make a precise and
efficient adjustment based on the target constraint.

For example, suppose that the latency constraint we set
is 60 ms, but the subnet we found through the predictor is
60.3 ms, which exceeds the constraint of 0.3 ms. We need
to adjust the parameters of this subnet architecture manu-
ally. Suppose we find the p-value of E{" is close to 0 in
both the accuracy and latency predictors, which means that

the impact of E7"Y on the performance is highly correlated.
Moreover, suppose the correlation coefficients 3 of EJ"Y is
very small in the accuracy predictor, which means that E7"7

only has little impact on accuracy. Suppose the /3 of ETYY
is 0.4 in the latency predictor, which means that the latency
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Figure 4. (a) The red line in the residual plot is our model, and
the points in the figure are the collected data. The fitted value is
between 70 and 74, and the maximum residual is only 0.5, which
is a small residual, less than 1% of the fitted value. (b) There is
a 45° straight dashed line in the normal Q-Q plot. If the data is
normally distributed, the point will fall on the 45° reference line.
The bottom end of the Q-Q plot deviates from the straight line,
but the upper end does not deviate, then we can say that it is a
left-skewed distribution.

avg

can be reduced by 0.4 ms when "7 is reduced by 1. As
a result, we can manually twist E{"Y to achieve the target
latency.

Figure 4a shows the residual plot of our accuracy pre-
dictor. A fitted value Y is the model’s prediction of the re-
sponse value when we input the values of the predictor. The
residuals e are equal to the difference between the ground
truth and the fitted value:

e=Y-Y 8)

The normal quantile-quantile plot is used to evaluate
whether our residuals are normally distributed. Figure 4b
shows our normal Q-Q plot. These analysis graphs repre-
sent the high reliability of our model.

3.4. Search Strategy Based on Simulated Annealing

Simulated annealing is an algorithm based on probability
to find the optimal solution under the objective function. It
is usually used when the search space is discrete. Because it
can accept unsatisfactory results during the search process,
it can find the global optimal solution rather than the local
optimal solution compared to other algorithms, as shown in
Figure 5.

We use simulated annealing as our search strategy. As
shown in Figure 2, we can find the optimal neural architec-
ture in one minute after using multivariate regression to gen-
erate the performance predictors, combined with the simu-
lated annealing algorithm. The simulated annealing method
we used is summarized in Algorithm 1. Under the con-
straint of computational resources, we use the guidance of
multivariate regression analysis to the sample neural archi-
tecture, aiming to find the neural architecture with the best
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Figure 5. When we find the local maximum, if the local maximum
is far away from the global maximum, we need to go through a
period of inferior results before we can find the global maximum
solution. The simulated annealing algorithm accepts unsatisfac-
tory results, so it has a higher probability of finding the global
maximum than the local maximum compared to other algorithms.

performance. In the process of searching based on sim-
ulated annealing, we accept the neural architectures with
inferior performance, but as the number of architectures
searched increases, we reduce the acceptance of unsatisfac-
tory architectures until the algorithm converges. This is also
a feature of simulated annealing, which has the advantage of
a higher probability of finding the global optimal solution.

With the guidance of multivariate regression analysis, we
can find the optimal model more quickly. We give each ar-
chitecture parameter a weight, representing the probability
of selecting this parameter when sampling a subnet archi-
tecture. In the original method, the weight of each parame-
ter is 1, which means that the probability of selecting each
parameter is equal. However, through multivariate regres-
sion analysis, we know the impact of each architecture pa-
rameter on the performance of the subnet. Accordingly, in
the search process, we have two sets of weights. In the early
stage of the search, we use the first set of weights, which are
very large for a few architecture parameters. The purpose
is to find a preliminary solution first. Then we change to
the second set of weights, which are almost the same for
all architecture parameters, to find the global optimal solu-
tion. The related experimental results and analysis are in
Section 4.2.

4. Experiments

In this section, we compare FOX-NAS on different hard-
ware with some popular neural networks. In addition, we
compare the performance of FOX-NAS with different back-
bones on different hardware. Finally, there is a perfor-
mance comparison between different search methods. Our
experiment is performed on image classification using Ima-
geNet [5].

Algorithm 1: NAS based on Simulated Annealing

Input: latency constraint L
Output: optimal model M

1 // When sampling the model architecture, we select
T architecture parameters to make changes.

2 // We have two sets of weights representing the
probability of selecting each architecture
parameter when sampling the model architecture.

3 // We have a probability formula to evaluate whether
to accept the architecture with inferior estimation

performance.
4
5 Function SampleModel (M, T, weight) :
6 tmp.lat < oo
7 while tmp.lat > L do
8 tmp.arch<«SampleArch(M,T, weight)
9 tmp.acc < AccPredictor(tmp.arch)
10 tmp.lat < LatPredictor(tmp.arch)
1 return tmp
12
13 Function Main:
14 Get an initial model M
15 Get an initial temperature 7' > 0
16 Get a counter C =0
17 Get the constants k, n

18 weight < weights of the early stage (guided by
our explainable predictors)
19 while 7" > 0 do

20 C+—C+1

21 r + Random(0,1)

22 M _new + SampleModel(M, T', weight)
23 A+ M _new.acc - M.acc

24 if A > 0orr > exp(-A/kT) then

25 ‘ M < M _new

26 else

27 if C % n == 0 then

28 L L Decrease the temperature 7'

29 if C' == 2n then

30 L weight < new set of weights searched
31 return M

4.1. Comparison of Model Performance with Dif-
ferent Hardware and Constraints

We compare the performance of the models on different
hardware, including cloud GPU, edge TPU, and edge CPU.
In the experiment on GPU, the latency is measured with
batch size 64 and 32-bit floating-point format on Nvidia
2080Ti with Pytorch 1.8.1 + CUDA 11.0. As for edge CPU
and edge TPU, we use the quantization tool of Tensorflow
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Figure 6. FOX-NAS achieves SOTA performance on ARM CPU
and edge TPU.

Top-1 GPU Image Params
Model (%) latency size M)
7 (my)

MNASNet-0.5 [24]  68.9 13 224 2.1
MNASNet-0.75 [24] 73.3 20 224 29
MNASNet-1.0 [24]  75.2 24 224 3.9

MobileNetV?2 [20] 72 40 224 3.5

MobileNetV3-S [8]  67.5 10 224 29
MobileNetV3-L [8] 75.2 25 224 54

EfficientNet-BO [25]  76.1 47 224 5.3

FBNetV2-F3 [27] 73.2 18 224 6.9
FBNetV2-F4 [27] 76 25 224 7.0
FBNetV2-L1 [27] 77.2 31 224 8.5

FBNetV3-A [4] 79.1 33 224 8.6

FairNAS-A [3] 75.3 28 224 4.6
FairNAS-A-SE [3] 775 34 224 59

ProxylessNAS [2] 75.1 25 224 5.1

OFA-1080Ti-15 [1]  73.8 13 144 6.0
OFA-1080Ti-22 [1]  75.3 17 188 5.2
OFA-1080Ti-27 [1]  76.4 22 188 5.2

FOX-NAS-TPU-A 739 12 192 4.1
FOX-NAS-TPU-B 753 17 192 53
FOX-NAS-TPU-C  76.3 22 224 53

Table 3. Comparison with popular models on Nvidia 2080Ti GPU.
On the Nvidia 2080Ti GPU, FOX-NAS can achieve the best accu-
racy under the three different latency constraints.

2, and the latency is measured with batch size 1 and 8-bit
unsigned integer format on the Raspberry pi 4 ARM Cortex-
A72 CPU and Coral USB TPU accelerator.

Latency Comparison on Edge CPU. Figure 6 shows
the performance comparison between FOX-NAS and other
famous and open-source integer neural network models.
The hardware used for the measurement is the ARM CPU
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-
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Figure 7. Latency comparison between CPU backbone and TPU
backbone on different hardware. The backbone of the CPU runs
more efficiently on the CPU than the backbone of the TPU. On the
contrary, the backbone of the TPU runs more efficiently on edge
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Figure 8. Performance comparison of search strategy between
OFA and FOX-NAS. FOX-NAS uses simulated annealing and
multivariate regression analysis to make our search process con-
verge faster. The label on the left y-axis is the prediction of our
accuracy predictor, and the label on the right is the prediction of
OFA’s predictor. OFA’s predictors are provided by their GitHub.
Because OFA and we have different hardware constraints, there
will be a gap between the predicted results. To facilitate compari-
son, we shift the predictions.

on the Raspberry Pi 4. FOX-NAS can generate subnets
with an extensive accuracy range, from 76% to 66%, and
each subnet performs well. Under the same accuracy level,
FOX-NAS can be 240% faster than MobileNetV2 [20],
50% faster than MobileNetV3 [8], and 40% faster than
EfficientNet-LiteO [25]. Under the same latency level,
FOX-NAS can be 6.4% more accurate than MobileNetV2,
4.2% more accurate than MobileNetV3, and 1.5% more ac-
curate than EfficientNet-LiteO.

Latency Comparison on Different Hardware. Un-
like the hardware architecture of edge CPU, architecture
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such as edge TPU and cloud GPU has powerful parallel
computing capabilities. Therefore, we propose different
search spaces for different hardware to make the neural
network operation more efficient. Figure 6 shows the per-
formance comparison between FOX-NAS and other pop-
ular models on edge TPU. The Edge TPU Compiler ver-
sion used in our experiment is 2.0.291256449. Under the
same latency level, FOX-NAS is 5.8% more accurate than
MobileNetV2 [20] and performs better than MobileNetEd-
geTPU. Because the cache on the Coral USB TPU acceler-
ator is small, only about 6 MB, and models over 6 MB will
cause much damage to the latency, so we did not search for
a larger model to evaluate.

Table 3 show the performance comparison of FOX-NAS
and other models on GPU. Because the edge TPU has some
restrictions on neural network models, many models cannot
be directly deployed on this device. To compare with more
models, we deployed FOX-NAS with TPU based search
space on the GPU. Compared with the Once-for-All [1]
models, FOX-NAS can achieve almost the same perfor-
mance while reducing the training cost by 36.5 GPU hours.
Under the same accuracy level, FOX-NAS can be 47%
faster than MobileNetV3 [8] and 50% faster than FBNetV2-
F3 [27].

Latency Comparison of Different Search Space on
Different Hardware. It is mentioned in Section 3.2 that
different hardware requires different neural network archi-
tecture designs to be more efficient. Therefore, we propose
two different search spaces: CPU-based and TPU-based.
Figure 7 is a comparison diagram of the latency results of
running the two backbone subnets on the edge CPU and
the edge TPU, respectively. The backbone of the CPU runs
more efficiently on the CPU than the backbone of the TPU.
On the contrary, the backbone of the TPU runs more ef-
ficiently on edge TPU. The reason is that the computing
power on the CPU is the bottleneck, and the edge TPU has
strong computing power, so the memory access is the bot-
tleneck of the edge TPU.

4.2. Performance Comparison of Different Search
Methods

We compare the search methods between FOX-NAS and
Once-for-All [1]. In addition, we compare the performance
of search using simulated annealing algorithm with or with-
out multivariate regression analysis guidance.

Comparison of the Search Methods Between FOX-
NAS and Once-for-All (OFA). Figure 8 shows the com-
parison between our search and OFA search method. We
use multivariate regression to generate performance predic-
tors and then use simulated annealing coupled with guid-
ance from multivariate regression analysis as our search
strategy. OFA used predictors based on the neural network
and used the evolutionary algorithm as the search strategy.

In this experiment, the target hardware we searched for was
the ARM CPU on the Raspberry Pi 4, and OFA was the
CPU on the Samsung Note 10 mobile phone. We recorded
the performance predicted by FOX-NAS and OFA during
the search process. OFA requires 50,000 points to finish the
search, so we only selected the first 10,000 points for com-
parison with FOX-NAS for easy comparison. As shown in
Figure 8, FOX-NAS can search for the global optimal so-
lution more quickly. Because the simulated annealing algo-
rithm has the property of accepting inferior search results
during the search process, it has more oscillations than the
evolutionary algorithm during the convergence process.

Figure 8 also compares the search performance of sim-
ulated annealing with or without multivariate regression
analysis. After using the guidance of multivariate regres-
sion analysis, the simulated annealing can quickly find the
global optimal solution near only a few points. In contrast,
the simulated annealing search requires more points to find
the global optimal solution without multivariate regression
analysis.

5. Conclusion

We propose FOX-NAS, a novel neural architecture
search method with fast, on-device, and explainable advan-
tages. Unlike the previous approach, we reduced the time
required to generate the performance predictors to complete
in 3.5 GPU hours. Moreover, we reduced the movement
steps required in the search process. Experiments on dif-
ferent hardware showed that the model obtained by our ap-
proach has good performance. Thus, we expect our work
can reduce the cost of neural architecture search.
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