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Abstract

Research on deep learning has always had two main
streams: (1) design a powerful network architecture and
train it with existing learning methods to achieve the best
results, and (2) design better learning methods so that the
existing network architecture can achieve the best capbility
after training. In recent years, because mobile device has
become popular, the requirement of low power consumption
becomes a must. Under the requirement of low power con-
sumption, we hope to design low-cost lightweight networks
that can be effectively deployed at the edge, while it must
have enough resources to be used and the inference speed
must be fast enough. In this work, we set a very ambitious
goal of exploring the power of lightweight neural networks.
We utilize the analysis of data space, model’s representa-
tional capacity, and knowledge projection space to con-
struct an automated machine learning pipeline. Through
this mechanism, we systematically derive the most suit-
able knowledge projection space between the data and the
model. Our method can indeed automatically find learn-
ing strategies suitable for the target model and target appli-
cation through exploration. Experiment results show that
the proposed method can significantly enhance the accu-
racy of lightweight neural networks for object detection.
We directly apply the lightweight model trained by our pro-
posed method to a Jetson Xavier NX embedded module and
a Kneron KL720 edge AI SoC as system solutions.

1. Introduction

Low power computer vision is one of the most con-
cerned topics of academia and industry today, mainly be-
cause nowadays there are many applications deployed on
artificial intelligence of things (AIoT). On edge devices, au-
dio applications usually take 16 kHz, 16-bit depth audio as

Figure 1. Unlike the huge model, which is an over-parameterized
model, a lightweight model is an under-parameterized model, its
representational capacity can only cover a sub-space of the univer-
sal data space.

input. As for computer vision applications, the common
input is a video with 480p (SD) to 1080p (full HD) reso-
lution. If the frame rate is 15∼30 FPS and calculated with
8-bit color depth, it is about 150 to 2000 times more than
the amount of audio data. Therefore, compared with the
more mature low power audio technology, it is relatively
more challenging to develop a fast and effective low power
computer vision system.

Due to the need of operating on equipment with ex-
tremely limited resources, the lightweight neural network
becomes the best option to achieve the required speed and
accuracy. In order to obtain an appropriate lightweight neu-
ral network for target device, network architecture search
(NAS) [12, 9, 20, 19] is the most direct and effective
method. However, the network searched by NAS is usually
not universally applicable to the tasks that are not involved
in training the NAS, and not all target devices have inter-
faces suitable for training NAS. Model pruning [10, 23] is
another technique that is often used to obtain lightweight
neural networks, and this technique can be applied to a
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Figure 2. Block diagram of the proposed method. It mainly includes three procedures: (1) Learnable knowledge space translation (4.1);
(2) Joint exploring optimized data augmentation method (4.2) and training strategy (4.3); and (3) Exploring suitable knowledge distillation
space (4.4).

trained model. However, model pruning usually produces
unstructured architecture, which makes the inference speed
of the target device unable to reach the expected level. As
for the structured model pruning [38, 18, 22] approaches,
although they can steadily increase the inference speed, due
to additional restrictions, the degree of pruning is not sig-
nificant. Meanwhile, structured model pruning does not
guarantee to maintain the best utilization of target device
resources. So, instead of removing weights that do not func-
tion, why not activate them? Luo et al. put forward this view
in [30]. In this work, our main purpose is to explore the
power of lightweight neural networks. We propose an auto-
mated machine learning method by analyzing the relation-
ship between the representational capacity of lightweight
models and the data space of the target task. This will en-
able a lightweight model to maximize its effectiveness and
find the best knowledge projection results, as shown in Fig-
ure 1.

Goodfellow et al. [8] once said that due to the imperfec-
tion of the optimization method, the effective capacity of a
model after training is usually less than the representational
capacity of the model itself. Therefore, it is very difficult
to find the best knowledge projection space of a model. In
view of it, we combine multiple aspects to design an au-
tomated machine learning pipeline for exploring the power
of lightweight neural networks, as shown in Figure 2. This
figure contains the three main procedures proposed in this
work, including (1) joint exploring optimized training strat-
egy and data augmentation (green), (2) distillation (yellow),
and (3) learnable knowledge space translation (purple).

Based on the analysis of the data space and representa-
tional capacity of a model, we hypothesize that the expected
value of the distribution between the above two should be
jointly calculated to represent the theoretical effective ca-
pacity. Therefore, for the first procedure, we will per-
form joint hyper-parameter search on data augmentation
and training strategy.

As for the second procedure, we try to bridge the best

knowledge projection space of the target model and the
teacher model. We use the method proposed in the first
procedure to search for the training strategy on the target
model, and find a concise over-complete sub-space that is
very close to the knowledge projection space of the target
model, which is located in the knowledge projection space
of the teacher model. We use the knowledge projection of
the teacher model in this sub-space to distill the knowledge
of the target model. In this way, we can optimize the pro-
cess by considering the generalization and the fidelity is-
sues. The above issues are the common problems in the
existing knowledge distillation method raised by Stanton et
al. [33] in 2021.

While most general training methods can only find a
point-based solution, the learning method proposed by
Wortsman et al. [39] tried to find a line-segment-based so-
lution. In this work, we hope to find a distribution-based
solution using the third procedure. By introducing multiple
sets of learnable implicit representations in the random ex-
ploration in the knowledge projection space, we can deter-
mine multiple approximate solutions, which form a convex
region. Using our proposed method to train the model and
perform knowledge distillation can make the system achiev-
ing stronger degree of generalization. Our contribution in-
cludes:

1. We propose an automated machine learning pipeline to
study the power of lightweight neural networks.

2. We propose a learnable knowledge space translation
module for finding subspace of multiple approximate
solutions in the solution space.

3. We discuss how to effectively find a suitable knowl-
edge distillation space, and prove that the use of
the teacher model in the subspace around the target
model’s knowledge projection space can achieve better
knowledge distillation.

4. The proposed method empowers a SOTA lightweight
object detector to significantly improve average preci-
sion (AP) on MSCOCO dataset by 1.2%.
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2. Related work
In this section, we will survey related literature, includ-

ing representational capacity and trainability of DNN (2.1).
We will also discuss the model distillation of DNN during
various stages of training (2.2). Finally, we survey data aug-
mentation methods that can augment the training data space
(2.3).

2.1. Training-free network architecture search

Training-free network architecture search (NAS) relies
on, the representational capacity of the model [26, 17, 41]
and the trainability of the computing unit [15, 40].

In [26], Montufar et al. calculated the maximum num-
ber of deep neural network (DNN) that can cut the hyper-
plane into linear regions. Under ideal conditions, one can
assign each of the above linear region to a category. There-
fore, we can use the number of linear regions that a DNN
can separate into to estimate the representational capacity
of a model. [41] further extend the above mentioned hy-
perplane separation of DNN to the case of convolutional
neural network (CNN). The neural tangent kernel proposed
in [15] proves that an infinitely wide neural network can
be regarded as a regression model that undergoes specific
feature conversion, and many finitely wide neural networks
have similar properties. Xiao et al. [40] estimated the train-
ability of neural networks with the mean-field theory based
on neural tangent kernel. Recently Mellor et al. [24] de-
signed a training-free NAS method to calculate the repre-
sentational capacity of the neural network in a pre-defined
search space. In [3], Chen et al. took into account the two
characteritics of reprensentational capacity and trainability
at the same time.

2.2. Model distillation

In the model distillation part, we will discuss knowledge
distillation and model pruning. The concept of knowledge
distillation is proposed by Hinton et al. [11], and the main
idea is to let the student model learn a soft label of the
teacher model. It [11, 2, 37, 31, 32, 42, 28] is a training
method that condenses the knowledge learned by a large
teacher model into the essence and passing it to a small
student model. Therefore, it can be considered as indirect
model distillation since it does not directly apply compres-
sion on the model. Model pruning [10, 38, 18, 23, 22] re-
moves useless weights or connections on the trained model.
It can be regarded as direct model distillation, because it
executes compression directly on model.

Chen et al. [2] proposed to simultaneously distill knowl-
edge of feature map and output for the object detection task.
Shen et al. [31, 32] conducted ensemble knowledge distilla-
tion for multiple teacher models. Recently, knowledge dis-
tillation has also been widely used in the self-supervised
learning field [42, 28].

Model pruning can be divided into two categories, i.e.,
unstructured pruning and structured pruning. The former
allows unnecessary weights to be removed at will, while
the latter adds restrictions so that the pruned model can
still use conventional computing units. Unstructured prun-
ing methods [10, 23] usually have a higher model compres-
sion rate, but the resulting DNN architecture is only suitable
for sequential operation equipment. The structured prun-
ing method [38, 18, 22] generally cuts the entire channel or
layer, so it can effectively improve the inference speed of a
model. However, its compression rate is not as good as the
unstructured one.

2.3. Data augmentation

There are two types of data augmentation: general data
augmentation [44, 43, 7] and generative models for data
augmentation [13, 34, 6, 29]. The former is applied directly
on the data, using artificial criteria or metadata processing,
while the latter uses generative models such as autoencoders
and generative adversarial networks (GANs) to augment the
dataset.

General data augmentation is roughly divided into two
types. The first one is to make pixel-level changes to the
image content, such as adjusting color, constract, jittering,
rotation, and flipping, and so on. The second is to merge in-
formation of multiple images to make patch-level changes.
For example, the work proposed in [44] superimposes two
images to generate soft labels, and [43] proposed to cover
the patches obtained by cropping different images on source
image for data augmentation. Furthermore, the work in [7]
uses instance segmentation labels to enhance the robustness
of data augmentation.

A generative model-based data augmentation method
generates new images for training. Among them, the
autoencoder-based method [34] generates new data us-
ing variability to the existing data, while the GAN-based
method [13] samples from a latent space to generate new
data. In [29], Sandfort et al. used CycleGAN [45] for data
augmentation, while Geirhos et al. [6] used style transfer
technology [14] to generate augmented images of various
artistic styles to reduce the shape bias.

In addition to the more commonly used methods, there
are some methods that create search space from the existing
data augmentation methods to automatically search for the
policy of data augmentation [4, 46].
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Figure 3. Knowledge projection space of huge model and lightweight model. For huge model, its representational capacity can cover the
universal data space. However, for lightweight model, the best knowledge projection is still under-fitting the universal data space.

3. Learning space and model capacity analysis
Figure 3 shows the knowledge space and data space ob-

tained by models of different scales after learning. We will
analyze the learning space and representational capacity of
the model. In the data space analysis (3.1), we will analyze
the theoretical numerical space, the statistics-based space
calculated based on natural images, and the real data space
in practical applications. As for the space of model’s rep-
resentational capacity (3.2), we will calculate the space of
model’s representational capacity by combining the model’s
representational capacity, the trainability of the computing
unit, and the analysis of the data space. Finally, in the analy-
sis of the knowledge projection space (3.3), we will explore
the relevance between models, and between the model and
data in the learning process.

3.1. Data space analysis

Theoretical Data Space: Given an image with width
W and height H , if each pixel in the image has C values,
for example, each pixel in an RGB image is represented by
three values. These values are all quantized into Q levels
of values. For example, a common 8-bit depth image quan-
tizes each color channel into 256 levels. The theoretical
data space of the above mentioned image can be expressed
by the following format:

QW×H×C (1)

Statistical Data Space: Not all possible combinations in
the above theoretical data space will be fully occupied in the
real world. In terms of contrast data space, Ojala et al. [27]
counts the number of occurrences of local binary patterns
(LBP) with radius R = 1 and number of data points P = 8
in multiple texture databases. They found that out of 256
possible patterns, 58 uniform patterns account for 76.6% to
91.8% of the total. In other words, most of the real data are
concentrated in a small sub-set in the theoretical data space.

Data Space for Real-World Applications: In the real-
world application scenario, we will control the environment
of the scene under certain conditions. For example, the con-
trol of lighting to make the target area bright, the use of
white balance technique or high dynamic ranging technol-
ogy to enhance the image quality. In terms of semantics,
we tolerate the inability to recognize objects that are too far
or too small. Therefore, in real-world application scenarios,
the universal data space is often smaller than the theoretical
data space and the statistical data space.

3.2. Model’s representational capacity analysis

In Section 2.1 we introduced two major indicators for
estimating the representational capacity of a model, which
are the number of regions that the model can segment the
space, and the trainability of each computing unit in the
model. However, for judging how accurate a model can be
on a certain task, one should additionally consider the data
attribute and distribution for that type of task.

In the analysis of representational capacity of model, one
can easily find that each neuron divides the space into two
regions, i.e., active and inactive. This division happens to
coincide with the concept of calculating contrast. In other
words, they are all active when the output is greater than
a certain threshold, otherwise they are inactive. Therefore,
we combine the statistical results in [27] with CNN’s con-
volutional kernel. Through this action, we know that 3 × 3
and 5 × 5 LBP uniform patterns can represent 89.7% and
54.0% of the data, respectively. The above conclusions
bring same useful advantages, that is, even if the trainability
of a computing unit is low, it can still represent most of the
data through learning a small number of patterns. There-
fore, when one estimates the representational capacity of a
model, one should calculate the joint expected value of the
trainability and the representative data distribution.
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Figure 4. Exporing the power of lightweight models. (a) exploring distribution of multiple solution space and (b) exploring suitable
augmented data space and training strategy for lightweight models.

3.3. Knowledge projection space analysis

From Figure 3 (a), we see that the optimal knowledge
projection space of an over-parameterized huge model cov-
ers the entire universal data space, and there are infinitely
many sets of solutions. On the other hand, in Figure
3 (b) the best knowledge projection space of an under-
parameterized lightweight model also has infinite solutions,
but they all fall in the universal data space. Therefore, we
must adopt different strategies when optimizing huge mod-
els and lightweight models. For huge models, we allow the
model’s representational range to exceed the data space, and
therefore the direction of optimization is to find the maxi-
mum intersection between the knowledge projection space
and the data space. As for lightweight models, the opti-
mization process must pay attention to the intersection of
union (IoU) between the knowledge projection space and
the data space. Doing so can avoid wasting the representa-
tional capacity of model in the non-existent area of the real
data space.

4. Exploring the power of model
After analyzing data space, model’s representational ca-

pacity, and knowledge projection space, we can then max-
imally utilize the mutual information between model and
data in the knowledge projection space. In Section 4.1, we
design a learnable knowledge translation module to explore
the multiple solution distribution of the solution space, as
shown in Figure 4 (a). In Section 4.2 and 4.3, we will
introduce how to combine a genetic algorithm and a grid
search-based hyper-parameter search technique to obtain a
good data augmentation method and learning strategy, as
illustrated in Figure 4 (b). Finally, we will combine the
above methods to explore for a suitable knowledge distil-
lation space in Section 4.4.

4.1. Learnable knowledge space translation

We use knowledge space translation to explore the
distribution of the infinite set of optimal solutions of a

Figure 5. Learnable knowledge space translation module.

lightweight model in its knowledge projection space. How-
ever, if the exploration is done directly in an explicit man-
ner, the multi-layer kernel operation between data and
knowledge projection space will have the chain rule effect
of updating weights, and it is difficult for the network to
converge to a stable state. We proposed an implicit learn-
able knowledge space translation method based on an im-
plicit kernel space alignment method [36]. Figure 5 illus-
trates the architecture of the proposed learnable knowledge
space translation module.

In the learnable knowledge translation module, we use
addition and multiplication, respectively, to translate and
scale up/down in the knowledge projection space. Dur-
ing training, we randomly choose one representative zishift
and zjscale from a set Zshift of implicit translation candi-
date representations and another set Zscale of implicit scal-
ing candidate representations. These two chosen represen-
tations are used to obtain the knowledge projection space
of the model. Empirically any combination of zishift and
zjscale can cover the equal-size space in the solution space.
During inferencing, we use the estimated multiple solution
distribution centers mean(Zshift) and mean(Zscale) for
knowledge space translation.
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Figure 6. Local (middle) and global (right) loss through training epochs. Middle part shows loss and accuracy of different feature pyramids.
Over-fitting starts at different epochs for different feature pyramids. This means we should re-balance the Lagrange multiplier of different
feature pyramids. Right part shows the loss of bounding box regression, objectness, and classification starts over-fitting at different epochs.
This means we should re-weight the loss of these three objectives.

4.2. Exploring suitable augmented data space

In terms of exploring the augmented data space, we fol-
low YOLOv4 [1] to adopt the genetic algorithm imple-
mented by Glenn et al. [16]. We iteratively search the op-
timal hyper-parameters for data augmentation in the ran-
domly sampled population. We record the results of the
update and use it to obtain updated trends. Finally, we gen-
erate small grid with the updated trend direction, and then
perform grid search to determine the final hyper-parameters
needed for data augmentation. Figure 7 shows the process
of the proposed hyper-parameter search method. Compared
with a pure genetic algorithm, our method is more effective
in finding the optimal augmented data space. Compared
with the grid search method, we constantly update and pro-
vide a better search direction to effectively reduce the num-
ber of grid samples.

Figure 7. Hyper-parameter search steps.

4.3. Exploring model training strategy

The exploration of model training strategy is almost the
same as that of exploring augmented data space. The main
difference is that when we generate grid sampling points,
we additionally consider both local loss and global loss of
the model in each branch output layer, as shown in Fig-
ure 6. Basically, the local loss can be used to sample the

Lagrangian multiplier of each branch weight update, while
the global loss is used to sample the overall training hyper-
parameters.

4.4. Exploring suitable knowledge distillation space

The lightweight model has no sufficient representational
capacity to distill the entire knowledge from the optimal
knowledge projection space of the teacher model. There-
fore, when performing knowledge distillation, we must con-
sider both the representational capacity of the target model
and the scale of the knowledge projection space learned by
the teacher model. Therefore, we will not directly apply the
same training strategy and data augmentation method for
training the teacher model and distilling knowledge to the
lightweight model.

In the previous section, we discussed how to use the
lightweight model’s representational capacity to get the
best knowledge projection space after training. That is
to say, the hyper-parameters of the augmented data space
and training strategy found by the above method can guide
the lightweight model to the optimal knowledge projec-
tion space. Therefore, if we use the same set of hyper-
parameters to do knowledge distillation, the knowledge pro-
jection space obtained by the teacher model should be an
over-complete space of the optimal knowledge projection
space for the lightweight model. Here, we use this strategy
to find a suitable knowledge distillation space.
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5. Experiments
The experiment part is divided into six subsections. We

will introduce the experiment settings in Section 5.1. Sec-
tion 5.2 presents training results of the target model and the
teacher model under different settings. In Section 5.3, we
show the knowledge distillation results of the target model
and the teacher model under different settings. The com-
plete ablation study of the three proposed procedures, in-
cluding joint hyper-parameter search (JHS), suitable knowl-
edge distillation (SKD), and kernel space translation (KST),
will be detailed in Section 5.4. In Section 5.5, we will ana-
lyze the learnable knowledge space translation. The experi-
ments and applications deployed on low power devices will
be shown in Section 5.6.

5.1. Experiment setup

We use MSCOCO dataset [21] to verify the effectiveness
of the proposed method. Scaled-YOLOv4 [35] is the state-
of-the-art real-time object detector, and it can be scaled up
and down to provide excellent object detection function.
Basically, it is suitable for low power applications and the
study of knowledge distillation, so we choose YOLOv4s as
our target model and YOLOv4l as the teacher model. Both
preset hyper-parameters and training schedule follow the
original Scaled-YOLOv4 settings. Jetson Xavier NX em-
bedded module and Kneron KL720 edge AI SoC are the low
power devices used in our system. Since Kneron KL720
edge AI SoC does not support Mish activation function [25],
the Mish activation function used in all models in the exper-
iments is replaced by the SiLU activation function [5].

5.2. Target model and teacher model

First, we train the target model (YOLOv4s) and the
teacher model (YOLOv4l), and use the results of YOLOv4s
as the baseline for the experiment. We use the proposed
“exploring suitable augmented data space” method and
the “exploring model training strategy” method to per-
form joint hyper-parameter search (JHS) on YOLOv4s and
YOLOv4l, respectively. The hyper-parameter set obtained
here are JHSs and JHSl, respectively. We use JHSl to train
YOLOv4l to obtain the final teacher model for knowledge
distillation, and the experiment results are given in Table 1.

Table 1. Target model and teacher model.

Model APval APval
50 APval

75 APval
S APval

M APval
L

A: YOLOv4s [35] 40.2% 59.3% 43.7% 22.9% 45.2% 52.6%

B: YOLOv4l [35] 47.9% 66.9% 51.9% 30.8% 53.2% 61.9%
C: YOLOv4l+JHSl 49.0% 67.7% 53.4% 32.7% 54.4% 63.0%

* JHSl means joint hyper-parameter search (JHS) with YOLOv4l.

5.3. Knowledge distillation

In the knowledge distillation experiment, we use the
trained teacher model to perform knowledge distillation on
YOLOv4s with JHSs and JHSl, respectively, and the ex-
periment results are shown in Table 2. The results con-
firm that the knowledge distillation space does get better
results when it is close to the representational capacity of
a lightweight model. Our experiment uses JHSs for distil-
lation to obtain better results, because the final experiment
obtained 40.8% AP. It is 0.4% better in AP the experiment
using JHSl for distillation. In other words, the augmented
data space and the training strategy we searched with the
target model indeed form a suitable knowledge distillation
(SKD) space.

Table 2. Knowledge distillation.

Teacher hyper-p. APval APval
50 APval

75 APval
S APval

M APval
L

no init 40.2% 59.3% 43.7% 22.9% 45.2% 52.6%

C JHSs 40.8% 59.8% 44.1% 24.0% 46.4% 52.8%
C JHSl 40.4% 58.8% 43.7% 24.2% 45.6% 51.6%

5.4. Ablation study

After selecting the knowledge distillation model based
on the proposed JHS and SKD methods, we add the pro-
posed learnable kernel space translation (KST) module to
perform a complete ablation study, and the experiment re-
sults are shown in Table 3. In this experiment, the num-
ber of candidate shift and scale latent vectors of KST are
both set to 3. From the experiment results, it can be found
that the three methods we proposed all bring significant im-
provements to AP. Compared with the baseline, the model
we finally trained has a significant increase in AP by 1.2%.
This demostrates that our method can effectively explore
the power of a lightweight model.

Table 3. Ablation study.

Model APval APval
50 APval

75 APval
S APval

M APval
L

A: YOLOv4s [35] 40.2% 59.3% 43.7% 22.9% 45.2% 52.6%

D: A+KST 40.4% 59.3% 43.9% 23.8% 45.5% 53.3%
E: D+JHS 40.6% 59.6% 43.9% 24.1% 45.4% 52.9%
F: E+SKD 41.4% 60.4% 44.9% 24.2% 46.4% 53.8%

* KST: kernel space translation.
* JHS: joint hyper-parameter search.
* SKD: suitable knowledge distillation.
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Figure 8. Systems and applications.

5.5. Analysis of knowledge space translation

Table 4 shows the results of all combination of candi-
date implicit representations in learnable knowledge space
translation. The results prove that the proposed method can
indeed effectively find multiple approximate solutions in the
solution set.

Table 4. Analysis of knowledge space translation.

IDshift IDscale APval APval
50 APval

75 APval
S APval

M APval
L

centroid centroid 40.4% 59.3% 43.9% 23.8% 45.5% 53.3%
0 0 40.4% 59.3% 43.9% 23.8% 45.5% 53.3%
0 1 40.4% 59.2% 43.9% 23.8% 45.5% 53.3%
0 2 40.4% 59.2% 43.9% 23.8% 45.4% 53.3%
1 0 40.4% 59.3% 43.9% 23.8% 45.4% 53.3%
1 1 40.4% 59.3% 43.9% 23.8% 45.4% 53.3%
1 2 40.4% 59.2% 43.9% 23.8% 45.4% 53.3%
2 0 40.4% 59.3% 43.9% 23.8% 45.5% 53.3%
2 1 40.4% 59.3% 43.9% 23.8% 45.5% 53.3%
2 2 40.4% 59.3% 43.9% 23.8% 45.5% 53.3%

* IDshift and IDscale are index of Zshift and Zscale, respectively.

Table 5. YOLOv4s+KST+JHS+SKD on edge systems

Device power Size FPS #param. FLOPs

Kneron KL720 1.725W 416 35 9.3M 10.0G
Nvidia Jetson Xavier NX 15W 640 65 9.3M 21.3G

5.6. Systems and Applications

Finally, we deploy the trained model on the target de-
vices, and the inference speed is listed in Table 5. All data
shown in Table 5 can satisfy the low power and real-time re-
quirement. Therefore, we can use the remaining resources
to integrate object detection results and apply them to ob-
ject tracking, traffic analysis, abnormal event analysis, etc.
Figure 8 shows several demo of our systems.

6. Conclusions
We have proposed an automated machine learning

method that maximizes the performance of a lightweight
neural network. Our insight gained from the three main pro-
cedures of the proposed method, including learnable knowl-
edge translation module, joint hyper-parameter search for
data augmentation and training strategy, and exploring suit-
able knowledge projection space, can effectively explore the
abilities that lightweight models fail to perform in general
training process. In MS COCO object detection, our pro-
posed method greatly improves a SOTA lightweight model
by 1.2% AP. We have deployed the trained lightweight
model in several real application systems, and the perfor-
mance is satisfactory and robust.
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