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Abstract

Automated forest mapping is important to understand
our forests that play a key role in ecological system. How-
ever, efforts towards forest mapping is impeded by diffi-
culty to collect labeled forest images that show large intra-
class variation. Recently unsupervised learning has shown
promising capability when exploiting limited labeled data.
Motivated by this, we propose a progressive unsupervised
deep transfer learning method for forest mapping. The pro-
posed method exploits a pre-trained model that is subse-
quently fine-tuned over the target forest domain. We pro-
pose two different fine-tuning mechanism, one works in
a totally unsupervised setting by jointly learning the pa-
rameters of CNN and the k-means based cluster assign-
ments of the resulting features and the other one works
in a semi-supervised setting by exploiting the extracted k-
nearest neighbor based pseudo labels. The proposed pro-
gressive scheme is evaluated on publicly available EuroSAT
dataset using the relevant base model trained on BigEarth-
Net labels. The results show that the proposed method
greatly improves the forest regions classification accuracy
as compared to the unsupervised baseline, nearly approach-
ing the supervised classification approach.

1. Introduction

Forest mapping is an important process that helps to
measure the deforestation and quantify its impact on the
global climate. Fueled by the launch of many satellites
by different space agencies, optical/radar sensors mounted
over satellites provide the ability to map forest cover change

both on local and global scales. In this context, Convolu-
tional Neural Networks (CNNs) have recently become the
defacto method for image classification [ 1]. However, forest
images show large intra-class variation and often show sig-
nificant spectral resemblance to non-forest images. Thus,
annotating forest images requires domain expertise, imped-
ing the acquisition of large scale labeled datasets and appli-
cation of supervised methods in forest mapping [2].
Transfer learning is often adopted in data scarce situ-
ations by adopting a pre-trained model for another task
[3]. Several CNN models pre-trained on large-scale Ima-
geNet dataset [4] are available, which are generally used
for transfer learning based image classification tasks [5].
However, ImageNet contains images of natural objects per-
taining to everyday life. The learned feature representa-
tion are thus specific to such objects and do not adapt or
generalize well for different domain data (e.g., satellite im-
ages showing forest) owing to the contrasting target dis-
tribution. For this purpose, to build an effective transfer
learning based pipeline for forest classification, it is es-
sential to train the CNNs on large annotated dataset of di-
verse satellite imagery. However inter-dataset variation is
generally quite prominent in remote sensing [0], making
mere transfer learning insufficient for forest mapping on
new datasets. Moving beyond mere transfer learning, un-
supervised learning can potentially tackle with the issues
pertaining to supervised methods by extracting implicit pat-
terns directly from the unlabeled input data. Techniques
employing clustering, dimensionality reduction and density
estimation have been widely used in computer vision [7]
and remote sensing applications [8, 9]. Recently, few works
[10, 11, 12] have shown the possibility of adapting the unsu-
pervised methods based on clustering to deep models [13].
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Such adaptation together with clustering allows extracting
distinctive visual features that can be used for unsupervised
learning of deep models.

Inspired by such strategies [7, 10, 11], this paper formu-
lates the problem of forest mapping in an combined transfer
learning and unsupervised learning paradigm by proposing
a progressive learning framework enabling transfer of pre-
viously learned representations to the unlabeled data. For
this purpose, a base CNN is first trained to extract useful
features relevant to the target domain distribution that can
later be used to fine-tune either in a totally unsupervised
setting by jointly learning the parameters of CNN and the
k-means based cluster assignments of the resulting features
or in a one-shot semi-supervised scenario by exploiting the
extracted k-nearest neighbor based pseudo labels. In either
of the settings, no additional labeled data is required to learn
domain-specific representations which makes them suitable
for the problem of forest classification with scarce anno-
tations. The main contributions proposed in this work are
two-fold:

» First, a progressive unsupervised algorithm for forest
mapping has been proposed which performs iterative
CNN learning using the features extracted either over
unlabeled data only or using both the available labeled
data as well as the unlabeled data. The former setting
enables simultaneous learning of the network together
with the cluster assignments while the latter adopts a
dynamic sampling approach to exploit the unlabelled
data. To the best of our knowledge, such a cascaded
formation in both the settings has not been adopted in
the remote sensing forest classification.

* Secondly, the proposed unsupervised approach in both
the settings is evaluated on images with various spec-
tral modalities, i.e., RGB, RGB + Near Infrared (NIR)
and five commonly used vegetation indices. The pre-
sented results demonstrates that the results improve af-
ter employing the proposed iterative framework with
semi-supervised learning performing a slightly better
than the totally unsupervised scenario with both ap-
proaching to supervised learning accuracy.

2. Related Works

A substantial amount of work has been done to classify
remote sensing imagery in a supervised manner [[4, 15]
for different applications including forest classification and
mapping [16, 17, 18]. However, considering relevance to
our work, in this Section we detail the works on semi-
supervised classification and unsupervised Classification.

Semi-supervised classification. Wu et al. [19] made use
of the fact that hyperspectral images contain addtional spec-
tral information to build a self-training classification sys-

tem which made use of clustering and some spectral con-
straints to regulate the process. Negri et al. [20] compared
Semi-supervised Support Vector Machive (S3VM) [21] and
Expectation Maximization (EM) [22] for semi-supervised
classification of remote sensing imagery by using data la-
belled by Fuzzy C-Means with high level of confidence.
Meher [23] proposed a semi-supervised method with Gran-
ular Neural Networks (GNNs) [24] as the base classifier be-
cause of its decreased complexity in comparison to CNNs
and further enhanced the model with fuzzy granulation of
features using class belonging information and selection of
granulated features using neighborhood rough sets.

Unsupervised Classification. Due to unavailability of
labeled remote sensing data, recent works have focused on
developing unsupervised and self-supervised methods in the
computer vision literature. Many such methods use some
pre-text task, e.g., image rotation [25] to learn semantic fea-
ture in an unsupervised way. Another effective approach
towards this is deep clustering that jointly learns the pa-
rameters of the model and cluster assignment of input fea-
tures [26]. Some methods are based on concept of con-
trastive learning [27]. Following the trend, a few unsuper-
vised methods have been developed in the remote sensing
literature [28, 3, 29]. Saha ef. al. [28] use mutli-temporal
image ordering as pre-text task for self-supervised learning.
[29] proposed an unsupervised learning algorithm to cluster
hybrid polarimetric SAR images, and dual-polarized SAR
using the VGG16 [30] model.

The aforementioned unsupervised techniques are able to
exploit the unlabeled data, however they are not designed to
exploit forest remote sensing data. Most pre-text tasks like
rotation are not effective in case of forest remote sensing
data. Moreover, mere deep clustering may not be always
sufficient to learning discriminative features from limited
forest images. Another challenging aspect is that forest data
(and associated classes) may vary from region to region. To
address these issues, the paper proposes a scheme that uti-
lizes the advantages of previously learned representations
(pre-trained model weights) in conjunction with unsuper-
vised techniques to progressively fine-tune network archi-
tecture using unlabelled data. The details of the proposed
progressive and unsupervised learning strategy to learn new
weights using unseen data is presented in the next Section.

3. Proposed Methodology

Let us assume that we have a set of unlabeled forest im-
ages X = {X1,X2,...,Xn}. Our objective is to assign
each image in X to either wy (forest) or Wnr (non-forest).
We assume that a relevant base CNN model 6 is avail-
able trained on another related but different labeled dataset
xl= {Xll, Xlz, cees X;v/ }. The proposed forest region clas-
sification method can work under two different scenarios:
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1. Using only the pre-trained network model 8, an iter-
ative progressive unsupervised learning framework is
employed.

2. Using the pre-trained network model 6 along with its
training dataset X’ [ a semi-supervised learning strat-
egy is used.

Both the learning strategies later adopt an iterative progres-
sive training procedure that includes populating the training
set with the pseudo labels assigned to the available unla-
beled images. The strategy to assign these pseudo labels to
the unseen data is however different. When no labeled data
is available, then we make use of the unsupervised clus-
tering procedure to group images based on extracted fea-
tures and later assign the cluster ID sequence numbers as
the pseudo labels to the unlabeled images. Similarly, for
the semi-supervised case, the extracted features from the
available labeled images are used to assign the pseudo la-
bels via k-nearest neighbors to the unlabeled images. In
both cases, the unlabeled data with the assigned pseudo la-
bels are further refined by incorporating certain heuristics
constraints to ensure robust and progressive model training.
The whole procedure is iteratively performed where in each
iteration, the training sample set increases with more and
more selected pseudo labels assigned to it enabling self-
paced learning till convergence. Figure 1 presents the work-
ing procedure of the proposed forest region classification
method.

3.1. Model Initialization

The proposed methodology includes a base shallow
CNN 0 trained on a relevant remote sensing labeled dataset
X! to learn weights W¢. The whole idea of using such
a pre-trained model is so that information can be trans-
fer learned (features and weights learned from the la-
beled dataset) to the proposed unsupervised forest classi-
fication technique which is further trained on new and un-
labeled/unseen dataset. Thus, if a labeled remote sensing
dataset X! is given, the idea of model initialization is to
fine tune any generic feature extractor like VGG16 [31] or
even a custom shallow network where the last layer of the
model is a fully connected layer having softMax activation
and the output neurons equals to the number of forest clas-
sifications, i.e., two in our case (Wy and Wnf).

3.2. Unsupervised Model Training

After the model has been successfully initialized using
XL it is used for inference and and fine-tuning on the un-
labeled dataset which includes feature extraction, pseudo
labels assignment and reliable images selection to be ex-
plained in the subsequent sections.

3.2.1 Feature Extraction

In this step, the pre-trained model 6 is used to extract
the features from the labeled dataset X! and the unlabeled
dataset X in order to perform clustering (unsupervised)
and kKNN(semi-supervised). The output of the max pool-
ing layer, prior to the fully connected layer in the shallow
network, is considered as the features of the input image i.e,
the fully connected layer of the network is removed and the
max pooling layer is used as output to obtain the features
of the input image. This can be further elaborated by the
following equation:

fi=6(xj, wt) 4))

where X represents an image and extracted feature vectors
are represented by fj. Features are extracted for all the in-
put images in both & and X [ In every subsequent iteration,
features are extracted again but with the newly fine-tuned
model which is considered more accurate and will yield
more robust and useful features.

3.2.2 Pseudo labels Assignment

After successfully extracting the features from the labeled
and unlabeled datasets, we populate the training set by
assigning pseudo labels to the available unlabeled images.
The procedure for assigning these labels depends on the
availability of labelled data and is mentioned below:

Only 0 is used

Even though 6 is trained on X [ in many practical set-
tings X t may not be available for future tuning. As an ex-
ample, such situation may arise in partnership between two
organizations, where the organization owning X’ lis not au-
thorized to share the images.

In such case, after the features have been successfully
extracted from the input images in X using 0, they are
fed to an unsupervised clustering algorithm that in princi-
ple groups the similar images together in order to generate a
relatively more refined training sample. In our case, the fea-
tures are grouped into two clusters i.e, forest and non forest.
In order to achieve that, the extracted features for all unla-
beled images are fed into the standard k-means algorithm
that clusters the similar features together. This enables us
to formulate the basis for progressive training in a sense
that the clustered group of images are assigned the same
pseudo-labels which when iteratively used for training im-
proves the accuracy of model and thus the feature extraction
in each subsequent iteration. In this case, k-means allows us
to extract two cluster centroids €7 (for forest images) and
C2 (for non-forest images). k-means attempts to minimize
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Figure 1: Illustration of the proposed progressive loop. The above CNN model is initialized using a relevant labeled dataset
and the model is used to extract features from the labeled and the unlabeled dataset. In case of no labeled data, pseudo labels
are assigned using unsupervised clustering which groups images based on the extracted features and assign the cluster ID
as the pseudo label. For semi-supervised learning, the extracted features from the labelled dataset are used to assign pseudo
labels using k-nearest neighbors to the unlabelled images. Both cases employ certain heuristics constraints to enable robust
selection of pseudo labels. Lastly, model is fine-tuned using these labels till convergence.

the following optimization function:

n 2
C«—arg mianZZ | fi—¢j |2 2)

i=1j=1

As it is known that k-means cluster similar images together
but due to various reasons many images can get wrong
cluster assignments. This can happen because the model
is not yet fully trained on the unlabeled dataset X and
thus is not perfectly able to extract the desired features.
These wrong cluster assignments can make the proposed
formulation more susceptible to error. All this points to
refining the obtained clustering results in order to improve
the accuracy of the model.

Both 6 and X! are available

If the labeled data X! is available during fine-tuning, we
adopt the k Nearest Neighbors (kKNN) classifier for the la-
bel estimation. For our purposes, the kNN classifier in the
feature space may be a better choice, since similar input

data always have similar feature representations. The kNN
classifier assigns the label of each unlabeled image by its
nearest labeled neighbors in the feature space. We define
the confidence of label estimation as the distance between
the unlabeled data and its nearest labeled neighbor. For the
candidates selection, we select some of top reliable pseudo
labeled data according to their label estimation confidence.

Formally, we define the dissimilarity cost (label estima-
tion confidence) for each X; in unlabelled dataset as:

dj — miny || 8(x}, wr) — 60, we) | (3)

where X; represents the input unlabeled image, Xf repre-

sents an image in the labeled dataset X’ Lo represents the
relevant base model with learned weights Wt which out-
puts the extracted feature vectors. The cost is the [ distance
between the unlabeled image X and the labeled image X;.
This cost acts as a criterion for confidence estimation for our
pseudo-labeled data. The higher the cost, lower the confi-
dence.
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3.2.3 Reliable images Selection

In both the techniques, we apply certain heuristics to make
sure we fine-tune the model with the most accurate pseudo-
labels. For unsupervised technique, similarity is calculated
between all the features and the cluster centroids and only
those features having similarity higher than a pre-defined
threshold are selected as reliable samples. The cosine sim-
ilarity [11] can easily be calculated by the following for-
mula:

L . i >7T 4)
Ifil 1¢il
The above equation defines cosine similarity as the dot
product and the reliable images are selected if their simi-
larity to the centroids is above a threshold, 7.

For semi-supervised technique, we select reliable sam-
ples based on the dissimilarity cost defined in Eq: (3).
The size of the reliable samples is calculated as : Mt =
m¢—1 + p.N. Here, p € (0, 1) represents the enlarging
Jactor which is the factor by which we increase our reliable
samples at each iteration step t and N is the size of the unla-
beled dataset. At each iteration step t, we select m¢ nearest
unlabelled images for all the labelled images.

3.2.4 Model training and optimization

After reliable images are selected, the training set now con-
tains available images rp from p = 1 to R, where R rep-
resents the number of reliable images. In case of semi-
supervised learning, the reliable set also contains the la-
beled images. So, R = M + n,, where M represents the
number of labelled images and N, represents the reliable
images selected after applying kNN. The corresponding la-
bels yp which are the pseudo-labels from the cluster as-
signments on the extracted features(unsupervised) or from
the KNN(semi-supervised). The model 6 defined above is
used as the base CNN model with max pooling and final
classification layer as SoftMax activation. Categorical cross
entropy is used for the loss function £. The number of
epochs are determined dynamically according the sample
size of reliable images at each iteration, i.e, higher the re-
liable images, higher the epochs and vice versa in order to
prevent overfitting and underfitting. In each iteration, the
fine-tuning of the model is achieved using the reliable train-
ing set of images with the following optimization equation:

R
W} — miny, . L(Yp, O(rp, Wt)) 5)
p=1
where W ; represents the fine-tuned weights which are up-
dated in each iteration and I'p and yp represent the reliable
training image and its corresponding pseudo label respec-
tively. This procedure is performed iteratively resulting in

larger reliable training samples as a result of more robust
pseudo label assignment. The iterative process stops when
model is converged i.e, the sample size of reliable images
remains the same in subsequent iterations (unsupervised)
or all the unlabeled images have been incorporated (semi-
supervised).

3.2.5 Final inference

After the model 6 has converged it is used to assign all im-
ages in X’ (or any related set of images) to either Wy (forest)
or Wpy (non-forest).

4. Datasets

As described in Section 3, two datasets are employed in
the different phases of proposed method: the labeled dataset
Xl and the unlabeled dataset X

For labeled dataset X', the publicly available BigEarth-
Net dataset is used [32]. It contains 590,326 multi-label
remote sensing images with 43 land cover classes out of
which 3 belong to forests. Since, the work in this pa-
per is focused on binary forest classification, the dataset
is converted to single-label binary data by selecting im-
ages having just forest and non forest labels. This resulted
in a dataset of 59,701 images with 29,701 forest images
and 30,000 non-forest images. This is divided into 44,731,
4,970 and 10,000 images for training, validation and test-
ing sets respectively. Please note here that the testing set
is not used for the self-supervised learning strategy but is
only used as a sanity check while training the relevant base
model.

For unlabeled dataset X, the publicly available dataset,
EuroSAT is used [33]. It contains 27,000 images having
10 land cover classes. 5,970 images are selected contain-
ing 3,000 forest and 2,970 non-forest images. The non-
forest images were uniformly distributed among the other
9 classes. These are further divided into 4,970 images for
unsupervised tuning and 1,000 for testing. Sample images
from both datasets are given in Figure 2.

4.1. Implementation Details

For the initialization on a relevant dataset, a shallow
CNN with 3 Convolution layers, a fully connected layer and
a SoftMax classification layer with two output neurons is
used. Max Pooling and Batch Normalization is applied af-
ter every layer. Adam optimizer with batch size of 16 and an
initial learning rate of 0.001 is used. Decaying learning rate
is used with validation loss being monitored in subsequent
epochs. The training and validation losses for initialization
on BigEarthNet on all image variations i.e, RGB, RGB +
NIR and vegetation indices are shown in Fig 3.

For RGB, RGB + NIR and vegetation indices, all the
bands of images in BigEarthNet had a size 120x120 (all
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(a) BigEarthNet

(b) EuroSAT

Figure 2: Sample Images from BigEarthNet and EuroSAT
datasets

bands were upsampled to match the dimension of RGB
bands) and the bands of EuroSAT were upsampled from
64x64 to match the model’s input. Standard normalization
of zero mean and standard deviation of 1 is applied.

In case of semi-supervised scheme, k is set to 3 in kNN
classification for assigning labels to the unlabeled data. The
enlarging factor(p) is set to 0.1 during the iterations. For the
reliable image selection after k-means clustering, a thresh-
old of 0.85 is set after calculating cosine similarity. Dur-
ing the progressive learning, the number of epochs were
selected in direct proportion of reliable images in order to
prevent overfitting (in case of small reliable sample set) and
underfitting (in case of large reliable sample set). This fine
tuning process is repeated until the model is converged i.e,
the number of reliable images remains the same in succes-
sive iterations (in case of unsupervised learning) or all the
unlabeled images have been incorporated (in case of semi-
supervised learning).

4.2. Results

The proposed model is first evaluated on the RGB bands
of remote sensing imagery of forest regions. Both, unsuper-
vised and semi-supervised progressive models, achieved an
F1 Score of 0.86 as compared to that of 0.95 achieved un-
der supervised training. Near-Infrared (NIR) band is added
to the RGB bands for further evaluation. The F1 Score
achieved by the semi-supervised method was 0.91, whereas
unsupervised method achieved 0.89. In comparison, the su-
pervised model achieved an F1 score of 0.98.

The proposed model was further evaluated on 5 vege-
tation indices, derived from the spectral bands, (see Table
1). This resulted in an increase in the overall F1 score
achieved by both, unsupervised and semi-supervised meth-
ods, which was 0.91 and 0.93 respectively as compared to
0.96 achieved under supervision.

The results are summarized in Table 2. It can be seen
that as the number of bands are increased the accuracy

Vegetation Index Formula
Normalized Difference (NIR—R)
Vegetation Index (NDVI) (NIR+R)
Green Leaf Index (G—R)+(G—B)
(GLI) “(2*G)+R+B_
Difference Vegetation
Index (DVI) NIR—R
Green Difference
Vegetation Index (GDVI) NIR—G
Ratio Vegetation Index R
(RVI) NIR

Table 1: Equations of vegetation indices. RGB represent the
Red, Green and Blue channels respectively and NIR repre-
sent the Near Infrared channel

increases. Also, the best results were achieved using
vegetation indices. This is in accordance with the fact
that vegetation indices better represent the information
regarding forests than raw pixels.

Fig 4 and 5 show some of the images from EuroSAT
dataset that were correctly classified as forest and non for-
est respectively by the model after progressive unsupervised
learning. The prediction clearly shows that the model is
able to distinguish between just vegetation (or pastures) and
forest regions and also able to classify forest images even
though roads/water bodies pass through them.

5. Discussion

The proposed algorithm adopts a progressive unsuper-
vised and semi-supervised formulation to tackle the prob-
lem of classification of forest regions in satellite images.
Some of the design patterns regarding the proposed method-
ology are discussed in this section. Firstly, the base archi-
tecture consists of just 3 convolutional layers along with
a fully connected and a classification layer. The reason
behind choosing this shallow network instead of lets say
VGG16[31], ResNetl8 [34] or Inception[35] was that the
model in the proposed approach is highly memory efficient
as compared to these and in this specific case, a deep ar-
chitecture is not suitable. The proposed methodology was
tried using a ResNet18 too. Although the supervised train-
ing resulted in similar accuracies, the model was unable to
improve after the progressive unsupervised training. The
reason being that the number of robust and reliable pseudo
labels at the start were quite low and a deep architecture
tends to overfit on them and fails to generalize to the whole
dataset.

Secondly, the proposed model was initialized on a rele-
vant dataset. The other two options were to initialize it ran-
domly or on a general purpose dataset like ImageNet. The
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Figure 3: Training and validation losses
Images with various spectral signatures/modalities
RGB RGB + NIR Indices
F1 Acc. F1 Acc. F1 Acc.
Base Model (without | (o 66 | 079 080 | 087 087
adaptation)
« - .
< Semi-Supervised 086 086 | 091 091 | 093 093
E Learning
Progressive Unsupervised
Learning 0.85 0.86 0.89 0.89 0.91 0.91
Supervised 0.94 0.94 0.98 0.98 0.96 0.96

Table 2: Comparison of F1 Score and Accuracy achieved by the Relevant Base Model(model trained on a relevant dataset),
relevant base model fine tuned using Progressive Semi-Supervised and Unsupervised Learning and also the Supervised Model
on the unlabelled dataset, EuroSAT. As shown, the proposed method improves the accuracy of the base model in each case
and eventually approaches supervised model. Results are given for images with various spectral signatures/modalities which
include RGB, RGB + NIR and Vegetation Indices

randomly initialized model will extract inaccurate features

Figure 4: Forest Regions correctly classified by the proposed unsupervised progressive model

and thus form random clusters. The model was not initial-

ized using ImageNet due to the difference between features
in normal day-to-day images and the satellite images con-
taining several spectral bands other than just RGB[36]. This
will lead to extraction of features that are not useful for re-

mote sensing forest classification.

For semi-supervised learning, two hyper-parameters
were of extreme importance. First, the value k in k Near-
est Neighbors was set to 3 as it resulted in the most cor-
rect pseudo-labels. We tried with other values of k that

yielded comparatively poor result. Secondly, the enlarging

758



Bl

Figure 5: Non-Forest Regions correctly classified by proposed unsupervised progressive model

Ground Truth: Forest
Predicted Label: Non-Forest

Ground Truth: Non-Forest
Predicted Label: Forest

Figure 6: Images wrongly classified by the proposed
method

factor(p) was set to 0.1 which increases the reliable unla-
belled images by around 500 with each iteration (total num-
ber of unlabelled images were 4975). We can either set p
to a very large or very small value. A large value urges m¢
to increase rapidly, resulting in unreliable pseudo-labels. A
small value means mM¢ progressively enlarges with a small
change in each step, with large computation time.

Lastly, two of the images wrongly classified by the
model after proposed progressive unsupervised learning are
shown in Fig 6, one that is wrongly classified as forest and
the other wrongly classified as non-forest. As it shows, the
images are spectrally quite similar to each other. For the
proposed method, though deep model implicitly captures
the textual semantics, One improvement can be incorporat-
ing explicit textual semantics along with these.

6. Conclusion

This paper presents a progressive unsupervised deep
learning based approach for forest mapping. The crux of
the idea is to initialize a base model on a relevant dataset
and subsequently transfer the learned information on to a

deep unsupervised progressive scheme which is then trained
using unlabeled dataset. The approach is generic and the
results have been reported using variety of three different
spectral (imaging) modalities. Although the proposed ap-
proach yields high accuracy but still there are different as-
pects for improvement. One such improvement will be to
further enhance the unsupervised strategy by replacing the
k-means clustering and reliable selection procedure with a
single more robust clustering scheme incorporating textural
semantics of forests. This may not only aid in improving the
convergence of the progressive scheme but may also poten-
tially lead towards completely self paced learning bypass-
ing the need of any relevant base model. Our work must
not be seen as a competitor to completely supervised forest
mapping methods, rather as a complementary to them.
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