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Abstract

Recently, remote sensing image matching by deep learn-
ing reaches competitive performance evaluated by Proba-
bility of Correct Keypoints(PCK). The percentage of image
size is often used as the threshold of PCK. Even though it
can achieve a good 1% PCK in high resolution by regres-
sion of transformer parameters, the value will be reduced
by using the absolute 1 pixel as threshold in the higher res-
olution. Inspired by the flow-based methods used in nat-
ural image matching tasks, we convert the transformer to
correspondence flow and propose ladder scales correspon-
dence flow networks(LSCFN) to get better 1 pixel PCK in
higher resolution. Input images are resized to multi scales
and then sent to network backbone to generate multi feature
pyramids. These pyramids are linked and effectively pull up
the highest resolution of original backbone just like a ladder
when the global correlation scale is fixed. LSCFN regress
correspondence flow in ladder scales in a dense cascade
way. We build LSCFN-b and LSCFN-s based on the degree
of semantic change between compared images. One with
only global correlation is used for the big change, another
with global and local correlation is used for the opposite
one. The proposed LSCFN achieve state-of-the-art perfor-
mance evaluated by 1% of image size PCK and absolute 1
pixel PCK on google earth dataset[25].

1. Introduction

Remote sensing image matching is a fundamental prob-
lem in remote sensing image processing. This is due
to its many important applications, including change
detection[42], damage assessment[5], remote sensing im-
age fusion[9] and mosaic[43]. As is known, remote sensing
images from a scene are often from different environments,
such as time,sensors and viewpoints. These uncontrollable
factors may cause uncontrollable changes. Semantic change
and geometric change are the most common two.

Figure 1. images with slight semantic change and big geometric
change.

Different applications also suffer varying degrees of se-
mantic or geometric changes. For example,change detec-
tion often suffers the big semantic changes and slight ge-
ometric changes, remote sensing image fusion often suf-
fers the slight semantic changes and big geometric changes.
Compared with natural images, contents of remote sensing
images with these changes are more difficult to understand
and their features are not obvious. Although deep learning
methods such as two-streams network[25] were proposed to
get more obvious features and got a good 1% PCK results,
their performances are limited by the sparse regression tar-
get, although they also considered the semantic changes and
tried to process these changes, they did not consider the
varying degrees of different changes, and although the res-
olution from nature images is high, it is still low for remote
sensing image.
Contributions: In this paper, we propose novel ladder
scales correspondence flow networks(LSCFN). It will not
only get a better relative 1% PCK but also get a better abso-
lute 1 pixel PCK. The contributions can be summarized as
follows:

We convert the sparse transformer parameters to dense
correspondence flow. So the sparse regression targets are
converted to dense targets which are more reasonable and
easier to learn. As far as we know, it’s the first time that
deep dense correspondence flow in this very high resolution
is used for remote sensing image matching.
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Figure 2. images with big semantic change and big geometric
change.

We build more than one feature pyramids on basic back-
bone and construct a new ladder scales feature pyramid.
We use this ladder to pull up the highest resolution of fea-
ture maps when the resolution of global correlation is fixed.
Compared to the simple upsampling, it’s a more efficient
way to improve absolute 1 pixel PCK.

We consider the varying degrees of semantic changes.
We propose a special network to process slight semantic
changes and another to process big semantic changes. So
the slight one can make use of the local correlation to get a
efficient refinement for global correlation and the big one
can avoid the degradation of inaccurate local correlation
from local areas with different land covers caused by big
semantic changes.

The proposed methods achieve the best performance on
the google earth dataset used by Park et al[25].

2. Related Work

Image matching is the task to find pixel-to-pixel corre-
spondence between images. Geometric matching and se-
mantic matching are the two most typical sub tasks of nat-
ural image matching.Geometric matching focuses on large
geometric displacements under the same scene. It suffers
big geometric changes and slight semantic changes. Seman-
tic matching poses additional challenges due to intra-class
appearance and shape variations among different instances
from the same object or scene category. It suffers big se-
mantic changes. As a sub task of image matching, remote
image matching may be simlar with geometric or seman-
tic matching of natural image. But it often may suffer more
complex changes as well. As showed in figure 2, the remote
sensing images from different time and viewpoints suffer
different land covers in the most areas under the same scene.

The common pipeline for image matching can be
summed up as three stages briefly, (1) feature extraction, (2)
feature matching, and (3) transformation model estimation.
Remote image matching also can be solved by this pipeline.
We will take a brief look at every stage below.

2.1. Feature extraction

Hand-craft features such as SIFT[21], ASIFT[24],
HOG[4] and SURF[1] are used by classical methods be-
fore deep learning methods. SIFT[21] well-designed based
on natural image is the most representative one, it has good
performance in natural image processing tasks, because the
generated feature descriptors have rotation, scaling, and
translation invariance. Beyond SIFT[21], ASIFT[24] was
proposed to improve fully affine invariant image compari-
son. However, these hand-craft features may not continue to
maintain good performance in a remote sensing images task
because of the different and complex imaging mechanism.
To imporve these hand-craft features, methods without deep
learning such as PSO-SIFT[22] were proposed. However,
it’s very hard to reach the performance of deep learning.

With the rapid development of deep learning and its
outstanding performance in the field of computer vision,
features extracted by deep neural network are more ro-
bust, powerful and transferable. In recent years, convo-
lution neural networks such as VGGNet[33], ResNet[11]
and ResNeXt[39] have been commonly used in corre-
spondence tasks. For example, VGGNet[33] was used
by CNNGeo[29], PARN[15], SAM-Net[18], DGC-Net[23]
and GLU-Net[37]; ResNet[11] was used by RTNs[17], NC-
Net[30] and DCCNet[12].

For remote sensing images, Ye et al[41] integrated the
depth features extracted by CNN and the local features, and
fused the obtained features into the PSO-SIFT[22] algo-
rithm. Wang et al[38]transfered the pretrained CNN fea-
tures in natural images by mapping function to adapt re-
mote sensing image. Quan et al[27] used GAN[10] to auto-
matically create more training data without manually stan-
dardizing data. Dong et al[6] designed a DescNet network
extract the depth features of the image, they replaced the
maxpooling operation by increasing the stride size of the
convolution filter. Yang et al[40] used VGGNet[33] as the
feature extractor. Kim et al[16] used ResNet[11] as their
best feature extractor. Park et al[25] used ResNeXt[39] as
their best feature extractor.

2.2. Feature matching

Feature matching is also an important part of the whole
pipeline, the accuracy of matching features has a great im-
pact on the entire task. KNN[8] is a representative method
for feature matching and commonly works with SIFT fea-
tures. Outer product is commonly used as global correla-
tion with the features extracted by convolution neural net-
works. For natural images, CNNGeo[29], DGC-Net[23]
and DCCNet[12] adopted this global correlation for feature
matching. Based on CNNGeo[29], methods proposed by
Yang et al[41], Kim et[16] and Park et al[25] for remote
sensing images also adopted outer product as global cor-
relation. Due to the big computational cost of global cor-
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relation, it’s often limited in a low resolution and hard to
process small displacements. Prune Truong[37] combined
the global correlation and local crrelation to process both
large and small displacements.

Feature matching results by methods mentioned above
are still coarse. In claasic methods, RANSAC[7] was pro-
posed to filter the wrong matching results. A geomet-
ric method to evaluate the homography matrix was pro-
posed by Song et al[34] to filter out wrong matching re-
sults. For deep matching, feature normalization[29] was
used to filter coarse matching results, this normlization
way also used by Yang et al[40], Park et al[25]. Fur-
thermore, Ignacio Rocco[30] proposed a soft mutual near-
est neighbor module and a neighborhood consensus net-
work with 4D convolutions to get more accurate match-
ing results, Prune Truong also used these methods in their
GLUNET[37] and GoCOR[36]. Beyond the RANSAC[7],
RANSAC-Flow[32] was proposed to do a better filter by a
flow-based way.

2.3. Transformation model estimation

As is known, it’s expensive to get the ground-truth of
dense pixel correspondence. So classic methods estimated
the transformation model by unsupervised learning. Af-
ter getting the matching points from matching features
by filtering and ranking, transformation parameters were
learned from these matching points by least squares[2].
Methods based on spare annotations were also proposed.
CNNGeo(W)[28] and NC-Net[30] were proposed to learn
from sparse correspondence annotations. Shuda et al[19]
improved them with an adaptive method. The optimal trans-
port is also a good method to process sparse correspondence
annotations. Liu et al[20] transported the coarse matchings
with optimal to make sure an one-to-one matching. Sarlin
et al[31] also used optimal transport to get a better corre-
spondence estimation.

However, the spare annotations are still hard to get.Self-
supervised learning was proposed to solve this problem
efficiently. Ignacio Rocco proposed a geometric match-
ing network[29] to regress parameters of transformations.
The training datas are all generated by random affine and
TPS transformations and without annotations. Beyond
CNNGeo[29], Iaroslav Melekhov converted the transforma-
tion to dense correspondence flow and used DGC-Net[23]
to regress the correspondence flow. Prune Truong proposed
GLUNet[37] and converted the correspondence flow to op-
tical flow to break through the limit of small resolution.
For remote sensing image, self-supervised learning is also
be adopted by Park et al[25], they assumed that the trans-
formation is affine in a local area and tried to learn from
a sparse global affine transformation parameters generated
randomly.

3. Proposed methods

In this section, we introduce our ladder scales correspon-
dence flow networks(LSCFN) for remote sensing image
matching. We also assume that a transformations is affine
in local areas.An affine transformation is represented by a
vector:[a1, a2, tx, a3, a4, ty].a1 ∼ a4 represent the scale,
rotated angle and tilted angle, (tx, ty) denotes the (x-axis,
y-axis) translation. We use the same datas and parameters
used by Park et al[25]. To generate the dense target corre-
spondence flow from these affine transformations, we fisrt
convert the parameters into the homogeneous form:

Figure 4. transformation of homogeneous form.

Then we convert this homogeneous matrix to correspon-
dence flow in the resolution of the first feature map by affine
grid which is introduced in STN[14]. For a pyramid struc-
ture, correspondence flow will be converted to special scales
by interpolation. So we get a dense correspondence flow
pyramid. Inspired by GLUNet[37], we resize the images to
different resolution and get multi pyramids in each resolu-
tion. These pyramids will be linked like a ladder.

As is mentioned above, the degrees of semantic or geo-
metric changes between the compared image are different.
As is showed in figur1, the correspondence pixels are simi-
lar in the local areas when the semantic changes are slight.
As is showed in figure2, the correspondence pixels repre-
sent different land covers in the most local areas. We design
our networks for these differences.

3.1. ladder scale network for slight semantic change

Our ladder scale network for slight semantic
change(LSCFN-s) uses VGG-16[33] as basic feature
extractor backbone and builds two pyramids on this back-
bone to get a whole ladder feature pyramid. It is consisted
of four level correlations. The coarsest level is based on a
global correlation layer, followed by a mapping decoder
estimating the correspondence map. Due to the similarity
of correspondence pixels in local area, we can make use
of the local correlation and the next three levels instead
rely on local correlation layers. Firstly, correspondence
flow from global correlation is converted to optical flow
by un-normalization for refinemnet by local correlation.
The dense optical flow is then estimated by flow decoders,
taking as input the correspondence volumes resulting from
the local correlation. By this coarse-to-fine way, we can get
a better local correlation for small displacements. However,
the coarse errors will be passed to fine layer and get no any
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Figure 3. Architectural details of our ladder scale network for slight semantic change in remote sensing images, Yellow pipline is the mask
pipline. The upsamping operator exists from coarse layer to fine layer, Inside the pyramid, we use deconvolution operator to upsample. We
use the bilinear upsampling operator to upsample the flows from one pyramid to another pyramid and nearest upsampling operator with
1x1 convolution to upsample the mask from one pyramid to another pyramid, scorr is the self-correlation operator.

refinement to correct. So we also build a mask pipeline to
estimate the errors of correlation and optical flow. Now we
introduce these parts in detail.
Global correspondence by global correlation: It is based
on the global correlation which is formulated as:

Cl
global(F

l
t , F

l
s) = F l

t (x)
TF l

s(x
′
) (1)

F l
s is the source feature map from l level and x

′
is coordi-

nates of F l
s, F l

t is the target feature map from l level and x is
coordinates of F l

t . As shown in figure 3, a global mask de-
coder and correspondence flow decoder will be pulled from
this global correlation.
Local feature matching module by local correlation: It
is based on the current local correlation and last mask pre-
diction. The original local correlation is formulated as:

Cl+1
local = Cl+1

local(Ft(x);Fs(x+ d))

= F l+1
t (x)TF l+1

s (x+ d), ||d||∞ ≤ R
(2)

F l+1
s is the source feature map at l+1 level warpped by the

flow from l level, x is a coordinate in the target feature map,
R is the search radius for correlation, d is the displacement
from x. Furthermore, the wrong correlation results will be
corrected in mask pipeline.

Flow pipeline: The correspondence flow decoder receives
global correlation and an initial zero correspondence flow
as inputs. It outputs a coarse correspondence flow.This cor-
respondence flow is then converted to optical flow by un-
normalization. After upsampling, it warps the next source
feature map. The next warped source feature map and orig-
inal target feature map will be sent to a local correlation
layer. Then we get a local correlation from this correlation
layer. The next optical flow decoder receives this local cor-
relation and outputs a optical flow. This optical flow will be
refined by an auxiliary optical flow decoder from the same
temporary middle feature map. The refined optical flow will
be added to the corase optical flow. We repeat these steps
by three times. The last optical flow will be upsampled to
the resolution of origianl source image and warp the source
image to get final matching result.

Mask pipeline: The errors from coarse layer will be passed
to fine layers in this coarse-to-fine structure. Inspired by
Liteflownet3[13], we build a mask pipeline to correct these
errors. In parallel with flow decoders, mask decoders are
pulled to estimate the errors from coarse layer to fine layers.
At first, a global mask decoder is pulled from global corre-
lation. It shares all the same parameters with flow decoders
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except for the last mask output layer. The output channel
number of this layer is set to 1. After upsampling, mask at
global level will mask the self-correlation of the next target
feature map. The self-correlation of next target feature map
is formulated as:

selfCl
local = F l+1

t (x)TF l+1
t (x+ df) (3)

We mask it as below:

selfCl
local = (selfCl

local,mask
l) (4)

F l
t is the target feature at l level, selfCl

local is the self-
correlation of target feature at l level. df is the displace-
ment from x for self-correlation, maskl is the prediction
from mask decoder at l level, the () is the concat operator.

The next mask and deformable displacement of cur-
rent flow are generated from this masked self-correlation.
we pull two heads from it. One predicts the next mask
mask(l+1) and one predicts the current flow deformable
displacement displ. The two heads share the most parame-
ters except for the last one for effcient computation. Current
level flow after upsampling will be warped to by displ:

F l = disploF l (5)

o means warp operator and this new refined flow will warp
the next source feature map. This new mask pipeline com-
bined with the original flow pipeline is showed in figure 5:

Figure 5. mask pipeline combined with flow pipeline

Next mask will firstly mask next local correlation and
modulate the original correlation based on the masked cor-
relation. Next correlation will be masked as below:

Cl+1
mask = (maskl+1, Cl+1, F tl+1) (6)

The final new correlation will be got similar with de-
formable convolution[3] as below :

Cl+1
refine = m ∗ Cl+1

mask + p (7)

Then it will mask the next self-correlation and refine the
next flow in the same way as current level mask.

The m and p are learned from the masked correlation
Cl+1

mask. This vernier module is showed in figure 6. they
also share the most parameters except the last one. Except

for the global correlation, all the local correlation will be
masked and modulated by this way. The first local module
with flow and mask pipe line is showed in figure 7. The
whole LSCFN-s with flow and mask pipeline is showed in
figure 3.

Figure 6. vernier module for correlation

Figure 7. first local flow and mask module

3.2. ladder scale network for big semantic change

When we try our LSCFN-s on the images with big se-
mantic change, we find it will get big degradation of PCK.
Compared with the images with slight semantic change, the
local correlation is hard to get the correspondence because
of the land cover in the most local area is changed, lo-
cal correlation will bring new wrong correspondence. So
we propose a special ladder scale network for big seman-
tic change(LSCFN-b). We also use the same backbone and
build a ladder feature pyramid.
Flow pipeline: Compared with LSCFN-s, LSCFN-b adopts
a different flow pipeline. All local correlation layers are
removed, global correlation result will be refined by multi
level correspondence flow decoders.We adopt six corre-
spondence flow decoders. The first decoder also recives
global correlation and an initial zero correspondence flow
as inputs. Unlike LSCFN-s, it will not be converted to opti-
cal flow by un-normalization. After upsampling, it warps
the next source feature map and is sent to next flow de-
coder as an input of next flow decoder. The next warped
source feature map and target feature map are also sent to
next flow decoder as inputs. We repeat this step from the
second decoder to the last decoder. The last decoder is in
the resolution of original input images. We can get a better
correspondence in a higher resolution by this cascade way.
Every decoder is consist of 5 convolutional blocks (Conv-
BN-ReLU) and every convolutional block has different dila-
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Figure 8. Architectural details of our ladder scale network flow pipeline for big semantic change in remote sensing images. We use the
bilinear upsampling and concat operator to link different levels.

tion parameters for different receptive fields. All the inputs
will be concated before convolution. The whole flow pipe
line of LSCFN-b is showed in figure 8.
Mask pipeline: We keep the most mask pipeline used in
LSCFN-s and just remove the vernier module for correla-
tion.

3.3. Training

Loss function: Loss function of LSCFN-s is consist of opti-
cal flow loss and mask loss. We apply supervision at every
pyramid level using the endpoint error (EPE) loss as flow
loss. It is formulated as:

Lossof =

4∑
l=1

(wl
f ∗
∑
x

||f ltarget(x)− f lpred(x)||) (8)

f ltarget is the ground-truth of optical flow at level l, f lpred is
the prediction from flow decoder at level l, wl

f is the flow
weight at level l. x indexes over valid pixel locations.

The ground-truth of mask is generated by flow, it is for-
mulated as:

M l
target = e−||f

l
target−f

l
pred||

2

(9)

We use the weighted L2 as the loss function of mask, it is

formulated as:

Lossm =

4∑
l=1

(wl
m ∗ ||M l

target −M l
pred||) (10)

M l
pred is the prediction from mask decoder at level l, wl

m

is the mask weight at level l. The final loss of LSCFN-s is
formulated as:

LossLSCFNs = Lossof + Lossm (11)

Loss function of LSCFN-b is consist of the correspon-
dence flow loss and mask loss. We use the same mask loss
with LSCFN-s. For correspondence flow loss, we apply su-
pervision at every pyramid level using the L1 distance loss.
It is formulated as:

LossLSCFNb = Losscf =

6∑
l=1

(wl
f ∗
∑
x

||f ltarget(x)− f lpred(x)||1)
(12)

From the ground-truth of flow, we can also get a mask pyra-
mid estimating the existence of correspondence as below:

M1xtarget = fxtarget +X (13)

M1ytarget = Fytarget + Y (14)
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{
M1xtarget = 1 0 < M1xtarget < w

M1xtarget = 0 M1xtarget <= 0 M1xtarget >= w
(15)

{
M1ytarget = 1 0 < M1ytarget < h

M1ytarget = 0 M1ytarget <= 0 M1ytarget >= h,
(16)

M1target =M1xtarget ∩M1ytarget (17)

The fxtarget and fytarget are flow ground-truth on x and
y axis. X and Y are the sorted range of width and height. w
and h are the width and height of the current level resolu-
tion. We mask the original flow loss by this mask. The new
flow loss are formulated as:

Lossof =

4∑
l=1

(wl
f ∗
∑
x

M1ltarget ∗ ||f ltarget(x)− f lpred(x)||)

(18)

Losscf =

6∑
l=1

(wl
f ∗
∑
x

M1ltarget ∗ ||f ltarget(x)− f lpred(x)||1)

(19)
Common training settings: Our model is implemented
by Pytorch[26]. We freeze the weights of backbone when
training on natural images and unfreeze the weights of back-
bone when training on remote sensing images. We employ a
search radius R=4 for local correlation. For self-correlation
of LSCFN-s, we employ differents search radius. At global
level, we empoly R=4. At first local level, we employ R=3.
At second local level, we employ R=2. For self-correlation
of LSCFN-b, we adopt [4, 4, 3, 3, 2, 2] as search radius set
from first level to last level. We use a batch size of 16
for LSCFN-s and LSCFN-b. The initial learning rate for
LSCFN-s is 0.0001, we change it by three steps. The initial
learning rate for LSCFN-s is 0.00002, we change it by two
steps. We train LSCFN-s 100 epoches and LSCFN-b 200
epoches in total. We use one V100 GPU card for LSCFN-s
and four V100 GPU cards for LSCFN-b.

4. experiments
In this section, we evaluate the LSCFN-s and LSCFN-b

on the dataset used by Park et al[25]. This dataset is from
the synthetic affine transformation, when a image is fixed,
the synthetic affine transformation is applied on another cor-
responding image. We use PCK as the evaluation metrics.
It is formulated as:

PCK =

∑n
i=0 1(D(p̃ i, pi) < σ)∑n

i=0 |p̃ i|
(20)

p̃ i is the point warped by flow, pi is the correspondence
ground-truth. D is the distance of p̃ i and pi. L2 distance is
often used as this distance, σ is the threshold. Percent of the
max image size is often used as this threshold:

σ = τ ∗max(h,w) (21)

When τ = 0.01, we denote PCK as PCK-01, when τ =
0.03, we denote PCK as PCK-03, when τ = 0.05, we de-
note PCK as PCK-05, when σ = 1, we denote PCK as PCK-
1px. The higher τ means the higher σ, the higher σ means
more correct points. When resolution changes, we can also
get that relative PCK will be easier to keep than the absolute
one from equation 21. So PCK-1px is the strictest metric.
In our experiments on google earth dataset, we adopt these
four settings for PCK.

4.1. experiments of LSCFN-s

The slight semantic changes are not considered before,
so we build a new dataset for training and evalution based on
the dataset used for big semantic changes. This new dataset
shares the target images and transformations with the orig-
inal google dataset[25]. We just change the original source
images and let the original target images be the new origi-
nal source images. The transformations are applied on these
new original source images to get the final source images.

As is showed in table 1, we get a very high PCK on this
new dataset. The height and width of image are both 520.

Methods backbone PCK-01 PCK-03 PCK-05 PCK-1px
CNNGeo+Int.Aug.+Bi-En[25]. SE-ResNeXt101 73.05 99.0 99.91 2.35
LSCFN-s VGG-16 99.963 99.989 99.997 98.593

Table 1. PCK [%] obtained by LSCFN-s on google earth dataset.

We compare LSCFN-s with CNNGeo+Int.Aug.+Bi-
En[25] and use the best pretrained model with SE-
ResNeXt101 backbone. Our method shows powerful re-
sults with stricter distances. Furthermore, we try our
LSCFN-s on TSS[35] about semantic correspondence task
of natural image, we also get a competitive result without
using inefficient neighborhood consensus network with 4D
convolution. The detail results are showed on table 2.

Methods Feature backbone FG3DCAR JOBS PASCAL AVG
CNNGeo(w)[28] ResNet-101 90.3 76.4 56.5 74.4
RTNs[17] ResNet-101 90.1 78.2 63.3 77.2
PARN[15] VGG-16 87.6 71.6 68.8 76.0
PARN[15] ResNet-101 89.5 75.9 71.2 78.8
NC-Net[30] ResNet-101 94.5 81.4 57.1 77.7
DCCNet[12] ResNet-101 93.5 82.6 57.6 77.9
SAM-Net[18] VGG-19 96.1 82.2 67.2 81.8
GLU-Net[37] VGG-16 93.2 73.3 71.1 79.2
Semantic-GLU-Net[37] VGG-16 94.4 75.5 78.3 82.8
LSCFN-s(ours) VGG-16 93.0 76.6 77.0 82.2

Table 2. PCK [%] obtained by different state-of-the-art methods
on TSS for the task of semantic matching.

4.2. experiments of LSCFN-b

We first prove the effectiveness of this cascade way in
the resolution of 240. We build sub networks in sub scale
pyramids. The sub scale pyramids are showed in table 3.

The resolution below 240 will be upsamped to 240. Be-
cause LSCFN-b is slow for convergence. So for fair and
efficient comparison, we choose the epoches with similar
average loss when the networks get some enough conver-
gence. In practice, the average loss is 0.232 for sub nets
and the average loss is 0.235 for LSCFN-b. The results in
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Figure 9. the images showed in first column are source images, the images showed in second column are target images, the image showed
in third column are the results of SIFT with RANSAC, the images showed in forth column are the results of CNNGeo+Int.Aug.+Bi-En,
the images showed in fifth column are the results of LSCFN-b.

scale scale pyramid
15 [15]
30 [15, 30]
60 [15, 30, 60]
120 [15, 30, 60, 120]
240 [15, 30, 60, 120, 240]

Table 3. scale and its pyraimd.

detail are showed in table 4. It is proved that the higher

scale PCK-01 PCK-03 PCK-05 PCK-1px
15 16.463 62.091 82.917 3.313
30 37.982 88.922 94.647 8.084
60 73.101 93.758 96.232 26.229
120 76.146 95.073 96.967 29.809
240 90.076 96.678 97.603 61.449

Table 4. PCK [%] obtained by sub networks of LSCFN-b in 240
resolution on google earth dataset.

PCK is from the higher scale, PCK-1px is lower than PCK-
01. Furthermore, we try LSCFN-b in 520 resolution and
upsample the results in 240 resolution to 520 resolution to
compare. The results in detail are showed in table 5.

scale PCK-01 PCK-03 PCK-05 PCK-1px
240 up 90.385 96.517 97.517 22.665
520 89.509 99.205 99.718 26.343

Table 5. PCK [%] obtained by sub networks of LSCFN-b in 520
resolution on google earth dataset.

PCK-01 upsampled from 240 with a slightly lower aver-
age loss is a little higher than PCK-01 in 520 resolution, but
PCK-03, PCK-05 and PCK-1px are lower. Based on this

experiment, we keep on training LSCFN-b in 520 resolu-
tion for a better convergence. Finally We compare it with
other methods. The results are showed in table 6.

method backbone PCK-01 PCK-03 PCK-05 PCK-1px
SURF[1] - 15.3 23.1 26.7 -
SIFT[21] - 33.7 45.9 51.2 -
ASIFT[24] - 37.9 57.9 64.8 -
OA-Match[34] - 38.2 57.8 64.9 -
CNNGeo[29] ResNet101 27.6 76.2 90.6 -
CNNGeo+Int.Aug.+Bi-En[25]. ResNet101 35.1 82.5 93.8 2.2
CNNGeo+Int.Aug.+Bi-En[25]. SE-ResNeXt101 48.0, 91.1, 97.1 3.7
LSCFN-b(ours) VGG16 95.7 99.7 99.9 49.0

Table 6. PCK [%] obtained by different methods on google earth
dataset.

Beyond all the former methods, LSCFN-b gets a very
high PCK-01 and gets a better PCK-1px in higher resolu-
tion. So it’s more practical. The limit by learning from
sparse annotation is broke through. We also show a power-
ful result demo of LSCFN-b in figure 9, most other methods
fails on the pair of images showed in first row.

5. Conclusion

In this work, we propose ladder scales correspondence
flow networks to learn from dense ground-truth of flow by
self-supervised learning in high resolution. We consider the
different degree of semantic changes. LSCFN-s is used for
slight semantic change and LSCFN-b is used for big se-
mantic change. We build a new dataset for slight semantic
change. The experimental results on TSS show our methods
are universal methods for image matching. The experimen-
tal results on google earth dataset show our methods achieve
the best comprehensive performance for remote sensing im-
age matching.
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