
A Framework for Semi-automatic Collection of Temporal Satellite Imagery
for Analysis of Dynamic Regions

Nicholas Kashani Motlagh Aswathnarayan Radhakrishnan Jim Davis

Department of Computer Science and Engineering

Ohio State University

{kashanimotlagh.1, radhakrishnan.39, davis.1719}@osu.edu

Roman Ilin

AFRL/RYAP

Wright-Patterson AFB

roman.ilin.1@us.af.mil

Abstract

Analyzing natural and anthropogenic activities using re-
mote sensing data has become a problem of increasing in-
terest. However, this generally involves tediously labeling
extensive imagery, perhaps on a global scale. The lack of a
streamlined method to collect and label imagery over time
makes it challenging to tackle these problems using popu-
lar, supervised deep learning approaches. We address this
need by presenting a framework to semi-automatically col-
lect and label dynamic regions in satellite imagery using
crowd-sourced OpenStreetMap data and available satellite
imagery resources. The generated labels can be quickly ver-
ified to ease the burden of full manual labeling. We leverage
this framework for the ability to gather image sequences of
areas that have label reclassification over time. One possi-
ble application of our framework is demonstrated to col-
lect and classify construction vs. non-construction sites.
Overall, the proposed framework can be adapted for sim-
ilar change detection or classification tasks in various re-
mote sensing applications.

1. Introduction

The exponential increase in remote sensing data avail-
ability has opened up another domain to apply deep learn-
ing techniques. However, data-hungry supervised learning
techniques for remote sensing tasks require large amounts
of labeled data. This need is further exaggerated when
classes of interest span larger regions or longer periods of
time.

Concerning the raw image data needed, satellite imagery
providers, such as Planet Labs [1], capture worldwide im-
agery each day. This deluge of temporal imagery can pro-
vide rich insights into many problems, but the imagery lacks
contextual information that describes the scenes captured.
Researchers must first identify regions that contain classes
of interest. After regions are identified, imagery is acquired,

and then manual labeling techniques are employed. Un-
fortunately, manually annotating large amounts of data is
a costly and time-consuming process that limits the scale
at which labeled imagery can be acquired. This bottleneck
has restricted the remote sensing community from leverag-
ing the full potential of deep learning algorithms in appli-
cations such as urban planning, agricultural expansion and
abandonment, and landscape monitoring.

Volunteered Geographic Information (VGI), such as
open crowd-sourced mapping metadata, can be utilized to
assist in collecting and annotating datasets. This metadata
enables researchers to semi-automatically identify objects
of interest in desired spatial ranges to determine where to
collect imagery. Unfortunately, the crowd-sourced nature of
the metadata creates noisy or incomplete labels in sparsely
labeled areas around the world, hindering its use for fully-
automated annotation. However, this metadata could still
be used as a starting step in the data collection phase to
create candidate annotations that can be further modified
or filtered by domain experts since it is much easier to
edit existing annotations than to create annotations from
scratch using raw imagery. Such metadata is used to semi-
automatically collect labels since manual verification can
be employed. OpenStreetMap (OSM) [2] is one such free
and open crowd-sourced spatio-temporal database contain-
ing geographical and contextual metadata for physical loca-
tions around the globe. The exponential growth of the com-
munity of OSM contributors and validators in recent years
has improved the reliability of OSM metadata, accelerating
the use of such metadata to provide unverified ground truth
labels for the abundant unlabeled remote sensing imagery
available.

We propose a framework that extends the work of [3]
to collect satellite image sequences based on label reclas-
sifications for changing targets (e.g., farmland converted to
commercial landuse or a new reservoir dug out). Our frame-
work automatically extracts geo-coordinates and contextual
information of object classes of interest using historical
crowd-sourced OpenStreetMap (OSM) metadata and can

704

collect temporal sequences of multi-modal imagery (e.g.,
RGB and NIR). The collected metadata and imagery can
also be manually verified as needed. Hence, our frame-
work enables users to semi-automatically collect temporal
imagery worldwide for multiple applications so long as an
OSM label exists for the target of interest.

In this work, we demonstrate our framework’s utility
with the semi-automatic collection of temporal satellite im-
agery spanning the periods of construction sites. To show
an end-to-end application of our approach, we also provide
an exploration of a binary classifier to distinguish image se-
quences of construction vs. non-construction regions.

The outcome of this work provides a tool to advance the
remote sensing community by facilitating the gathering of
large and diverse datasets based on various reclassifications
and temporal behaviors of targets of interest. Again, the
focus of this framework is to provide a means of gathering
labeled data for use in multiple remote sensing applications.

2. Related Work
The evident hindrance in applying deep learning to re-

mote sensing data is the lack of a large number of labeled
benchmark traditional computer vision datasets such as Im-
ageNet [4] and COCO [5]. These traditional vision datasets
generally include ground-level imagery that gives a first-
person view of classes of interest making them ineffective
for remote sensing data problems that require an aerial per-
spective of these classes of interest. Remote sensing prob-
lems such as change detection also require temporal image
sequences that record the evolution of a class of interest
over time. There are a few existing remote sensing datasets
that provide temporal views of objects such as the Func-
tional Map of the World (fMoW) [6] dataset that contains
imagery with over 100K unique bounding boxes labeling
63 classes of interest, the xBD [7] building damage assess-
ment dataset that contains pre- and post-damage imagery
with over 800K unique building annotations and damage
level labels, and the Multi-Temporal Urban Development
SpaceNet 7 (MUDS) [8] dataset that provides monthly tem-
poral imagery with over 500K unique building annotations.
However, all these large remote sensing datasets mentioned
above were collected using expensive and time-consuming
manual methods of scraping through existing satellite im-
agery collections to identify feasible areas of interest and
then using crowd-sourced labeling platforms for generating
bounding box annotations.

In the remote sensing community, there has been a push
to use existing crowd-sourced map data such as OSM to
assist in the annotation of the abundant unlabeled remote
sensing data available. Previous works such as [9, 10, 11]
have studied the use of OSM data for land use classification,
which is one of the most popular applications with remote
sensing data. Furthermore, the worldwide road center-line

vector data in OSM is frequently used to assist in training
automated road network extraction methods on aerial and
satellite imagery (e.g., [12, 13]). The OSM database also
contains labels for building types and their polygonal out-
lines for building classification and detection tasks [14, 15].
Most of these methods used manual approaches to scrape
through OSM database to extract ground truth labels for
their particular task. These approaches create a bottleneck
as manual extraction is infeasible for task-specific data col-
lection spanning vast regions of interest. They also ignored
the wide variety of data recorded by OSM, focusing only on
the popular OSM labels such as roads and buildings.

In [3], they proposed a framework for a semi-automated
collection of satellite imagery of object classes recorded
by OSM. However, their framework ignores historical data
recorded by OSM and archived satellite imagery. In this
work, we extend the framework of [3] to collect temporal
satellite image sequences based on label reclassification of
object classes using OSM history metadata. This histor-
ical data provides a wealth of temporal information con-
taining local updates to physical locations (e.g., an OSM
user adds a new parking garage). We leverage this informa-
tion to automatically determine both spatial and temporal
bounds of OSM object classes of interest. Existing remote
sensing datasets such as the fMoW dataset are restricted
to a set of labeled classes that are available and datasets
such as MUDS dataset only provide spatial characteristics
(building bounding box annotations) of buildings without
any information about the building types or uses. Our pro-
posed framework works using the expansive set of OSM
labels that provide both spatial extents and additional meta-
data attributes describing the physical features (e.g., build-
ing types, landuse) of the classes of interest. The existing
datasets also provide only a static set of temporal imagery
whereas our proposed framework coupled with daily-revisit
image collection sources such as PlanetScope enables col-
lecting custom task-specific datasets with required classes
of interest mapped by OSM and temporal revisit frequen-
cies (temporal views can be collected daily except on days
when PlanetScope imagery is unavailable). The proposed
framework opens a wide variety of applications for change
detection and classification in remote sensing domains.

3. Proposed Framework

In this work, we present a framework that extends the ap-
proach of [3] to automatically find classes that change (e.g.,
from farmland to building) and then collect and label cor-
responding temporal satellite imagery. Using this imagery,
one can quickly verify labels, if required. Figure 1 provides
an overview of the different modules in our framework that
will be described in the following sections.

705

User Input:
Object class and

search region

Extract change
information for object

class from OSM

User Input:
Satellite resource and
imagery specifications

Time-series
imagery

Collect satellite imagery
for extracted objects

Filter search region for
object class in OSM

Sentinel-2

Figure 1: The general pipeline for collecting time-series im-
agery of selected object classes using OpenStreetMap and
satellite resources.

Figure 2: Example area of interest and OSM Map Legend
showing various OSM labels. The tags associated with an
example OSM construction Way are also highlighted in the
box.

3.1. OpenStreetMap

The crowd-sourced labeling system OpenStreetMap
(OSM) has become an increasingly popular metadata source
for spatial information. This repository aggregates rich la-
bels and shape information in geo-coordinates recorded by
users for physical locations worldwide. Figure 2 shows the
richness of OSM labels in an example area of interest.

OSM uses three data structures to represent features on
the map: Nodes, Ways, and Relations. A Node is defined by
a latitude-longitude geo-coordinate pair. For example, traf-
fic lights and stop signs are represented as Nodes. Nodes
can be grouped to form polygons (e.g., a building perime-

Key Value
building hospital
building house
building office
landuse farmland
landuse greenfield
landuse industrial
natural scrub
natural wetland
natural wood

waterway dam
waterway dock
waterway canal

... ...

Table 1: Example OSM “key=value” pairs.

ter) or polylines (e.g., a road) called Ways. A Way represents
an “area of interest” on the map. Lastly, multiple Nodes and
Ways can be combined to form Relations. Relations often
represent large conglomerations of land (e.g., a neighbor-
hood).

Nodes, Ways, and Relations can be labeled by the
OSM community to provide context to describe the lo-
cations in predefined “key=value” pairs (e.g., “build-
ing=apartment”). A key describes the general type of a
location, and a value is a refined description of the corre-
sponding key. Users also have the option to specify their
own “key=value” pair. Table 1 displays an example from
the hundreds of predefined “key=value” pairs in OSM. The
full list of predefined “key=value” pairs can be found at
[16]. Using these key-value pairs, we can determine the
class to which a Way belongs. This information will en-
able us to locate, both spatially and temporally, where and
when labels exist and identify any label reclassifications.
Due to the crowd-sourced nature of OSM, object labels can
be noisy (e.g., inaccurate Way geo-coordinates or missing
labels). Even so, OSM metadata can drastically reduce the
manual effort needed to verify the collected data. The fol-
lowing section describes our approach to identify dynamic
regions in OSM.

3.2. Way Extraction

The first stage of our data collection framework uses
historical OSM data to identify Ways whose tags were re-
labeled using changes in “key=value” pairs (e.g., “lan-
duse=farmland” is relabeled to “building=house”). The
framework can limit the search to only Ways that fall within
a user-provided search region (e.g., a particular city or re-
gion) and time span. The Way extraction pipeline aims to
build a “geo-dataframe” [17], a tabular data structure for
handling geospatial data, of all ways for object classes of in-

706

terest within the user-specified search region and time win-
dow.

Algorithm 1 outlines the steps in the Way extraction
stage. This stage takes the following input from the user:

• An OSM class of interest.

• A start and end date-time window within which to
search for relabeled ways.

• A polygon of a search region (in geo-coordinates).

• An OSM history file which contains the archived his-
torical data for the search region.

OSM history files contain logs of all recorded areas of
interest in the OSM database and any changes made to the
OSM database. OSM history files are available for down-
load at [18]. The first step of the Way extraction stage is
to filter out the search region from the history file. The re-
sult contains only Ways that have been labeled as the class
of interest (at least once) and fall within the search region.
The framework uses this filtered region to record tempo-
ral changes to Ways by taking “snapshots” of the state of
the OSM database. A snapshot records the state of all
Nodes, Ways, and Relations (including their tags) in the
OSM database at any point in time. Daily snapshots are
taken while stepping through the time window to record
newly relabeled Ways or changes to existing ones. Once
the start and end dates are identified, the framework takes
“boundary” snapshots of a relabeled Way the day before re-
labeling and the day after. These “boundary” snapshots are
used to find tags that describe the Way before and after its
reclassification.

The framework can handle edge cases when a Way is
deleted and then immediately recreated as a new OSM en-
try. This occurs when a user modifies a Way with updated
information (e.g., new boundary geo-coordinates). In these
cases since there was no reclassification, the framework au-
tomatically links the new Way to the old Way’s entry and
clears the current end date.

Once all Ways are located, each Way is saved in a geo-
dataframe with the following information:

• Timestamps for the first and last day it was labeled.

• A tag that describes the area before relabeling.

• A tag that describes the area after relabeling.

• The geo-coordinates of the shape of the Way.

Our framework’s modularity allows using this geo-
dataframe as input for the image collection stage or perhaps
as data in another application.

Algorithm 1 Way extraction
Input: start - the start date to search

c - OSM class of interest
end - the end date to search
region - a search region
history - OSM history file containing region

Output: A table of relabeled Ways
1: procedure ExtractWays
2: # Extract the user specified region from OSM
3: filt reg ← filter(history, region, c)
4:
5: # Create tables for processing and completed ways
6: processing ← new geo-dataframe
7:
8: completed← new geo-dataframe
9:

10: # Search through the user specified time window
11: date← start
12: while date ≤ end do
13: # Get state of region on date
14: snapshot← getSnapshot(filt reg, date)
15:
16: # Add new ways in snapshot to processing
17: addWays(snapshot, processing)
18:
19: # Update ways in processing using snapshot
20: updateWays(snapshot, processing)
21:
22: # Transfer potentially reclassified ways
23: # Update way.new tag for reclassified ways
24: transfer(processing, completed)
25:
26: # Rollback transfer of incomplete ways
27: for way in completed do
28:
29: # Check if way was not reclassified
30: if way.new tag == c then
31: Delete way.new tag
32: Delete way.end
33:
34: # Transfer way back to processing
35: rollback(way, completed, processing)

36: date++
return processing, completed

3.3. Image Collection

In the image collection stage, the extracted ways are used
to download corresponding satellite imagery. In this frame-
work, we have included the popular Planet Labs [1] and
Sentinel-2 [19] platforms to access RGB and NIR imagery.
Note that other satellite service providers for other image

707

types (e.g., Synthetic Aperture Radar imagery) could also
be employed.

Algorithm 2 outlines the steps in the image collection
stage. In addition to the geo-dataframe, this stage takes the
following input from the user:

• The desired image modality (e.g., RGB or NIR).

• The satellite imagery provider (Planet or Sentinel-2)
and an API key (for a user account to access imagery).

• The desired number of temporal images to extract,
spread within the given time window (e.g., 3, 4, ...,
all).

• A scale factor used to pad each Way’s bounding-box.

We provide the option to pad/expand each image se-
quence to obtain additional spatial context. Images are col-
lected, equally distributed through time, between each rela-
beled Way’s start and end date (the start and end dates will
always be included). The user can also request all available
imagery spanning the time of change.

The first step in the image collection stage is to pad
each sequence’s bounding box of the polygon by the speci-
fied scale factor. Then, a request for the satellite imagery

Algorithm 2 Image Collection
Input: t - table of relabeled Ways

s - a scale factor to pad the bounding-box
p - a satellite imagery provider
b - a list of electromagnetic bands desired
n - the desired number of images

Output: Temporal imagery
1: procedure ImageCollection
2: # Collect imagery for each way in t
3: for way in t do
4: # Get way bounding box with padding
5: padBox← scale(way.bbox, s)
6:
7: # Get the dates p has imagery of padBox
8: dates← queryDates(paddedBox, p)
9:

10: # Determine n equally distributed dates
11: dates← distributeDates(dates, n)
12:
13: # Send a request to p
14: reqs← requestImgs(padBox, dates, p, b)
15:

16: # Download and save the requested images
17: for r in reqs do
18: download(r)

provider is created for each sequence. This request in-
cludes the distributed dates, bands, and padded bounding-
box. Lastly, each request is submitted to the satellite im-
agery provider’s API. Once the provider processes all re-
quests, temporal imagery is downloaded. At this point, a
labeled dataset of targets selected over time is available for
the desired task.

4. Demonstration and Application
We demonstrate the data collection framework for the

task of extracting and collecting temporal imagery of “con-
struction sites”. In this demonstration, a “construction
site” is an area where a structure was erected, demolished,
or modified (e.g., demolishing or extending a building).
This task is also of particular interest to the recent IARPA
SMART program [20] that aims to research methods that
analyze natural or anthropogenic activities (e.g., heavy con-
struction) using temporal remote sensing data. Our demon-
stration automatically determines and extracts construction
sites from OSM, including the geo-coordinates and con-
textual information of each site. It also collects RGB im-
agery from Planet Labs’ PlanetScope3 satellites, capturing
imagery at 3 meters per pixel. We provide an end-to-end
application demonstration by using the data to briefly ex-
plore a classification approach to distinguish construction
from non-construction sites.

4.1. Construction Site Identification and Extraction

We search for the OSM object classes that represent ac-
tive construction sites using the standard OSM tags “build-
ing=construction” or “landuse=construction”. We em-
ploy the OSM history files for England, France, Germany,
and Italy. However, any history files can be employed as
long as sufficient crowd-sourced data is available. We se-
lected the time window 2017-02-19 (the day Planet Labs
launched daily imagery) to 2020-08-22. The framework au-
tomatically extracted construction sites across each country,
yielding a geo-dataframe of 24,537 construction sites, in-
cluding their spatial, temporal, and contextual information.
An example of three extracted construction sites in the geo-
dataframe is shown in Table 2.

Due to the 3-meter resolution of PlanetScope3, the
following preprocessing steps were applied to the geo-
dataframe before collecting imagery to ensure adequate
construction could be visually observed. Sites whose longer
image edge was less than 45 pixels (135 meters) or whose
shorter image edge was less than 25 pixels (75 meters) were
removed. Furthermore, construction sites that did not have
an image available within the first 15 days or the last 15
days of construction were discarded. This is because Planet
imagery is sometimes unavailable on certain dates due to
missing imagery. We collected 30 frames with no padding
for each construction site in the preprocessed geo-dataframe

708

ID Start Date End Date Previous Tag Final Tag Bounding-box Geo-coordinates
1 2019-02-04 2019-10-22 None office=company (12.080231, 47.8803319, 12.0828047, 47.8816893)
2 2018-09-19 2019-12-23 None building=warehouse (6.830465, 50.6823455, 6.834317, 50.6847926)
3 2017-04-13 2019-03-11 landuse=brownfield landuse=residential (2.3887916, 48.7850483, 2.3923603, 48.7895063)

Table 2: Example entries in the geo-dataframe generated by the construction Way extraction stage.

(a) Extracted image sequence for ID 1.

(b) Extracted image sequence for ID 2.

(c) Extracted image sequence for ID 3.

Figure 3: Three image sequences of ten frames corresponding to each identified construction site in Table 2.

using the framework. This process yielded 1,572 construc-
tion image sequences. Figure 3 displays 10 frames from
image sequences of the 3 extracted construction sites from
Table 2. Note that Planet Labs applies black pixels along
the periphery where faulty pixels were captured.

4.2. Construction vs. Non-construction Classifier

Given our construction dataset, we provide an exam-
ple application that classifies construction sites vs. non-
construction sites. We analyzed how the number of frames
within a sequence affects classification performance.

Dataset. We used our extracted construction dataset
as the positive class and then collected a corresponding
non-construction negative dataset. For each construction
sequence, a non-construction sequence was collected us-
ing the shifted geo-coordinate bounding-boxes of the cor-
responding construction site. We sequentially shifted each
construction sequence’s bounding-box right, up, left, or
down (random selection) until the shifted box did not in-
tersect with any known construction. This technique en-
forced that the size distribution of non-construction ex-
amples matched the distribution of construction exam-
ples. Note that some construction sequences did not have
a viable non-construction example nearby. We similarly
gathered 30 temporal images from PlanetScope3 for each
non-construction site identified using our image collection
pipeline. This process yielded 1,520 non-construction im-

age sequences. Each image in a non-construction sequence
was captured on the same day as its corresponding construc-
tion counterpart. This step ensured that we had equivalent
imaging conditions (e.g., similar cloud coverage). We show
in Fig. 4 three different construction sequences and their
corresponding non-construction counterparts.

Prior to training, we resized the longest side of each im-
age to 50 pixels for all positive and negative examples while
maintaining the aspect ratio. We zero-padded (above and
below, or left and right) the rest of each image such that it
was 50x50 pixels. The train, validation, and test sets were
formed by splitting each country’s positive and negative ex-
amples by 67%, 16%, 17%, yielding 2,056, 511, and 525
total examples, respectively. Therefore, each set contained
a proportional representation of each country’s positive and
negative examples to combat geographical bias.

Classifier. We analyzed variants of the flexible SlowFast
network [21] to study the effects of temporal information on
our classification task and provide a baseline. SlowFast net-
works are a general class of video classification networks
that feed sampled clips of a video through two channels: a
slow and fast path. The intuition behind the two-path ar-
chitecture is that the slow path captures long-term spatial
features while the fast path focuses more on rapid temporal
features. A single Slow network is identical to the Slow-
Fast network but without the fast path. This style of the
network provides an ideal framework to analyze different

709

(a)

(b)

(c)
Figure 4: Three examples of a raw construction sequence (top) and its corresponding non-construction sequence (bottom) in
chronological order (left to right).

temporal samplings of the data. Training employed random
horizontal flipping for data augmentation and selected the
checkpoint with the highest accuracy on the validation set.

We first trained a Slow network for sequences of length
2, 3, 5, 10, and 30 frames evenly distributed across time.
The results for these experiments are provided in Table 3.
When using only two frames, the start and end frames (com-
monly used for change detection), the network had only
72.2% accuracy. As we continued to increase the number
of frames, the scores increased except in the slight decrease
case with 5 frames. The use of the full 30 frames yielded
the highest performance in all metrics. These results signify
that this change detection task indeed benefits from addi-
tional temporal information.

We next studied the extended SlowFast model’s perfor-
mance using the full 30 frames in the fast path and a vari-
able number of images in the slow path. The results are
provided in Table 4. Increasing the number of frames in the
slow pathway marginally increases accuracy and F1. The
SlowFast model trained with 10 slow frames had the high-
est accuracy of 81.3%. We can see that all of these SlowFast
models have higher precision than the Slow model trained
with 30 frames. However, the recall for all SlowFast mod-
els was less than the recall of the Slow model trained on 30

Frames Accuracy Precision Recall F1
2 0.722 0.747 0.685 0.715
3 0.770 0.766 0.787 0.777
5 0.764 0.790 0.730 0.759
10 0.787 0.784 0.802 0.793
30 0.808 0.812 0.809 0.811

Table 3: Slow network results.

Slow Frames Accuracy Precision Recall F1
2 0.794 0.838 0.738 0.785
3 0.806 0.854 0.746 0.796
5 0.810 0.855 0.753 0.801
10 0.813 0.863 0.753 0.804
30 0.811 0.833 0.787 0.809

Table 4: SlowFast network results.

frames (80.9%).

The Slow model trained on 30 frames outperformed all
SlowFast models in F1, which indicates that a dual-channel
network may not be needed for this task. We suspect that
the SlowFast model picked up on seasonal changes in image
sequences and wrongly correlated them to construction. For

710

Figure 5: Non-construction sequences incorrectly classified as construction (false positives).

Figure 6: Construction sequences incorrectly classified as non-construction (false negatives).

example, some of the false positives shown in Fig. 5 high-
light the effect of seasonal changes on the landscape. We
see that the vegetation color turns from green to brown and
back to green as time progresses. On the other hand, we
also found that the construction of smaller structures was
more challenging to identify. In the false negatives shown
in Fig. 6, a few smaller construction areas were actually
present in a broader tagged region but were missed by the
classifier.

As reported in [22], 62% of the 644 peer-reviewed re-
search papers on urban land change algorithms were found
to use three or fewer images to measure change. However,
our analysis in the construction domain showed that more
frames improve classification performance. We again note
this classifier is not the primary focus of this work but rather
an example application for our framework. Other classifi-
cation models can also be applied with our framework.

5. Conclusion

We presented a general framework to semi-automatically
collect temporal satellite image sequences based on the
identification of label reclassifications using crowd-sourced

annotations and available satellite imagery providers. This
data collection framework automatically determines label
reclassifications by leveraging OSM history data to col-
lect dynamic regions and corresponding temporal satel-
lite imagery. This framework enables researchers to col-
lect larger, task-specific temporal datasets for remote sens-
ing tasks more efficiently than employing manual crowd-
sourcing approaches. We demonstrated the capability of the
data collection framework for gathering labeled imagery of
construction sites. We further showed the applicability of
the data collected by our framework by training a classifier
to distinguish construction vs. non-construction sites and
examining the influence of the number of temporal frames
employed. It is expected that this collection tool will enable
many more applications and machine learning techniques
to be employed with remote sensing data. The construction
dataset and python code for the data collection framework
can be licensed for use by contacting davis.1719@osu.edu.

6. Acknowledgements

This research was supported by the US Air Force Re-
search Laboratory under contract #GRT00054740.

711

References
[1] Planet Team, “Planet Application Program Interface: In

Space for Life on Earth.” https://api.planet.com,
2020. 1, 4

[2] OpenStreetMap contributors, “Planet dump retrieved from
https://planet.osm.org.”
https://www.openstreetmap.org, 2020. 1

[3] A. Radhakrishnan, J. Cunningham, J. Davis, and R. Ilin, “A
Framework for Collecting and Classifying Objects in
Satellite Imagery,” in International Symposium on Visual
Computing, pp. 295–306, Springer, 2019. 1, 2

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A Large-scale Hierarchical Image Database,” in
2009 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 248–255, Ieee, 2009. 2

[5] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona,
D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft
COCO: Common Objects in Context,” in European
Conference on Computer Vision, pp. 740–755, Springer,
2014. 2

[6] G. Christie, N. Fendley, J. Wilson, and R. Mukherjee,
“Functional map of the world,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 6172–6180, 2018. 2

[7] R. Gupta, B. Goodman, N. Patel, R. Hosfelt, S. Sajeev,
E. Heim, J. Doshi, K. Lucas, H. Choset, and M. Gaston,
“Creating xbd: A dataset for assessing building damage
from satellite imagery,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops, pp. 10–17, 2019. 2

[8] A. Van Etten, D. Hogan, J. Martinez-Manso, J. Shermeyer,
N. Weir, and R. Lewis, “The multi-temporal urban
development spacenet dataset,” arXiv preprint
arXiv:2102.04420, 2021. 2

[9] B. A. Johnson and K. Iizuka, “Integrating OpenStreetMap
Crowdsourced Data and Landsat Time-series Imagery for
Rapid Land Use/Land Cover (LULC) Mapping: Case Study
of the Laguna de Bay Area of the Philippines,” Applied
Geography, vol. 67, 2016. 2

[10] M. Schultz, J. Voss, M. Auer, S. Carter, and A. Zipf, “Open
Land Cover from OpenStreetMap and Remote Sensing,”
International Journal of Applied Earth Observation and
Geoinformation, vol. 63, 2017. 2

[11] N. Audebert, B. Le Saux, and S. Lefèvre, “Joint Learning
from Earth Observation and OpenStreetMap Data to Get
Faster Better Semantic Maps,” in Proceedings CVPR
Workshop: Large Scale Computer Vision for Remote
Sensing Imagery, 2017. 2

[12] A. Van Etten, “City-scale Road Extraction from Satellite
Imagery V2: Road Speeds and Travel Times,” in 2020 IEEE
Winter Conference on Applications of Computer Vision
(WACV), pp. 1775–1784, IEEE, 2020. 2

[13] S. Wu, C. Du, H. Chen, Y. Xu, N. Guo, and N. Jing, “Road
Extraction from Very High Resolution Images Using

Weakly Labeled OpenStreetMap Centerline,” ISPRS
International Journal of Geo-Information, vol. 8, no. 11,
p. 478, 2019. 2

[14] P. Kaiser, J. D. Wegner, A. Lucchi, M. Jaggi, T. Hofmann,
and K. Schindler, “Learning Aerial Image Segmentation
from Online Maps,” IEEE Trans. on Geoscience and
Remote Sensing, vol. 55, no. 11, 2017. 2

[15] W. Zhao, Y. Bo, J. Chen, D. Tiede, B. Thomas, and W. J.
Emery, “Exploring Semantic Elements for Urban Scene
Recognition: Deep Integration of High-resolution Imagery
and OpenStreetMap (OSM),” ISPRS Journal of
Photogrammetry and Remote Sensing, vol. 151, 2019. 2

[16] OpenStreetMap Wiki, “Map Features.” https://wiki.
openstreetmap.org/wiki/Map_features, 2020.
3

[17] K. Jordahl, “Geopandas: Python tools for geographic data,”
URL: https://github.com/geopandas/geopandas, 2014. 3

[18] OpenStreetMap Wiki, “History API and Database.”
https://wiki.openstreetmap.org/wiki/
History_API_and_Database, 2020. 4

[19] European Space Agency, “Copernicus Sentinel-2 data
[2020].” https://sentinel.esa.int/web/
sentinel/missions/sentinel-2. 4

[20] IARPA, “Space-Based Machine Automated Recognition
Technique (SMART) Program.”
https://www.iarpa.gov/index.php/
research-programs/smart/smart-baa, 2020. 5

[21] C. Feichtenhofer, H. Fan, J. Malik, and K. He, “SlowFast
Networks for Video Recognition,” in 2019 IEEE/CVF
International Conference on Computer Vision (ICCV),
pp. 6201–6210, 2019. 6

[22] M. Reba and K. Seto, “A Systematic Review and
Assessment of Algorithms to Detect, Characterize, and
Monitor Urban Land Change,” Remote Sensing of
Environment, vol. 242, 2020. 8

712

