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Abstract

Many applications based on aerial imagery rely on ac-
curate object detection, which requires a high number of
annotated training data. However, the number of annotated
training data is often limited. In this paper, we propose
a novel few-shot detection method for aerial imagery that
aims at detecting objects of unseen classes with only a few
annotated examples. For this purpose, we extend the Two-
Stage Fine-Tuning Approach (TFA), which achieves state-
of-the-art results on common benchmark datasets. We pro-
pose a novel annotation sampling and pre-processing strat-
egy to yield a better exploitation of base class annotations
and a more stable training. We further apply a modified
fine-tuning scheme to reduce the number of missed detec-
tions. To prevent loss of knowledge learned during the
base training, we introduce a novel double head predictor,
yielding the best trade-off in detection accuracy between
the novel and base classes. Our proposed Double Head
Few-Shot Detection (DH-FSDet) method outperforms state-
of-the-art baselines on publicly available aerial imagery
datasets. Finally, ablation experiments are performed in or-
der to get better insight how few-shot detection in aerial im-
agery is affected by the selection of base and novel classes.
We provide the source code at https://github.com/
Jonas-Meier/FrustratinglySimpleFsDet.

1. Introduction
In recent years, object detection in aerial imagery often

referred to as remote sensing imagery experienced signifi-
cant advancements, which facilitated quantities of applica-
tions such as hazard detection, forecast of disasters, assis-
tance in rescue operations, environmental monitoring and
urban planning [5, 23]. Reason for these advancements is
the usage of deep learning techniques, in particular convo-
lutional neuronal networks, which led to powerful feature
representations [31, 40, 42, 44]. Despite impressive results,

deep learning based methods suffer from a common issue:
the demand for large-scale datasets to train a deep neural
network model. While the acquisition and annotation of ad-
ditional training data is time-consuming and expensive or
maybe not feasible, training a model with only a few sam-
ples may causes overfitting and thus, poor generalization
abilities.

To circumvent this issue, few-shot learning concepts
have been proposed, which aim at learning models from
limited annotated training samples [16, 19, 28, 54, 52, 57].
In general, few-shot detection methods are initially trained
on base classes with sufficient training data and the learned
knowledge is then transferred to novel classes with limited
training data, yielding detectors capable of localizing and
classifying both the base and novel classes. Existing few-
shot detection methods are typically designed on common
benchmark detection datasets such as MS COCO [27] and
PASCAL VOC [13]. While these datasets mostly comprise
objects with unitary orientation, with small size variations
and located in the image center, aerial imagery can con-
tain objects with random orientation and clearly differing
sizes, e.g. car and soccer ball field. Thus, few-shot detec-
tion methods designed on common benchmark datasets are
not directly applicable on aerial imagery.

In this paper, we propose a novel few-shot detection
method for aerial imagery based on Faster R-CNN [38] and
the Two-Stage Fine-Tuning Approach (TFA) [47], which
outperforms state-of-the-art methods with complex meta
branch architectures on benchmark datasets by applying a
straightforward fine-tuning scheme. To account for the of-
ten high number of object instances in aerial images, we
propose a novel annotation sampling and pre-processing
strategy, yielding a better exploitation of base class anno-
tations and a more stable training. As the detector fails
to generate region candidates for novel unseen classes due
to the characteristics of aerial imagery and large inter-class
variations, we propose an improved fine-tuning scheme by
unfreezing the corresponding layers of the detector. Fi-
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nally, we introduce a novel double head to prevent loss of
knowledge learned during the base training, yielding the
best trade-off in detection accuracy between the novel and
base classes. We demonstrate the suitability of our proposed
few-shot detection method for aerial imagery, clearly out-
performing state-of-the-art baselines on publicly available
aerial imagery datasets. In aerial imagery, splits of novel
and base classes are typically randomly selected. In order
to get better insight how few-shot detection in aerial im-
agery is affected by the number of base and novel classes,
we further provide ablation experiments.

The remainder of this paper is organized as follows. In
Section 2, we give an overview about deep learning based
object detection and few-shot object detection in general
and for aerial imagery. In Section 3, we discuss funda-
mental basics and introduce our proposed few-shot detec-
tion method. The experimental setup and results are given
in Section 4. Finally, we conclude our paper in Section 5.

2. Related Work
In this chapter, we first give an overview about deep

learning based object detection and approaches adopted for
object detection in aerial imagery. Then, we present recent
few-shot object detection methods in general and for aerial
imagery.

2.1. Object Detection

In recent years, a multitude of deep learning based ob-
ject detectors has been proposed, achieving state-of-the-art
results in numerous fields of application. These detectors
are generally categorized into proposal-based and proposal-
free methods. Proposal-based methods such as Faster R-
CNN [38], R-FCN [8] and Cascade R-CNN [2] initially pre-
dict candidate regions termed proposals, which are classi-
fied in a subsequent stage, while proposal-free methods, e.g.
SSD [30] and YOLO [35] and its variants [1, 36, 37], per-
form classification and detection at once. Large improve-
ments in detection accuracy have been achieved by exploit-
ing multiple feature maps within a feature pyramid network
[1, 14, 25, 26, 37]. To circumvent the need for pre-defined
anchor boxes used as reference for bounding box regres-
sion, anchor-free methods, e.g. FCOS [45], CenterNet [12]
and FoveaBox [21], have been recently proposed, achieving
comparable results on benchmark object detection datasets.

These deep learning based detection methods have been
widely adapted for object detection in aerial imagery [9, 11,
10, 15, 17, 22, 32, 33, 34, 39, 40, 41, 42, 43, 44, 46, 55]. To
account for the characteristics of aerial imagery, e.g. small-
sized objects, adapting the feature map resolution and the
anchor boxes has been proposed [39, 40, 41, 42]. Exploita-
tion of multiple feature maps [9, 11, 15, 34, 46], integra-
tion of semantic context [32] and modified loss functions
[55] have been applied to further improve aerial object de-

tection. In recent years, the emerge of large-scale datasets
with rotated ground truth, e.g. DOTA [51], facilitates ori-
ented object detection [10, 22, 43].

2.2. Few-Shot Object Detection

Since the available training data are often extremely rare,
few-shot learning – learning from only a few training sam-
ples – has gained great interest. In the following, the lit-
erature under review is restricted to few-shot object detec-
tion methods. Feature reweighting methods, e.g. MetaY-
OLO [19], Meta R-CNN [54], FSDetView [52] and AFD-
Net [28] typically comprise two branches: a main branch
to extract features from a query image and a separate sup-
port branch to extract per-class feature vectors from support
images, which are used to re-weight the features from the
main branch. Instead of feature reweighting, PNSD [57]
and Meta Faster R-CNN [16] make use of a distance metric
to compute the similarity between query features and dif-
ferent support features, which are extracted from different
branches. Instead of directly computing features per sup-
port image, RepMet [20] and FSODup [50] extract support
features to generate representative features. To obtain a de-
tector for novel classes, MetaDet [48] and GenDet [29] es-
timate detection parameters for novel classes, using only a
few support images. Recent approaches use attention mech-
anisms to improve the detection performance [56, 4, 3].
Wang et al. [47] propose an alternative strategy based on a
two-staged fine-tuning scheme, avoiding an auxiliary meta
branch.

While most few-shot detection methods are examined on
MS COCO, only few approaches are developed for aerial
imagery. Li et al. [24] proposed a few-shot object detector
for aerial imagery termed FSODM, whose functional prin-
ciple is similar to MetaYOLO. YOLOv3 is used as feature
extractor in the meta branch and a lightweight CNN gener-
ates feature vectors used for reweighting. The re-weighted
feature maps are then fed into three separate prediction lay-
ers to produce bounding box coordinates, objectness scores
and class scores. P-CNN [7] extracts query features and
support features similar to Meta R-CNN, which are then
multiplied channel-wise before being processed by the de-
tector head. To address the issue that objects in remote sens-
ing images are arbitrary oriented, while a small number of
samples leads to a sparse orientation space, the authors in-
troduce a prototype learning network and replace the orig-
inal RPN by a prototype-guided RPN. Xiao et al. [53] in-
tegrates a Self-Adaptive Attention Network into Faster R-
CNN, which takes features from support images as input
and updates a hidden relation graph in order to improve the
classification of novel classes by memorizing similar ob-
jects.
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(a) Base training

(b) Few-shot fine-tuning

Figure 1: Overview of the architecture of our proposed DH-
FSDet with the double-head configuration for fine-tuning.

3. Methodology
In this chapter, we describe Faster R-CNN [38] and the

Two-Stage Fine-Tuning Approach (TFA) [47] as basis of
our work. Afterwards, we present the deficiencies of the
existing approach and our novel solution to these problems.

3.1. Base Method

Our proposed method termed Double Head Few-Shot
Detection (DH-FSDet) is based on Faster R-CNN and the
TFA. Faster R-CNN is a two-stage object detection method
generating region proposals likely containing objects in the
first stage. The second stage is responsible for classifying
and refining the proposed object regions and dropping those
regions that only contain image background.

The first stage is implemented by a base network and
a Region Proposal Network (RPN). The base network ex-
tracts semantically strong feature maps from the input im-
age. We apply a ResNet-50 [18] network as base network
and extract the features after every stage. To use the seman-
tically high-level information from late stages combined
with the high-resolution feature maps from early stages, we
apply a Feature Pyramid Network (FPN) [25] which aggre-
gates the output of each stage with the output of the previ-
ous stage by addition. Afterwards, the RPN is applied on
each output of the FPN which decides for each pixel of the
feature map whether an object is present in that region and
estimates a bounding box for the object. For each proposed
region, a RoI Align operation is applied that extracts a seg-
ment from the feature map representative for the object.

In the second stage, for each region proposal two fully-
connected (FC) layers are applied to refine the extracted fea-
tures. Afterwards, a softmax-based classifier and an anchor-
based class-specific regressor is applied to generate the final

detection predictions.
The TFA is targeted towards few-shot object detection.

In the few-shot object detection setting, the total number
of classes in the dataset is split into Nb base classes and
Nn novel classes. While for the base classes all annota-
tions from the dataset are available, for novel classes only a
subset of K annotations is available. In the first stage, the
TFA applies a regular Faster R-CNN training for the base
classes. The target of this base training is to learn features
that are general enough to be reused with novel classes. In
the second stage called fine-tuning stage, the novel classes
are added to the classification stage of the network with ran-
domly initialized weights. Thus, the classification head’s
prediction layer outputs Nb + Nn dimensions instead of
Nb. Afterwards, the softmax is applied over all Nb + Nn

dimensions. For each class, base and novel, K shots are
sampled to create a balanced training set. During training
only the last layers, i.e. the final classification layer and the
final regression layer, are adjusted. All other weights are
fixed to prevent overfitting. Additionally, the learning rate
is reduced by a factor of 20 compared to the first stage.

3.2. Extensions

To improve precision and recall for base and novel
classes, we apply multiple improvements. These exten-
sions are described in this section and are necessary be-
cause of the new challenges imposed by iSAID compared to
MS COCO like a higher number of objects per image and
a more difficult distinction between foreground and back-
ground.

3.2.1 Annotation Sampling Strategy

In the few-shot object detection setting, each class, base and
novel, only uses K shots in the fine-tuning stage. How-
ever, this is neither sensible to represent a practical applica-
tion since more samples for base classes are available nor
is this technically sensible since it reduces the variance of
the data. Thus, we introduce a base shot multiplier MBSM .
Instead of only K shots, we use MBSM · K shots for the
base classes. However, this introduces an imbalance in
the training since objects of base classes appear more of-
ten. Thus, we introduce a novel-class oversampling fac-
tor MNOF which duplicates the images containing objects
from novel classes until each image is present MNOF times
in the fine-tuning dataset. Due to preliminary experiments,
we set both parameters to 5.

3.2.2 Data Pre-Processing

In the TFA, a single annotation is used for each image. If
multiple annotations are present on an image, the image is
duplicated for each annotation. However, this leads to slow
convergence and unstable training since the network is not
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learned with a consistent mapping of an input image to ob-
ject predictions. Thus, we always use all available annota-
tions of a single class for an image during training.

3.2.3 Unfreezing the Region Proposal Network

In the base training of TFA, the RPN is trained to filter out
predictions not containing objects from base classes. This
implies that the RPN is trained to predict novel classes as
background. In the fine-tuning stage, the RPN is fixed and
no weight adjustments are made to generate proposals for
novel classes. This is an adequate approach for datasets
like MS COCO which tend to have large objects in the
foreground that are clearly separable from the background
and most of these foreground objects are annotated. Thus,
the RPN will likely learn to generate a region proposal for
every foreground object which results in a class-agnostic
RPN. In contrast, aerial imagery has a much noisier back-
ground since many objects are not annotated. For example,
in iSAID, trees and buildings are not annotated while they
are clearly separable from the background. Thus, the RPN
is learned to be more class-specific than in the case of MS
COCO.

Thoroughly analyzing the results has supported this as-
sumption and has shown that the fixed RPN leads to a low
recall since missed proposals by the RPN can not be recov-
ered in later stages. To increase the recall, we unfreeze the
RPN in the fine-tuning stage. This adjustment enables the
RPN to learn generating proposals for novel classes.

3.2.4 Double Head Predictor

Since the base classes are trained only with K shots in the
fine-tuning stage, they are subject to a phenomena called
catastrophic forgetting. Thus, the impact of the large dataset
used for the base training is diminishing over time and only
the generalization of the K shots remains. Another prob-
lem of TFA is the impact of the randomly initialized novel
classes on the base classes due to the softmax-classifier. If
the classifier erroneously predicts a high score for a novel
class because of insufficient training data, the score of all
base classes will be low.

To solve this problem, we propose a novel double head
predictor design as shown in Figure 1. In contrast to TFA,
the head for predicting the base classes is not extended dur-
ing fine-tuning but a second head is introduced for predict-
ing the novel classes. For the model of the base training,
the two FC layers after RoI Align are called FC1 and FC2

while the predictor layer is called FCp. In our double head
predictor design used for fine-tuning, FC1 is shared for both
heads. The weights of FC2 are duplicated with the two new
layers being called FC2,b and FC2,n for predicting base
classes and novel classes, respectively. While the weights
of FC2,b are fixed during training, the weights of FC2,n are

trained to enable adjustments towards the novel classes. The
old predictor layer FCp is now called FCp,b for the predic-
tion of the base classes and its weights are fixed to prevent
base class degradation. To predict the novel classes, a newly
initialized FCp,n is introduced. The softmax activation is
applied separately on the results of FCp,b and FCp,n. This
decouples the predictions of base and novel classes and pre-
vents a negative impact of the fine-tuning on the prediction
of the base classes.

4. Experimental Results
In the following section, we first introduce the experi-

mental settings. Then, we compare our proposed few-shot
detection method to state-of-the-art on the iSAID dataset in
quantitative and qualitative manner followed by an ablation
study. Furthermore, the impact of the number of base and
novel classes on the detection performance is examined. Fi-
nally, we present experimental results on a differing dataset.

4.1. Experimental Settings

For our experiments, we use the iSAID dataset [49],
which comprises 2806 aerial images. The dataset pro-
vides ground truth annotations for 655,451 object instances,
which are divided into 15 categories (see Figure 2). On
average, 3.27 classes co-exist per image. The large vari-
ation in Ground Sampling Distance (GSD), i.e. 1.3e-6 to
4.5 meters per pixel, make the detection task, especially
few-shot detection, more difficult. Another difficulty is
posed by the unclear separation of foreground and back-
ground whereas annotated objects in MS COCO are typi-
cally centered in front of a distinct background like a wall.
Moreover, objects in iSAID can be arbitrarily rotated in
contrast to MS COCO. Following the official data prepro-
cessing protocol1, each image is cropped into tiles of size
800× 800 pixels, whereby adjacent tiles exhibit an overlap
of 25%.

We consider three different class splits to perform few-
shot object detection. Table 1 gives an overview of the novel
classes per split, which are unseen in the base training. The
remaining classes are used as base classes. In the first split,
the novel classes only comprise different vehicle classes, i.e.
Helicopter, Ship, Plane and Large Vehicle. Mainly small-
sized objects with a large variation in appearance are typical
for this split. Note that the class Small Vehicle is not consid-
ered due to its high occurrence, which would clearly restrict
the number of suitable images for the fine-tuning stage. The
second split consists of three novel classes, i.e. Baseball Di-
amond, Soccer Ball Field and Roundabout. In contrast to
the first split, the object dimensions are mostly large and
the variation in appearance is generally small. Compared
to the first and second split, the third split comprises more

1https://github.com/CAPTAIN-WHU/iSAID Devkit
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Figure 2: Histogram showing the number of instances per
class. Image taken from [49].

Split Novel Classes
1 Helicopter, Ship, Plane, Large Vehicle

2 Baseball Diamond, Soccer Ball Field,
Roundabout

3 Ground Track Field, Helicopter, Baseball Diamond
Roundabout, Soccer Ball Field, Basketball Court

Table 1: Overview of novel classes per split.

novel classes, i.e. six. For this, we considered the classes
with the lowest occurrence.

To evaluate the performance of our proposed few-shot
detection method, we compute the mean Average Precision
(mAP) for the novel classes, the base classes and all classes
together. Detections with an Intersection-over-Union (IoU)
to a ground truth annotation above 0.5 are considered as
correct. In novel fine-tuning phase, we set the number of
annotated bounding boxes per class to 10, 50, and 100, re-
spectively. The number of annotated bounding boxes are
selected in order to determine an appropriate number of re-
quired samples for the few-shot detection task.

4.2. Results on iSAID

The few-shot object detection performance of our pro-
posed DH-FSDet on the iSAID dataset is given in Table
2. For comparison, we consider two differing few-shot de-
tection methods that achieve state-of-the-art results on the
MS COCO benchmark dataset. The first method termed
few-shot object detection and viewpoint estimation (FS-
DetView) [52] is a feature reweighting approach based on
Meta R-CNN. To account for the large variation in ob-
ject dimensions, we attach a FPN onto the base network.
The second method referred to as two-stage fine-tuning ap-
proach (TFA) [47] is a straightforward approach, which is
used as basis for our approach. As described in Section
3.1, TFA initially trains the entire object detector, i.e. Faster
R-CNN with FPN, on the base classes followed by fine-
tuning both base and novel classes on a small balanced

training set. Note that only the last layers of the detector
head are fine-tuned, while all other parameters of the model
are kept fixed. For fair comparison, the same base net-
work, i.e. ResNet-50, is used for all methods and weights
pre-trained on ImageNet are used for initialization. As the
results strongly depend on a small number of samples, three
separate fine-tunings are performed per model and the mAP
is averaged over all runs.

Our proposed method clearly outperforms the baseline
methods on both the novel and base classes. While FS-
DetView achieves better detection accuracies on the novel
classes than TFA, the detection accuracies on the base
classes drop by a large margin compared to the results
achieved after the base training, indicating the loss of
knowledge gained during base training. TFA circumvents
this large drop on the base classes by keeping most parame-
ters fixed during fine-tuning. However, only fine-tuning the
last layers of the detector head is not sufficient to accurately
localize and classify the novel classes as will be discussed
in Section 4.3. Our proposed method facilitates the learning
of novel classes, while the results on the bases classes are
in contrast to the baselines almost similar to the results after
the base training.

As expected, the mAP values increase with more shots
for all methods. In particular, using only 10 shots is not suf-
ficient to adequately learn the large variation in appearance
and size of occurring objects in the iSAID dataset. Com-
paring the results of the first and second split confirms this
assumption, as clearly higher mAP values are achieved for
the novel classes in the second split, which exhibit compar-
atively less variation in appearance. Though the third split
mainly comprises novel classes with small variation in ap-
pearance, the mAP values for the novel classes are worse
compared to the second split. This indicates that consider-
ing more novel classes impede the few-shot learning task.

Qualitative experiments given in Figure 3 confirm the
improved detection accuracy for both novel and base classes
compared to the baseline approaches.

4.3. Ablation Experiments

In the following, ablation experiments are performed to
analyze the impact of our proposed extensions in more de-
tail. Results are exemplarily given for a single run with 100
shots on the second split in Table 3. We first analyze the
impact of parameters that affect the data preparation dur-
ing fine-tuning, i.e. the base shot multiplier MBSM and the
novel-class oversampling factor MNOF . As described in
Section 3.2.1, MBSM is introduced to increase the num-
ber of samples for the base classes, while MNOF adjusts
the duplication of novel class annotations to balance the
class distribution. Note that both values are set to 1 for the
baseline method. Increasing the number of samples for the
base class by a factor of 5 yields an improved mAP for the
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Method Shot mAP (in %) - Split 1 mAP (in %) - Split 2 mAP (in %) - Split 3
Novel Base Novel Base Novel Base

FSDetView [52]
10 1.3 ± 0.3 33.8 ± 0.5 8.7 ± 2.1 29.8 ± 1.6 4.6 ± 1.2 32.9 ± 3.4
50 7.2 ± 2.3 35.3 ± 0.5 26.8 ± 2.8 30.0 ± 1.1 17.1 ± 1.1 34.6 ± 1.1
100 10.2 ± 1.2 36.4 ± 0.6 32.8 ± 2.0 30.4 ± 0.4 24.1 ± 1.1 34.5 ± 1.3

TFA [47]
10 3.3 ± 0.8 58.6 ± 0.3 9.0 ± 2.6 56.5 ± 0.8 3.8 ± 1.1 59.0 ± 1.5
50 4.7 ± 0.0 60.7 ± 0.5 12.1 ± 1.9 58.5 ± 0.8 5.6 ± 1.4 60.9 ± 0.3
100 5.0 ± 0.3 61.4 ± 0.3 14.4 ± 1.5 59.2 ± 0.2 5.4 ± 1.1 61.6 ± 0.4

DH-FSDet (Ours)
10 5.2 ± 0.8 65.0 ± 0.2 14.5 ± 1.7 64.5 ± 0.1 9.7 ± 2.2 67.8 ± 0.1
50 12.8 ± 0.8 65.1 ± 0.1 28.9 ± 3.4 64.7 ± 0.1 19.6 ± 2.4 68.0 ± 0.1
100 16.7 ± 1.7 65.2 ± 0.1 36.0 ± 1.7 64.8 ± 0.1 23.1 ± 0.9 68.1 ± 0.1

Table 2: Few-shot object detection evaluation on iSAID. We report the mAP for 3 different splits for 10, 50 and 100 shots.
Note that the results are averaged over three runs. Our proposed method outperforms two differing state-of-the-art methods
by a large margin for both novel and base classes.

Figure 3: Qualitative results for FSDetView (top row), TFA (middle row) and our proposed method for 100 shots. Our
proposed method exhibits clearly better recall rates for novel classes in the first split (left three columns) and in the second
split (right three columns) as well as better results for the base classes.

base classes, as more diverse samples are considered during
fine-tuning. However, the detection accuracy for the novel
classes decreases, which indicates that an unbalanced class
distribution in the fine-tuning step yields worse results for
the underrepresented classes. Setting both values to 5 yields
improved mAP values for both novel and base classes.

By default, only a single annotation is considered per im-
age. In case of multiple objects per image, duplicate images
are generated for each object and only the corresponding
annotation is considered for the respective duplicate image.
As this procedure may impede the classification accuracy,

we use all annotations instead. While the detection accu-
racy slightly increases for the novel classes, the detection
accuracy for the base classes is improved by 2.2% in mAP.

To analyze the still low mAP values for the novel classes
in more detail, we examine the precision-recall curves
(PRCs). Figure 4 shows precision-recall curves (PRCs) ex-
emplarily for class Roundabout, which exhibits the lowest
AP values compared to Baseball Diamond and Soccer Ball
Field. The red PRC clearly indicates that one reason for
the low AP is the poor recall rate. We assume that the high
number of missed detections is due to the fixed RPN. As the
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Data Preparation Number of Unfixed Unfixed Double mAP (in %)
MBSM MNOF Annotations RPN Last FC Head Novel Base All
1 1 one - - - 14.8 57.8 49.2
5 1 one - - - 13.0 59.0 49.8
5 5 one - - - 16.0 58.9 50.3
5 5 all - - - 16.4 61.1 52.2
5 5 all ✓ - - 25.8 62.5 55.2
5 5 all ✓ ✓ - 35.5 59.2 54.4
5 5 all ✓ ✓* ✓ 34.0 64.7 58.6

Table 3: Ablation results showing the impact of modifying the data preparation during fine-tuning, i.e. increasing the base-
shot multiplier MBSM and the novel-class oversampling factor MNOF , the number of annotations per fine-tuning sample,
unfreezing of layers and our proposed double head. The results are exemplarily reported for a single run on the second split
with 100 shots. * indicates that the last FC is only unfixed in the novel head.
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Figure 4: Precision-recall curves for our proposed approach
with various configurations exemplarily for class Round-
about to demonstrate the impact of the proposed extensions.
Unfreezing the RPN results in higher recall rates, while in-
troducing the double head yields higher precision values.

generation of region candidates is only learned during base
training, region candidates for novel classes that clearly dif-
fer from the base classes may not be generated and thus,
cannot be detected.

Hence, we unfreeze the RPN during fine-tuning in or-
der to explicitly learn to generate region candidates for the
novel classes, yielding an improved detection accuracy by
9.4% in mAP for the novel classes. As shown in Figure 4
(yellow curve), the recall rate considerably increases by un-
freezing the RPN. This shows that the generalization ability
of the RPN is limited in case of unseen classes, whose ap-
pearance clearly differs from the classes seen during train-
ing. However, the achieved precision is still low, as the
model is not able to confidently distinguish between the
novel class and the background class.

To improve the precision, we analyze the impact of un-

freezing more parameters. While by default only the pa-
rameters in the prediction layers are fine-tuned, we further
unfreeze the parameters of the last fully connected layer,
which is prior to the prediction layers. Note that no further
layers are unfixed to avoid overfitting. The detection accu-
racy considerably improves for the novel classes, while the
mAP for the base classes drops. This indicates that learning
more parameters is essential to achieve good precision for
novel classes, but knowledge about the base classes learned
during the base training gets lost.

Thus, we apply our proposed double head so that the pa-
rameters can be kept fixed for the base classes and learned
for the novel classes, which yields the best trade-of in de-
tection accuracy between the novel and base classes. As ex-
emplarily shown for class Roundabout in Figure 4 (green
curve), the precision is clearly improved by introducing
the proposed double head, which facilitates the learning of
more parameters in case of the novel classes.

4.4. Impact of the Number of Base / Novel Classes

Analyzing the per class mAP for the novel classes in the
second and third split, indicate that more novel classes yield
worse mAP values and that less base classes result in worse
mAP values for the novel classes, respectively. Hence, we
analyze the impact of the number of base and novel classes
in more detail. The results are averaged over three seeds.

First, we vary the number of classes in the base training
(see Table 4). For each experiment, the novel classes of the
third split are used as novel classes. As base classes we con-
sider the three, six and nine classes with the highest instance
count (see Figure 2), respectively. Using more base classes
results in higher mAP values for the novel classes. A rea-
son for the higher mAP is the higher diversity of the classes
and images during base training, yielding less class-specific
features that are kept fixed during fine-tuning, which seems
beneficial to learn novel classes with few examples.

We further vary the number of novel classes in the fine-
tuning stage (see Table 5). Note that the same base training
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# Base Classes mAP (in %) - Novel
3 19.1 ± 0.55
6 20.4 ± 1.67
9 23.1 ± 0.91

Table 4: Impact of different number of base classes during
base training. The novel classes of the third split are used
as novel classes.

# Novel mAP (in %)
Classes RA BD HC GTF SBF BC
1 40.4 41.1 24.6 17.7 16.8 15.0
3 40.1 42.3 24.4 13.0 14.7 10.7
6 39.9 38.8 21.6 14.8 14.3 9.2

Table 5: Impact of different number of novel classes during
fine-tuning. Classes divided by a vertical line are trained
separately. Note that the same base training is used for all
fine-tunings. Abbreviations: RA - Roundabout, BD - Base-
ball Diamond, HC – Helicopter, GTF - Ground Track Field,
SBF - Soccer Ball Field, BC - Basketball Court.

is used for all fine-tunings. For the base training, we use
the base classes of the third split. We consider three dif-
ferent numbers of novel classes, i.e. 1, 3 and 6. In case of
three novel classes, we define two sets of classes based on
their mAP values for fine-tuning with 6 novel classes. The
first set contains the classes exhibiting the highest values
and the second set contains the classes exhibiting the low-
est values. Training with only one novel class leads to the
highest mAP values for all classes but Baseball Diamond
which is most accurately detected when trained with three
novel classes. Increasing the number of novel classes from
three to six only improves the mAP of Ground Track Field.
This indicates that considering more classes that are novel
impairs the learning of the single novel classes.

As the number of base and novel classes clearly affects
the few-shot detection performance, the selection of base
and novel classes is an important setting for specific few-
shot detection tasks. So far, the impact of the selection of
base and novel classes is not examined in detail, which has
to be addressed in future work.

4.5. Results on NWPU VHR-10

For comparison with state-of-the-art approaches, we
evaluate our method on the NWPU VHR-10 [6] dataset. It
contains 800 high resolution remote sensing images with
650 of them including objects of the annotated classes. Of
the total of 10 classes, 7 classes (Ship, Storage Tank, Bas-
ketball Court, Ground Track Field, Harbor, Bridge, Vehicle)
are base classes and 3 classes (Airplane, Baseball Diamond,
Tennis Court) are novel classes. We compare to the results
of [24]. Thus, we follow the evaluation protocol of [24] and

Method Shot mAP (in %)
Novel Base

Faster R-CNN (ResNet-101) 20 33.7 70.0
YOLOv3 20 27.7 76.6
Yolo-Low-Shot 3 12.0 76.1
FSODM 3 32.3 77.9
DH-FSDet (Ours) 3 35.6 93.2

Table 6: Comparison of our proposed few-shot object de-
tector to different state-of-the-art detectors on the NWPU
VHR-10 dataset.

use the identical samples for fine-tuning.
The results are shown in Table 6. For novel classes, we

have a significantly higher mAP than dedicated few-shots
methods for aerial imagery as well as conventional object
detectors like Faster R-CNN even though the conventional
detectors have been trained with 20 shots instead of 3. The
better accuracy is due to the advanced fine-tuning strategy
with careful unfreezing of certain layers. Looking at the
base classes, our proposed method has an even higher ad-
vantage since the use of a FPN and a fixed-scale second
stage induces a higher scale-invariance which supports the
detection in aerial imagery containing objects of highly dif-
ferent scales. Note that the base class performance of our
method is evaluated after fine-tuning while the base classes
of the other models are evaluated after base training. Eval-
uating after fine-tuning is a harder task since only a small
number of samples is available for the base classes during
fine-tuning, which makes a model prone to catastrophic for-
getting.

5. Conclusion
In this paper, we proposed a novel few-shot detection

method for aerial imagery based on TFA. To account for
the often high number of object instances in aerial images,
we applied a novel annotation sampling and pre-processing
strategy, yielding a better exploitation of base class anno-
tations and a more stable training. We further proposed
a modified fine-tuning scheme to reduce the number of
missed detections. To prevent loss of knowledge learned
during the base training, we introduce a novel double head
predictor, exhibiting the best trade-off in detection accuracy
between the novel and base classes. Our proposed method
outperforms state-of-the-art baselines on publicly available
aerial imagery datasets. Furthermore, we demonstrated how
the selection of novel and base classes affects the detection
performance. In future work, we will analyze in more detail
how the selection of base and novel classes, e.g. similarity
of base and novel classes, affects the detection performance.
As the size, appearance and orientation of objects strongly
vary in aerial imagery, we will evaluate the impact of differ-
ent data augmentation techniques for few-shot detection.
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