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Abstract

Visual Question Answering (VQA) is a challenging task
that requires a cross-modal understanding of images and
questions with relational reasoning leading to the correct
answer. To bridge the semantic gap between these two
modalities, previous works focus on the word-region align-
ments of all possible pairs without attending more attention
to the corresponding word and object. Treating all pairs
equally without consideration of relation consistency hin-
ders the model’s performance. In this paper, to align the
relation-consistent pairs and integrate the interpretability
of VQA systems, we propose a Cross-modal Relational Rea-
soning Network (CRRN), to mask the inconsistent attention
map and highlight the full latent alignments of correspond-
ing word-region pairs. Specifically, we present two rela-
tional masks for inter-modal and intra-modal highlighting,
inferring the more and less important words in sentences or
regions in images. The attention interrelationship of con-
sistent pairs can be enhanced with the shift of learning fo-
cus by masking the unaligned relations. Then, we propose
two novel losses LCMAM and LSMAM with explicit super-
vision to capture the fine-grained interplay between vision
and language. We have conduct thorough experiments to
prove the effectiveness and achieve the competitive perfor-
mance for reaching 61.74% on GQA benchmark.

1. Introduction
Recently, with developments in deep learning models,

we have witnessed great progress in both Computer Vision
and Natural Language Processing (NLP). As cross areas
between vision and language, many multi-modal learning
tasks, such as image captioning, image-text matching, and
visual question answering (VQA) have received increasing
attention from the research community. Compared with
other multi-modal tasks, VQA [4] needs to predict the cor-
rect answer when giving an image and a related question,
which requires not only fine-grained semantic understand-
ing of texts and images but also relational reasoning.

Extensive flexible learning and reasoning methods are

Question: Who is wearing the scarf?807173

807177

807173

807177

scarf

Answer: Women

807173Who

807177
Semantic Path

Figure 1. An example for visual question answering. The seman-
tic path is provided by the GQA dataset. The picture is segmented
into grids and represented by grid features. Regions with num-
bered red bounding boxes are related to green words in the ques-
tion.

built to tackle the VQA problem [3, 48]. A popular frame-
work for VQA first represents images and questions as
global features, then fuses them into a common space by bi-
linear fusion methods [9, 49, 5, 10, 23]. The fused features
are fed into a classifier for answer prediction [3]. Attention
mechanisms [47] are widely used to capture fine-grained
cross-modal relations. Based on obtained relations, various
reasoning methods like MAC [17] and Probabilistic Neural-
symbolic Models [45] are proposed to execute sequential
reasoning for the final answer.

The work mentioned above has been proved to be ef-
fective and bridge the gap between perception and cogni-
tion. However, prior works mainly focus on the process of
reasoning but ignore the importance of relations learning
across different modalities. Superior fine-grained relations
can boost the performance of the reasoning block. Common
attention mechanisms for VQA task helps to learn the inter-
relationship between every possible word-region pairs with-
out consideration of original explicit alignments between
question words and image regions.

Intending to capture more accurate relations across vi-
sual and textual modalities and improve the performance
of the reasoning process, we propose the Cross-modal Re-
lational Reasoning Network (CRRN). Specifically, differ-
ent from the common attention-based approaches, we addi-
tionally utilize the correspondence relations between ques-
tions and images to guide the attention map of cross-modal
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and single-modal to be more accurate. Meanwhile, the ex-
plicit correspondence relations make the deep neural net-
work more transparent and interpretable. Furthermore, ex-
plainable models such as NSM [19] rely on the probabilis-
tic graph. It’s a strong prior structured knowledge from the
pre-trained scene graph generation model. Instead, we only
utilize the coarse explicit alignments between objects and
the corresponding words in sentences. It reduces the com-
plexity of the pipeline. It should be noted that these coarse
alignments are easy to obtain, either provided by the dataset
or parsed by deep learning tools. As shown in Figure 1,
the GQA dataset provides the alignments in the semantic
path. The more fine-grained correspondence relations be-
tween visual and language features will be further extracted.
Two relational masks named inter-modal mask and intra-
modal mask are designed to highlight these consistent re-
lations and benefit to the inter-modal and intra-modal in-
teractions. Specifically, in the process of inter-modal in-
teraction, we use the text feature to guide the fine tune of
the image feature. Intuitively, the image feature should pay
more attention to words that have a consistent relation with
it. Therefore, the inter-modal mask is used to highlight the
corresponding words in the question. In the single visual
modal for image representation learning, we use an intra-
modal mask to infer the more critical image regions, which
helps to attend to more question-related visual features.

In this paper, a novel relational reasoning network is
proposed in which the consistent relations across the two
modalities are emphasized for better relations learning and
relational reasoning. The proposed CRRN improves the
accuracy of answer prediction while integrating the trans-
parency and interpretability of the VQA system. The con-
tributions can be summarized as follows:

(1) Two relational masks are designed to highlight corre-
spondence relations and eliminate the interference informa-
tion across the two modalities.

(2) A neural network is trained with novel objective
functions to capture fine-grained relations with supervision.

(3) We improve relational reasoning by learning better
cross-modal relations and achieve competitive performance
on the GQA benchmark.

2. Related Work

2.1. Relational Reasoning

Relational reasoning tries to solve VQA by learning the
relationships between individual visual regions and words
[27, 12, 8, 33, 46, 25]. Image and text both contain rich
information but reside in heterogeneous modalities. The
designed models for the cross-modal task need not only
to learn the features for images and texts to express their
respective contents but also the correspondences between
the detected visual objects and the textual items (words or

phrases). Many studies have validated that the correspon-
dences are helpful to model a more reliable relationship be-
tween images and texts [27, 35, 16, 3]. Recently, some stud-
ies explored to utilize semantic-enhanced strategies to learn
the visual-semantic correspondence. Qi et al. [39] con-
structed pairwise combinations between regions and words
to represent the correlations. They utilized KNN method to
model these correlations for learning visual-semantic align-
ments. Huang et al. [16] used a multi-regional multi-label
CNN to extract semantic concepts, and then used images
and semantic concepts to generate the sentence representa-
tion. Hudson and Manning [19] proposed a model called
Neural State Machine (NSM) for the visual questions that
need compositionality and multi-step inference. A proba-
bilistic graph is first predicted as a structured semantic rep-
resentation of the image. Then, NSM executes sequential
reasoning guided by the input question over the predicted
graph. The proposed model achieves state-of-the-art results
on VQA-CP [1] and GQA [18] datasets.

2.2. Attention Models for VQA

Co-attention based methods and enhanced embedding
based methods, that are relevant to our work, will be briefly
introduced for visual question answering. Exploring the re-
lationship between a given image and a related question
contributes to reasoning the right answer, which has been
of key interest in the VQA task over the past few years. The
mainstream method for this is multi-modal fusion. Images
and questions are represented as global features [50], later
fused to a common space by some effective multi-modal fu-
sion methods [22, 9] for the right answer representation and
prediction. To align the key part between textual and visual
contents, a large amount of co-attention based methods are
proposed for VQA [21, 48, 36]. Lu et al. [9] proposed a
co-attention model to jointly reason for images and ques-
tions. Guo et al. [13] utilized the information in answer to
re-attends the corresponding visual objects in images. Yu
et al. [49] reduced the co-attention method into two steps,
self-attention for a question embedding and the question-
conditioned attention for a visual embedding. Nam et al.
[34] proposed a multi-stage co-attention learning model to
refine the attention based on the memory of previous atten-
tions. Yu et al. [48] proposed a deep Modular Co-Attention
Network to conduct dense interactions between each ques-
tion word and each image region. Beyond the alignment
of important objects and words between images and ques-
tions, VQA also requires full understandings of the contents
of each modality. Some enhanced embedding based meth-
ods are proposed to add some complementary information
to the original contents. Hu et al. [15] proposed a relation-
wise dual attention network to extract the implicit connec-
tions between salient objects. Liu et al. [30] represented
an image with a set of integrated visual regions and corre-
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Figure 2. Overview of the proposed CRRN. The blue and orange blocks in the left of the figure are transformer-based encoders for
questions and images, respectively. Two attention maps Sinter and Sintra indicating the latent relationship across two modalities and
the single visual modality are obtained at the process of model training. Two relational masks Minter and Mintra for inter-modal and
intra-modal are adopted to highlight the interrelationship of word-image region pairs with explicit alignments.

sponding textual concepts.

2.3. Transformer-based Architecture for VQA

Transformer [44] is an encoder-decoder structure, which
is formed by stacking several encoders and decoders. It con-
sists of a self-attention module to learn the latent relation-
ship among words and capture the internal structure of the
sentence. BERT [7], evolved from the encoder of the trans-
former, has achieved great success in the field of language
understanding. Inspired by the success of BERT, several
transformer-like models [32, 31, 29, 2, 28, 42, 41] accom-
panied with large scale pretraining tasks (e.g. masked lan-
guage modeling and masked visual-feature classification)
have been used in cross-modal tasks such as VQA. ViL-
BERT [31] and LXMERT [42] apply a single-modal trans-
former to the image and sentence respectively, and then use
a cross-modal transformer to combine the two modalities.
VisualBERT [29], and Unicoder-VL [28] concatenate im-
ages and sentences into a single input of the transformer.

In addition, some individual modules in the transformer
are also applied in cross-modal tasks. Yu et al. [48] and
Peng et al. [37] used self-attention for each modality of vi-
sion and language. Then co-attention is adopted for modal-
ity fusion. MCAN [48] used an encoder-decoder struc-
ture, performing self-attention for language modality as an
encoder, followed by a decoder, where self-attention and
co-attention for vision modality are used. By contrast, Peng
et al. [37] stacked several layers. In each layer, co-attention

is used first, followed by self-attention for each modality.

3. Method
In this section, we propose a novel framework CRRN

for VQA which is depicted in Figure 2. The left is the
common pipeline of Transformer-like architectures, where
we briefly review in section 3.3. In the right of the figure,
we depict two sub-modules closely related to the proposed
method which will be introduced thoroughly in section 3.4.

3.1. Input Representation

Following recent approaches, grid features [20] from the
pre-trained detector are the main choice for visual features,
which make the model design and training process much
simpler and perform competitively against their region-
based counterparts. Every image is represented by a set
of features {i1, i2, ..., im}, where m is the number of fea-
tures and the dimension of each feature is set as dv . The
bounding box related to each feature is represented as the
coordinates in the upper left and lower right corner. Each
item in the bounding box (xmin, ymin, xmax, ymax) is a
pixel value. We first normalize these values by the height
and width of the image for numerical stability and then
add their areas as a new feature. The obtained feature is
(xmin

W , ymin

H , xmax

W , ymax

H , Area). We embed the 5-d fea-
ture to a high-dimensional representation P ∈ Rm×dv as
positional features. The visual features and positional fea-
tures are concatenated together and passed through a linear
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layer. The output is the final image representation.
As for textual features, we trim all questions to a maxi-

mum length of n. Each word in the question is embedded
into a 300-dimensional Glove Vector [38], which is pre-
trained on a large scale dataset. Then word embeddings
{t1, t2, ..., tn} where n ∈ [1, 29] is the length of the ques-
tion, are passed through LSTM network with dh hidden
units. Finally, we utilize the output features of all words
to obtain a question representation T ∈ Rn×dh .

3.2. Encoders and Attention Method

We adopt two transformer encoders for each modality.
As shown in Figure 2, each layer in the language encoder
consists of a multi-head self-attention and a feed-forward
sub-layer. For the image encoder, it should be noted that
guide-attention is added after the self-attention. It uses the
output of the previous layer and the textual features as in-
put. The co-attention mechanism is achieved in this sub-
layer and the textual content is used to guide the fine-tuning
of every visual feature. More specifically, as shown in the
scaled dot-product attention mechanism [44]:

A(Q,K, V ) = softmax(
QK⊤
√
dk

)V, (1)

where Q ∈ Rn×dk , K ∈ Rm×dk , V ∈ Rm×dk mean a set
of query, key, and value vectors. n and m are the numbers
of query, key vectors, and dk is the dimension of the key
vectors. Each visual feature is used as a query, and all the
token-level features in the question are a set of key vectors.
After getting the score of the current visual feature and each
question token feature, the visual feature is represented as
the weighted sum of these token-level features. We simply
stack L layers in-depth for each encoder. Then we adopt
Multi-Layer Perception (MLP) on the outputs X and Y
from encoders to obtain aggregated representations of the
whole questions and images represented as X̃ and Ỹ . Fol-
lowing Anderson et al. [43], we view VQA as a multi-label
classification task. So, we apply an element-wise product
on X̃ and Ỹ and get the fused features Z ∈ RD, where D is
the dimension of Z. The fused features are fed into weight-
sharing classifier W ∈ RD×C with a sigmoid function to
predict score ŝ ∈ C for each candidate answer:

ŝ = sigmoid(W⊤Z). (2)

Then binary cross-entropy based loss [43] is employed for
classification as our loss function:

LCE = −
M∑
i=1

N∑
j=1

sij log(ŝij)− (1− sij)log(1− ŝij),

(3)

where M and N indicate the number of training questions
and candidate answers. s and ŝ are ground truth and pre-
dicted scores respectively.

3.3. Extraction of Relational Masks

As is depicted in Figure 1, GQA provides semantic paths
to highlight some words and the location of correspond-
ing image regions for answering a visual question. For ex-
ample, when asking ’Who is wearing the scarf’ according
to the figure below, the highlighted words are ’scarf’ and
’who’. The corresponding image regions marked by the red
bounding box are numbered as ’807177’ and ’807173’, re-
spectively. We utilize the coarse explicit alignment such
as (’scarf’, ’807177’) and (’person’, ’807173’) to explore
more fine-grained consistent relations between the textual
and visual features.

Specifically, given an image I with m grid features and
a question T with n words, we first extract a set of coarse
alignments in the semantic path. For one of the alignments
represented as (ti, B), ti indicates the ith word in the ques-
tion and B indicates the bounding box of the corresponding
image regions annotated manually. We can obtain an inter-
modal consistent relational mask Minter ∈ Rn×m defined
as the following way:

Minter(ij) =

{
0 P (B, bj) = 0,

1 P (B, bj)>0,
(4)

where 1 and 0 represent that there is with and without a re-
lation between ti and jth grid feature ij . P is a function
to compute the value of intersection-over-union (IoU) be-
tween the ground truth bounding box B and the bounding
box bj of grid feature ij . Therefore, Minter(ij) = 1 indi-
cates the grid has an intersection with B and it is reasonable
to assume that the grid feature ij has a consistent relation-
ship with the word ti. If a word in the question does not
present in the semantic path, it has no explicit relation with
any of the grid features. Minter represents the fine-grained
relation between any word and grid feature. Meanwhile, to
further highlight the important grid features, an intra-modal
relational mask Mintra ∈ Rm is designed as follows:

Mintra(j) =

{
0 Minter(:, j) = 0,

1 else,
(5)

where Minter(:, j) = 0 indicates for every word ti in the
question, Minter(ij) = 0. Instead, if the grid feature has a
consistent relation with word ti (Minter(ij) = 1), it should
be attached more importance and marked as ’1’ in Mintra.

3.4. Relational Learning with Masks

To enhance the attention interrelationship of textual and
visual pairs with consistent relations, we use the relational
masks in section 3.3 as supervision. We will introduce the
Cross-modal Mask Attention Module (CMAM) for intra-
modal and Self-modal Mask Attention Module (SMAM)
for inter-modal. The two modules help the VQA system
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capture important contents in two modalities with the shift
of learning focus. Specifically, we use the fine-grained con-
sistent relations to guide the model to attend to the related
image regions or question words by enlarging their attention
weights.

CMAM As illustrated in Figure 2, after L stacking lay-
ers of image encoder, we get the final attention map about
every visual and textual feature pair named as Sinter ∈
Rk×m×n. k is the number of heads in multi-head atten-
tion, m and n are the number of visual features and word
tokens in the question-image pair. Generally, the attention
map demonstrates the latent relationship across two modal-
ities learned by the model. To enhance the consistent rela-
tions of corresponding word-region pairs and to make the
model more transparent, the inter-modal relational mask
Minter is applied to mask the inconsistent attention weights
in Sinter. We additionally define an auxiliary objective
function LCMAM to help to train the whole model.

LCMAM =

p∑
i=1

max(β1 −max(S1), 0),

S1 = Sinter ⊙Minter,

(6)

where p is the total number of training samples (image-
question pairs) within a semantic path in the dataset and
β1 is the threshold of the maximum value in S1.

After the masking operation is adopted, we can obtain
a new version of attention map S1. The attention weights
in S1 imply the interrelationship of visual and textual pairs
with consistent relations. The maximum value of S1 in-
dicates the network’s ability to model these alignments.
To extend the degree of this ability, we employ a hyper-
parameter β1 to be the upper bound and encourage the
model to approach it based on the idea of hinge loss. specif-
ically, when the maximum value is larger than β1, the model
learns the relations thoroughly and there is no need to opti-
mize, thus the loss is 0. On the contrary, if the model is not
well learned, the gap between the threshold and the maxi-
mum value of S1 will be utilized to conduct optimization.

SMAM Similar to the CMAM , the model is expected
to learn an accurate attention distribution within the single
visual modality, and the image regions within consistent re-
lations are expected to be captured. Specifically, the final
image visual features Y are obtained at the last layer of the
image encoder. Then we conduct a two-layer MLP for Y to
get the attended features Ỹ :

Sintra = softmax(MLP (Y )),

Ỹ =

n∑
i=1

(Sintra)iyi,
(7)

where Sintra ∈ Rn×1 is the learned attention map about
visual features. To highlight the important visual features in

the attention map, the intra-modal relational mask Mintra is
adopted, and the corresponding objective function LSMAM

is designed for the model training.

LSMAM =

p∑
i=1

max(β2 −
q∑

j=1

S2, 0),

S2 = Sintra ⊙Mintra,

(8)

where q is the number of visual features within relation in
Mintra. β2 indicates the threshold of the sum of S2.

As the definition of softmax function, it’s easy to know
that the sum of the original visual attention map Sintra

equals 1. After masking the irrelevant attention weights
by Mintra, the sum of S2 indicates how much attention
the model assigns to those visual features within a con-
sistent relation to the question words. The sum should
be a large value and close to 1 if the model captures
most of the relative visual features. Therefore, similar to
LCMAM , LSMAM employs a hyper-parameter β2 to ex-
tend the model’s learning capacity to the maximum degree.
Only when the sum of S2 is smaller than β2, the loss func-
tion LSMAM works. finally, the integrated loss function L
is as follows:

L = γ1LCE + γ2LCMAM + γ3LSMAM , (9)

where γ1, γ2 and γ3 are the parameters to combine three
loss functions.

4. Experiments
4.1. Dataset

We evaluate the performance of our proposed method on
the common benchmark GQA [18]. GQA covers 113,018
photo-realistic images. The questions are divided into five
different types including Choose, Logical, Compare, Ver-
ify, and Query. The dataset is popular with deep reasoning
tasks: over 85% of questions with 2 or 3 reasoning steps
and 8% of questions with 4+ reasoning steps. The GQA is
also annotated with scene graphs extracted from the Visual
Genome [26] and functional programs that specify reason-
ing operations for each pair of image and question. The
task of GQA is the same as VQA (i.e., answer single-image
related questions), but GQA requires more reasoning skills
including spatial reasoning, relational reasoning, logic, and
comparisons. 22M questions in the dataset are generated
from the ground truth image scene graph to explicitly con-
trol the quality of questions. We use the more common
“balanced” version that has been designed to reduce biases
within the answer distribution (similar in motivation to the
VQA2 dataset [11]) and includes 1.7M questions split into
70%/10%/10% for training, validation, and test sets, respec-
tively. We adopt the standard accuracy metric and the more
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detailed type-based diagnosis supported by GQA to evalu-
ate the results.

4.2. Experimental Setup

Our framework is implemented using PyTorch and
trained with Adam optimizer [24] on 4 NVIDIA GTX
1080ti. We use Ubuntu 16.04.6 LTS with a CPU @
3.70GHz, and the total memory is 32GB.

The hyper-parameters of our model used in the experi-
ments are set as follows. The number of words in questions
is padded to 29. For visual features, the region-based fea-
tures for comparison are from a ResNet-101 [40] model and
the grid features are from a ResNeXt-152 [14] model. Both
models are pre-trained on the Visual Genome dataset [26].
The number of the region-based and grid-based features are
set to 100 and 510 respectively. The dimension of input
object features, input word features, and fused multimodal
features are 2048, 512, and 1024. And the number of atten-
tion heads is 8. We follow the suggestions in official GQA
guidelines to take testdev as our validation set. For the re-
sults on testdev split, we train the model on train split with
the latent dimension of the multi-head attention being set
to 512; for the result on GQA test split, we train the model
on the train and val splits with a larger latent dimension of
1024. The threshold β1 in CAM is set to a series of con-
stants and a variable relevant to the length of the question.
The other threshold β2 mentioned in SMAM in sub-section
3.4 are set to higher values which range from 0.6 to 1. For
the final combined loss function, as is described in Equa-
tion 9, γ1 and γ3 are both set to 1 and γ2 changes from 0
to 0.001 during the training process. The best base learning
rate for SAMinter and SAMintra are set to 2.5te−5 and
1e−4, where t is the current epoch number starting from 1.
All the models are trained up to 11 epochs with the same
batch size 64. For single-model settings, to have a fair com-
parison, we consider all models are similar to ours. They
did not use the ensemble submissions to the GQA chal-
lenge and a much stronger prior structured knowledge such
as scene graphs of images.

To gain further insight into the relative contributions of
different aspects of our model to its overall performance,
we conducted multiple ablation experiments. Specifically,
we validate the importance of using grid features and two
attention sub-modules. All the results reported in our ab-
lation study are based on a small model architecture with
8 multi-head attention heads and 64-dimensionality of each
head. To reduce time consumption, Only train split was
used for training and test-dev split was used for validation.

4.3. Ablation Study on GQA Testdev

To gain further insight into the relative contributions of
different aspects of our model to its overall performance, we
conducted multiple ablation experiments. Specifically, we

Visual features accuracy(%)
frcn 51.49

frcn+fr-bbox 56.28
grid 58.35

grid+gr-box 59.34

Table 1. Ablation studies on various visual features on the GQA
testdev split. ’frcn’ indicates region-based features named faster-
rcnn features, ’fr-bbox’ and ’gr-box’ indicate bounding box fea-
tures for fatser-rcnn and grid features, respectively.

Method Binary Open Acc
base 78.62 42.98 59.34

base + CMAM/β1=0.2 78.81 43.56 60.03
base + CMAM/β1=0.4 78.99 44.03 60.16
base + CMAM/β1=0.6 78.76 43.04 59.44
base + CMAM/β1=0.8 78.57 43.32 59.50
base + CMAM/β1=1.0 78.49 43.38 59.49

base + CMAM/β1=1.0-0.033*len 78.76 42.63 59.21
base + SMAM/β2=0.6 78.93 43.92 60.12
base + SMAM/β2=0.8 78.86 44.38 60.33
base + SMAM/β2=1.0 79.41 43.52 60.07
base + C-SMAM/c=0 79.53 43.48 60.03
base + C-SMAM/c=8 78.85 44.28 60.30
base + C-SMAM/c=10 78.97 44.71 60.58

Table 2. Ablation studies on CAM and SAM applied to the base-
line. ’Acc’ indicates the overall accuracy. ’base’ indicates baseline
with grid features. ’CMAM’, ’SMAM’ and ’C-SMAM’ indicate
the cross-modal mask attention module, the self-modal mask at-
tention module, and the combination of both, respectively.

validate the importance of using grid features and two at-
tention sub-modules. All the results reported in our ablation
study are based on a small model architecture with 8 multi-
head attention heads and 64-dimensionality of each head.
To reduce time consumption, Only train split was used for
training and the test-dev split was used for validation.

The effectiveness of different visual features As shown
in Table 1, different visual features have different impacts
on the same baseline. First, compared with the widely used
bottom-up region features, grid features help the GQA boost
the accuracy by 6.86% (row 1 & 3). The relevant bounding
box information of grid features helps to slightly improve
the performance by 0.99% (row 3 & 4), which is in con-
trast with great increments of 4.79% (row 1 & 2) in region-
based features. The reason for the difference may be that
the bounding boxes of region-based features can bring more
information on spatial relations. While the order of grid
features sequence naturally encodes the relative position of
the corresponding image region. Thus, we use visual fea-
tures of 2th row (best for region-based) and 4th row (best
for grid) to perform a more in-depth study. A fair compar-
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Model Binary Open Consistency Validity Plausibility Distribution Accuracy
Human [18] 91.20 87.40 98.40 98.80 97.20 - 89.30

Global Prior [18] 42.94 16.62 51.69 88.86 74.81 93.08 28.90
Local Prior [18] 47.90 16.66 54.04 84.33 84.31 13.98 31.24
BottomUp [3] 66.64 34.83 78.71 96.18 84.57 5.98 49.74

MAC [17] 71.23 38.91 81.59 96.16 84.48 5.34 54.06
GRN 77.53 43.35 88.63 96.18 84.71 6.06 59.37

Dream 77.84 43.72 91.71 96.38 85.48 8.40 59.72
LXRT [42] 77.76 44.97 92.84 96.30 85.19 8.31 60.34

MetaNetwork [6] 78.90 44.89 92.49 96.19 84.55 5.54 60.83
SK T-Brain* 79.12 44.76 92.61 96.35 85.63 8.56 60.87

CRRN 77.89 45.12 93.75 96.25 85.11 5.44 61.74

Table 3. GQA scores for the single-model settings, including official baselines and some state-of-the-art submissions

Figure 3. Accuracy as a function of the number of question words.
Performance is reported on the GQA Test-Dev split.

ison between the two will be conducted through the rest of
the ablation study.

The effectiveness of CMAM Since we have verified
the superiority of grid features over region-based features
on the baseline, for time consideration, we evaluate the ef-
fectiveness of CMAM and SMAM only based on the grid
features. Different thresholds β1 represent different levels
of restrictions to the maximum value of attention scores re-
lated to textual-visual consistent relations. ’len’ indicates
the length of the question in a sample pair. Thus, we ana-
lyze the performance of CMAM when β1 is with different
settings. In addition to a constant value, with an assumption
that the maximum scores may be influenced by the length
of questions, we also design a linear function as a thresh-
old that uses the number of question words as a factor of
penalty. We observe that with a fixed value of β1 (β1=0.4) to
the attention scores, the SMAM has a better performance.
Using the threshold varied with the question length leads
to a slight drop of 0.13% on the overall accuracy. Adding
CMAM leads to higher overall accuracy for grid features

(row 1 & 3). The results indicate that it is efficient to em-
phasize the consistent relations between visual and textual
features, helping to model a more accurate fine-grained in-
teraction between the two modalities.

The effectiveness of SMAM As shown in Table 2,
compared with the baseline, additionally adding SMAM
and set β2 to 0.8 achieves 0.99% improvements on the over-
all accuracy (row 1 & 9). It can be observed that when β2

is set to 1.0, the overall accuracy is degraded from 60.33
to 60.07 (row 9 & 10). In this case, the model learns an
attention map that only focuses on visual features having
explicit consistent relations with textual features. However,
some visual features may have implicit alignments with the
textual contents and can not be ignored when enhancing the
alignments of corresponding word-region pairs with explicit
supervision.

The combination of CMAM and SMAM Using the
best settings of CMAM and SMAM , we combine both
modules to see overall performance. Surprisingly, it leads
to a drop of 0.3% accuracy when combining the CMAM
at the beginning of the training process compared to the re-
sult of only using SMAM (60.03 vs. 60.33). It is partly
due to that the suitable learning rates for the CMAM and
SMAM are different. The learning rate for the former is
smaller. The learning rate has experienced two decays in
our experiment (epoch 8 and 10). Therefore, we conduct
experiments to join the CMAM with the SMAM at dif-
ferent training epochs. As shown the bottom three rows in
Table 2, c is the epoch SAMinter begins to join the train-
ing and the weight γ2 for loss function L2 is changed to
0.001 after epoch c, which is set to 0 before. The proposed
method achieves a good result with an appropriate com-
bination of the two sub-modules, which leads to a 1.24%
improvement in the overall accuracy. Specially, accuracy
on open-domain questions (‘Open’ in Table 2) achieves an
improvement of 1.73% against the baseline, which demon-
strates the proposed model’s superior ability to deal with
more complicated scenes and questions.
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What type of material is the crosswalk
near the street lamp made of?

What are the animals that are 
eating the leaves? Which company is the hat from?

Answer: metal

Answer: concrete

Answer: zebras

Answer: giraffes

Answer: nike

Answer: adidas

Figure 4. Visualization of the learned attention for some typical examples in the GQA. Each example shows different attentions for the
same image, learned by the baseline and the proposed CRRN. We also display questions above the image and answers predicted by both
models below the image. The highlighted part in the images and words in red denote the attended visual and textual contents, respectively.

Besides, we draw the curve of accuracy (Figure 3) for
questions with different lengths. The proposed CRRN sur-
passes the baseline nearly for all lengths of questions, with
high improvements for questions with more words, and the
largest gain is for questions with 17 words.

4.4. Compared with SOTA

To demonstrate the effectiveness of our method for
VQA, we compare it with previous state-of-the-art methods
or submissions on the GQA dataset. In Table 3, our pro-
posed method achieves 61.74% overall accuracy on the test
split, outperforming all of the compared fusion-based meth-
ods, attention-based methods, and other reasoning methods.
Compared with the state-of-the-art method LXRT [42], our
method gains an improvement of 1.4% for the overall accu-
racy. While both consider interactions between images and
questions, the proposed CRRN insightfully utilizes corre-
spondence relations to supervise the model to learn mean-
ingful visual regions in images. It demonstrates the signif-
icance of attention supervision. Several prior works have
argued for the great success of large-scale pre-trained mod-
els [31, 29, 28]. Our blocks are easy to be incorporated with
these models. They can indeed be highly beneficial to create
models that are more capable and interpretable.

4.5. Visualization

In Figure 4, compared to the baseline, our model accu-
rately attends to the image regions closely related to the
questions. Take the sample at the first column as an ex-
ample, the proposed model focuses on the keyword “cross-

walk” and the question is correctly understood. And then,
the crosswalk in the image is attended according to the se-
mantic of the question. We can observe that the consistent
relations between the image regions and the question words
are important for answer prediction. From the sample in
the third column, we can find that the proposed CRRN sur-
prisingly has the capacity of attention concentration. It can
be observed that the baseline and CRRN both capture the
right word ’hat’ in the question and the corresponding im-
age region with a high attention weight. However, the base-
line also attends much to some irrelevant regions like the
women’s chest and thighs, which interferes with the pre-
diction of the answer. Instead, the proposed model focuses
only on the relevant areas, the women’s hat, and therefore
gets the right answer ’adidas’.

5. Conclusions

In this paper, we propose a cross-modal relational rea-
soning network (CRRN) for VQA. The network learns a
more accurate fine-grained interrelationship across modals.
Novel relational masks are designed from explicit align-
ments between textual and visual contents. Related objec-
tive functions are applied to supervise the learning process.
The proposed method contributes to capturing the latent re-
lations and boosting the performance of VQA. The experi-
mental results confirm the effectiveness of our work.
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