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Abstract

We present an unsupervised adaptation approach for vi-
sual scene understanding in unstructured traffic environ-
ments. Our method is designed for unstructured real-world
scenarios with dense and heterogeneous traffic consisting of
cars, trucks, two-and three-wheelers, and pedestrians. We
describe a new semantic segmentation technique based on
unsupervised domain adaptation (DA), that can identify the
class or category of each region in RGB images or videos.
We also present a novel self-training algorithm for multi-
source DA that improves the accuracy. Our overall ap-
proach is a deep learning-based technique and consists of
an unsupervised neural network that achieves 87.18% accu-
racy on the challenging India Driving Dataset. Our method
works well on roads that may not be well-marked or may in-
clude dirt, unidentifiable debris, potholes, etc. A key aspect
of our approach is that it can also identify objects that are
encountered by the model for the fist time during the testing
phase. We compare our method against the state-of-the-
art methods and show an improvement of 5.17% − 42.9%.
Furthermore, we also conduct user studies that qualitatively
validate the improvements in visual scene understanding of
unstructured driving environments. 1

1. Introduction
Visual scene understanding is a key component of per-

ception systems in autonomous vehicles (AVs) that deals
with tracking, prediction, object detection, classification,
localization, and semantic segmentation [49, 34]. These
systems are responsible for understanding or interpreting
the environment for safe and efficient navigation and col-
lision avoidance. There has been considerable work on de-
veloping systems that are now deployed in the current gen-
eration of AV technologies [2]. However, most of the scene
understanding algorithms and systems have been developed
for highly controlled or structured environments. This in-
cludes sparse or homogeneous traffic, well-structured roads
with clear lane marking, absence of debris, potholes or
unidentifiable objects etc. Many times, the AVs need to op-
erate in unstructured scenarios that consist of heterogeneous

1Code and Video at https://github.com/divyakraman/BoMuDA-
Boundless-Multi-Source-Domain-Adaptive-Segmentation-in-
Unstructured-Environments

Figure 1: We present a novel unsupervised deep learning-based
approach called BoMuDANet for visual scene understanding in
unconstrained and unstructured traffic environments. In this ex-
ample, we demonstrate the benefits of BoMuDANet on images
taken from the challenging IDD dataset. BoMuDANet accurately
segments out dirt roads as terrains as well as a building, while
preserving its shape. In contrast, the single source baselines
(GTA/CityScapes) do not identify dirt and unstructured roads well,
misclassify parts of sky as building, and fail to capture the shape
of the unstructured building. BoMuDANet benefits from its ability
to selectively distil information from various sources by iterative
self-training, in addition to exploiting a chosen best source via do-
main adaptation.

traffic with cars, trucks, bicycles or pedestrians and there is
less adherence to traffic rules or regulations. Furthermore,
roads are not well-marked or may include dirt or unidenti-
fiable debris. There are still many challenges in terms of
developing robust perception systems for such unstructured
environments.

Recent developments in deep learning [7, 49] have re-
sulted in significant advances in visual scene understand-
ing [14, 45] in structured traffic environments [48, 9]. How-
ever, they do not work well in unstructured or unconstrained
environments like India Driving Dataset [40] (see Figure 1).
This is mainly due to lack of good datasets that consists of
unstructured traffic scenes or outlier objects. For example,
current traffic datasets used for training may not have vehi-
cles such as auto-rickshaws [5]. An approach that can over-
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come these challenges is domain adaptation (DA) [39], a
transfer learning technique that takes advantage of the avail-
ability of large scale annotated data in a different domain
called the ‘source’ domain to perform a task on the ‘target’
domain, for which data is typically scarce. More specif-
ically, DA can leverage many available large-scale struc-
tured traffic datasets such as CityScapes [9], Berkeley Deep
Drive [48], GTA [31], and SynScapes[44] (source domains)
to learn robust feature representations in unstructured envi-
ronments.

Main Contributions: We present a new deep neural net-
work called BoMuDANet for visual scene understanding in
unstructured traffic environments. Our approach consists of
a semantic segmentation technique based on unsupervised
domain adaptation. BoMuDANet includes two novel com-
ponents:

1. Unconstrained traffic environments are highly hetero-
geneous (wide range of object classes) [6]; conse-
quently, using only one source dataset (single source
DA) is not sufficient in terms of providing the network
with adequate information for optimal performance
on the complex target domain. BoMuDANet benefits
from its ability to selectively extract relevant knowl-
edge across different and widely available structured
environment datasets [48, 9]. Moreover, we perform
multi-source DA [53] by alternating between adapta-
tion from a selected source and knowledge distillation
from the remaining sources. Based on the classical
EM algorithm in statistical pattern recognition, BoMu-
DANet performs repeated rounds of training, alternat-
ing between adaptation and distillation to improve per-
formance in each step. We present the self-training al-
gorithm in Section 3.3.

2. Unconstrained traffic scenes may contain objects that
are typically non-existent in current structured envi-
ronment source domain datasets. Our approach in
BoMuDANet uses a simple pseudo-labeling strategy
(Section 3.4) for handling unknown objects encoun-
tered for the first time during the testing phase. The
final probability predictions of the self-training algo-
rithm are directly used to assign proxy labels to un-
known object classes depending on their similarity to
known objects classes in the training dataset. Our ap-
proach helps BoMuDANet detect new objects that are
common in unstructured driving environments.

We have evaluated our approach extensively using the
Indian Driving Dataset (IDD), CityScapes, Berkeley Deep-
Drive, GTA V, and the Synscapes datasets. In unstruc-
tured environments (IDD as the target dataset), we show
that our unsupervised approach outperforms other unsuper-
vised SOTA benchmarks by 5.17% − 42.9%. In structured
environments (CityScapes as the target dataset), we show
that our method outperforms other multi-source DA meth-
ods by 12.70%−90.13%. We have performed extensive ab-
lation experiments to highlight the benefits of our approach.

Figure 2: Extension to SOTA in domain adaptive semantic seg-
mentation. Our approach is the first method to simultaneously per-
form unsupervised multi-source boundless DA segmentation and
can handle unstructured traffic environments.

Moreover, we also perform a user study to highlight the
qualitative benefits of our approach. Overall, ours is the
first unsupervised domain adaptation method for handling
unstructured traffic environments.

2. Prior Work
There is considerable work in domain adaptation (DA)

for semantic segmentation and other perception tasks.
While a detailed review of these methods is not within the
scope of this paper, we briefly mention related work.

2.1. Semantic Segmentation
Semantic segmentation is a pixel-level task, which in-

volves assigning a label to each pixel in an image. The ad-
vent of deep learning has resulted in a many segmentation
techniques for autonomous driving [13, 49, 7, 36, 10, 12].
However, these methods suffer from three issues: (i) the net-
works need to be trained in a supervised manner, thus there
is a demand for large volumes of annotated data; (ii) current
labeled datasets are limited to structured environments; (ii)
current learning methods do not scale well to unstructured
environments.

2.2. Unsupervised Domain Adaptation
Domain adaptive semantic segmentation has been ex-

plored under three different machine learning paradigms
that differ based on the underlying learning approach. At
one end of the spectrum, fully supervised [1] methods
achieve higher accuracy on average, but are limited by
the availability of annotated data. On the other end of
the spectrum, unsupervised methods‘[28, 41, 38, 23, 28,
55, 50, 15, 43, 46] benefit from the lack of dependence
on any training data, but are outperformed by fully super-
vised or semi-supervised methods. Semi-supervised ap-
proaches [18, 20, 32, 30] form a middle ground between
the two paradigms. While there has been some work on us-
ing pseudo labels [4, 19] for training DA models, they do
not scale well in the presence of multiple sources.

2.3. Open-Set and Boundless DA
If the set of labels in the source is equal to the set of

labels in the target, then this type of DA is known as closed-
set DA. On the other hand, if the target domain contains
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Figure 3: Overview of BoMuDANet: The input consists of N sources (s1, s2, . . . , sN ), from which the best-source is selected by the self-
training algorithm (Section 3.3). The self-training algorithm proceeds in an unsupervised fashion to generate the final set of pseudo-labels
that are used to recognize out-of-distribution objects (Section 3.4). The final output consists of the segmentation map of an image in the
target domain.

additional class labels that are not present in the source do-
main, then this type of DA is called open-set DA. In open-
set DA, the additional class labels in the target domain that
do not belong to the source domain are labeled as an “un-
known” class [37]. While open-set DA has been proposed
for object detection and classification [29, 33, 24], they
don’t extend well for pixel-level tasks like semantic seg-
mentation.

An extension to open-set DA is boundless DA, where the
extra classes present in the target domain are explicitly la-
beled. Boundless DA has been recently studied by [4] for
semantic segmentation, where the authors successfully clas-
sify open-set classes, but at the cost of degraded accuracy on
the closed-set categories.

2.4. Multi-Source Domain Adaptation
While multi-source DA has been extensively studied in

the context of other perception tasks like object recognition
and classification [11, 22, 54, 42, 47], it has not been ex-
plored in detail for semantic segmentation [53, 51]. Prior
approaches in multi-source DA suffer from heavy overhead
in terms of the requirement of data from all sources at every
point of training. In contrast, BoMuDA requires only the
pre-trained models, along with data from a chosen source
‘best source’ domain.

We present the first method for unsupervised multi-
source boundless domain adaptive semantic segmentation
(See Figure 2). However, our approach can be generally
applied towards domain adaptation in different perception
tasks such as object recognition. This is a part of our future
work.

3. BoMuDANet
In this section, we formally specify our problem, intro-

duce the notation and present details of our neural network
used for visual scene understanding in unstructured traffic
environments.

3.1. Problem Setup and Notation
Given an RGB image or video of unconstrained traffic

selected from the target domain at test time, our goal is to
identify the correct object class label of each pixel. In the
training phase, we are provided with a set S of N source
domains, in which each source domain is represented as
Si, where i = 1, 2, . . . , N , and one target domain T . The
set of all categories in the target domain is denoted by CT ,
while the set of all categories in the ith source domain is
denoted by Ci. In the boundless DA setting, the target do-
main may consist of open-set categories i.e. classes that are
not present in any of the source domains. More formally,
CT \ {∪iCi} ≠ ∅.

The output probability map2 for an input image belong-
ing to the ith source domain is denoted as Pi ∈ R|Ci|×h×w,
while the ground truth label for the same image is denoted
by yi ∈ Rh×w. In the unsupervised DA setting, the ground-
truth labels for target domain images are not available. We
present BoMuDANet in Section 3.2.

3.2. Overview
Our method, BoMuDANet (Figure 3), trains a deep

neural network using a novel self-training algorithm (Sec-
tion 3.3). The input consists of images and their correspond-
ing labels from multiple source domains and images from

2Each value in this map is the probability of the pixel, in the corre-
sponding location in the input image, belonging to class Ci.
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the target domain. The self-training algorithm generates
probability maps corresponding to the target domain image.

3.3. A Self-Training Algorithm for Multi-Source DA
The main challenge with unsupervised multi-source do-

main adaptation is in setting up a cost function [52] for
training the deep neural network (DNN). This is due to two
reasons: (i) absence of target domain labels and (ii) vari-
ations between different source domains, and each source
and target domain. In the proposed approach, we use the
idea of “pseudo” labels to act in place of the missing target
domain labels. The pseudo labels are the class predictions
from the ‘best source’ single-source DA model, which is
explained below in “Initialization”. These pseudo labels,
along with the pre-trained single-source DA models from
the remaining sources are used for training the deep neural
network with an improvised cost function.

In concurrence with the notion of self-training, we ob-
served that repeated re-training of the deep neural network
with an enriched cost function each time leads to a signifi-
cant boost in accuracy. This is because the model weights
are optimized after each round of training, which in turn op-
timizes the pseudo labels, leading to an increasingly accu-
rate cost function to be used in the next round of training3.
These two optimizations occur in an alternating manner
along with domain adaptation from best source and multi-
source distillation, incrementally improving the accuracy.

The motivation behind the self-training algorithm comes
from the Expectation-Maximization (EM) algorithm [27], a
classical unsupervised learning algorithm in statistical pat-
tern recognition. The EM algorithm consists of two alter-
nating steps− the E step and the M step. The E step sets up
a cost function from observed data, while the M step finds
the model parameters that minimize the cost function. Our
self-training algorithm mimics the principles behind the EM
algorithm.

To setup the cost function for the first iteration, the self-
training algorithm selects the best-performing source from
the N source domains to generates pseudo-labels that serve
as a proxy for the missing target domain labels. This best-
performing source dataset is termed as the “Best-Source”.
The inputs to the neural network are images and GT from
the “Best-Source”, pre-trained single-source DA models for
all the sources, images from the target domain and the
pseudo labels. In summary, the self-training algorithm (Fig-
ure 3) trains the network as follows:

1. Initialize← Best-Source model.

2. Perform the following in an alternating manner:

• Use pseudo labels from previous round of train-
ing to set up a cost function for BoMuDANet.

• Use this cost function along with the remain-
ing N−1 pre-trained single-source DA models to
train BoMuDANet in an end-to-end manner till
convergence.

3We provide evidence of the benefits of repeated re-training in the
supplementary material.

We now describe each step in detail.

3.3.1 Initializing the Best Source Model

We begin by training single-source DA models using each
source dataset, and the target dataset, using an adversarial
DA paradigm [38]. The single-source domain discrimina-
tors (binary classifiers, see architecture below) characterize
how indistinguishable the target domain is from each source
domain. The output of the discriminators averaged over all
target images characterizes the dissimilarity between each
source domain and the target domain. The source domain
with the least dissimilarity is selected as the “best source”.
The deep neural network (DNN) used to train the best
source-target pair is termed the “Best-Source” model.

Architecture: Consistent with adversarial domain adap-
tation [38], our network consists of a DNN for semantic
segmentation, and domain discriminators. The backbone of
the DNN consists of SOTA architectures such as VGG-16
[35], Dilated Residual Network [49], or DeepLab [7] (we
experiment with different backbones in Section 4). Domain
discriminators are neural networks that aim to distinguish
whether the predicted segmentation map is from the source
or target.

Training: The inputs to this model consist of raw images
and GT from the best source domain, raw images from the
target domain T , and the pseudo labels. The model weights
are initialized with parameters corresponding to the Best-
Source baseline obtained in the initialization step. The cost
function consists of a domain adaptation loss formulation
to adapt from the best-source, a knowledge distillation loss
formulation to selectively distil relevant information from
the remaining sources, and a self-training step that utilizes
the pseudo labels. We now describe the three loss functions
that are used to train the network:

• The supervised loss function (Lsup): This is the stan-
dard cross entropy supervised loss function that is used
to minimize the distance between the probability map
outputs and the ground truth labels.

Lsup = −
∑
h,w

∑
c∈Cbs

ybs log(P ), (1)

where c denotes the object category, h,w denote the
height and width of the input images, and P ∈
R|Cbs|×h×w is the output of the model on source do-
main images.

• The unsupervised loss function (Lunsup): For each
target image, we use the trained model from the previ-
ous iteration of self-training to generate pseudo labels
for self-training. The pseudo labels are generated us-
ing the probability map predictions, P ∈ R|C|×h×w.
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More formally,

ypseudo = argmax
c∈C

Softmax(P ). (2)

The pseudo-label ypseudo is used in the unsupervised
cross entropy loss function, Lunsup, as follows,

Lunsup = −
∑
h,w

∑
c∈C

ypseudo log(P ). (3)

• Multi-source distillation (Ldistill): From each of the
single source DA networks, we generate their corre-
sponding target domain probability maps Pi, i ∈ [N ].
To selectively impart relevant knowledge from various
sources, the target domain predictions of BoMuDANet
are distilled using a weighted combination of KL di-
vergence [25] loss terms corresponding to each of the
single-source DA predictions. Kl divergence aligns
probability distributions and a weighted combination
of KL divergence from multiple sources aids in se-
lective extraction of relevant knowledge. The weights
(wi) are determined by the dissimilarity between each
source-target pair (see initialization step above).

Ldistil =
∑
i

wi ×KL(Pbs||Pi). (4)

The three loss functions are combined as follows:

Loverall = λsupLsup + λunsupLunsup + λdistilLdistil, (5)

where λsup, λunsup, λdistil denote the hyperparameters for
the respective loss terms. The domain discriminators are
trained in an adversarial [38] fashion.

3.4. Boundless Domain Adaptation
We present a new method for performing Boundless DA

i.e. to label categories that exist in the target dataset, but
not in any of the source datasets (“open-set” or “private” or
“unknown” categories). Categories that are common to both
the source and the target domains are called “closed-set”
or “shared” or “known” categories. The key assumption in
our solution is that the open-set categories are physically
similar to the closed-set categories. For instance, open-set
categories such as auto-rickshaws are similar to vehicles
like cars and vans. CityScapes [9] provides a definition for
grouping semantically similar classes in autonomous driv-
ing environments. Classes that belong to the same high-
level category will have feature maps that are semantically
similar, and vice versa. This assumption is mild and is com-
monly made in many zero-shot learning strategies [3].

The underlying idea behind training our approach on
open-set classes is to generate the corresponding pseudo-
labels from the labels of the physically similar closed-set
categories. More formally, let yST ∈ Rh×w be the final la-
bels obtained using Equation 2 from the self-training algo-
rithm. Further, let o ∈ O denote an open-set class from
the set of open-set classes, O, and Co denote the set of

closed-set classes that are physically similar to o. We ap-
ply thresholding on yST such that pixels with softmax scores
lower than a threshold τ for a physically-similar closed-set
class are re-labeled as the open-set class. More formally,
let ŷpseudo denote the labels after thresholding, then ŷpseudo
is computed using,

ŷpseudo = T yST (6)

where T (·) is a pixel-level thresholding operator. If lab de-
notes the class label of a pixel in the ath row and bth column
with confidence score cab (maximum probability value over
all classes, as determined by the output probability map of
the self-training algorithm), then the threshold operator at
(a, b) is defined as,

T (a, b) =
{
lab ← o cab ≤ τ and lab ∈ Co
lab otherwise

An alternative to the thresholding operator is to use the KL
divergence metric [25] to measure the similarity between
open-set and closed-set object classes. We empirically ob-
serve, however, via an ablation study that thresholding in
fact outperforms using the KL divergence metric (See Ta-
ble 2).

4. Experiments and Results
We will make all code publicly available. We defer

the technical implementation details of the training routine
including hyper-parameter selection to the supplementary
material.

4.1. Datasets and Evaluation Protocol
We use five datasets - GTA5 [31], SynScapes (SC) [44],

CityScapes (CS) [9], India Driving Dataset (IDD) [40] and
Berkeley Deep Drive (BDD) [48]. GTA5 and SC contain
synthetic simulated traffic videos while CS and BDD con-
sist of real-world traffic in Europe and the USA, respec-
tively. IDD consists of dense and unconstrained traffic con-
ditions and heterogeneous road agents (e.g. autorickshaws)
unobserved in any of the source domains. In addition to
containing new objects, the pixel count (per class) in IDD is
5−10× that of CS

We evaluate our models on the validation set images of
the target domain, using the standard segmentation metrics
[26]: Intersection over Union (IoU) and pixel-wise accu-
racy.

4.2. Results
Main Results on IDD (Table 1): We present results of
three sets of experiments using IDD as the target dataset
in Table 1. In each experiment, we compare BoMuDANet
with single-source baseline models using the BDD, CS, SC,
and GTA datasets, with the BDD dataset selected as the
Best-Source. Note that we do not compare with a combina-
tion of single source datasets as combining multiple sources
and treating them as a single source for DA has been shown
to be ineffective [52]. We compare with SOTA multi-source
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Model Experiment mIoU (↑) mAcc (↑) Road SW Bldg Wall Fnc Pole Lt Sign Veg Trn Sky Ped Rdr Car Trk Bus Mb Bike

I. CS, BDD, GTA −→ IDD (Baseline: [38])

Baselines
CS−→IDD 24.43 65.23 82.46 22.55 25.93 13.22 9.30 15.26 1.92 19.02 75.16 20.41 29.54 31.37 8.12 49.81 8.53 10.41 10.29 6.55
GTA−→IDD 26.74 75.40 79.83 9.54 44.12 16.58 12.16 17.59 0.85 14.35 65.36 18.20 82.61 22.90 6.56 41.53 24.13 15.40 9.02 0.76
BDD−→IDD 35.75 85.65 93.33 27.17 59.77 13.18 15.56 21.03 3.65 29.93 80.52 33.21 93.64 30.62 5.59 53.03 38.34 32.24 6.46 6.27

BoMuDANet Multi-source 37.66 86.50 94.02 31.89 61.79 15.51 16.89 20.61 2.73 35.43 81.75 36.52 94.16 32.12 4.67 54.74 42.64 38.61 5.42 8.51

II. SC, BDD, GTA −→ IDD (Baseline: [38])

Baselines
SC −→IDD 31.55 83.04 92.46 21.25 52.59 4.61 7.87 17.02 2.73 12.60 77.52 4.43 92.38 31.54 23.32 66.59 4.09 18.35 27.27 11.25
GTA−→IDD 26.74 75.40 79.83 9.54 44.12 16.58 12.16 17.59 0.85 14.35 65.36 18.20 82.61 22.90 6.56 41.53 24.13 15.40 9.02 0.76
BDD−→IDD 35.75 85.65 93.33 27.17 59.77 13.18 15.56 21.03 3.65 29.93 80.52 33.21 93.64 30.62 5.59 53.03 38.34 32.24 6.46 6.27

BoMuDANet Multi-source 36.93 86.30 93.82 30.53 61.13 13.34 16.43 21.21 3.57 34.90 81.64 34.54 94.19 31.70 4.64 53.48 40.77 35.54 5.68 7.64

III. CS, BDD, GTA −→ IDD (Baseline: [41])

Baselines
CS −→ IDD 38.53 86.68 93.67 27.08 64.62 25.89 17.80 23.39 4.18 31.29 83.06 29.83 94.22 32.28 11.18 61.68 39.86 33.32 12.08 8.23
GTA −→ IDD 35.85 84.64 89.96 14.06 61.14 22.24 20.10 19.17 4.34 19.88 77.15 28.84 92.14 27.03 11.98 62.87 41.04 34.67 13.10 5.74
BDD −→ IDD 38.29 86.74 93.80 33.33 62.57 14.94 15.35 23.66 3.80 31.95 81.72 34.47 94.26 33.00 8.71 57.11 42.87 39.16 9.41 9.22

BoMuDANet Multi-source 39.23 87.18 93.18 29.97 63.46 24.18 20.97 19.18 4.56 25.64 81.99 35.39 94.19 30.06 11.23 62.01 46.65 39.30 13.39 10.87

Table 1: Main Results: We evaluate BoMuDANet on IDD using CityScapes (CS), Berkeley Deep Drive (BDD), SynScapes (SC), and GTA
as sources. Higher (↑) mIoU and mAcc indicates direction of better performance. Bold indicates best while blue indicates second-best.
Experiments I and II differ with respect to the sources, while experiment III differs with respect to the baseline used. Conclusion: Our
unsupervised multi-source self-training algorithm outperforms the single-source baselines by 3.3%− 54.15%.

Figure 4: In this example, we demonstrate the benefits of BoMu-
DANet on an image from the IDD dataset, depicting a mixture
of challenging driving conditions. The top image in the second
column shows the prediction of our model, and the bottom image
shows the ground-truth. We observe that BoMuDANet accurately
segments the autorickshaws (open-set object, a new type of vehicle
- the third column zooms into the region containing the autorick-
shaw in the prediction and ground-truth), in addition to handling
dense traffic and dirt roads.

DA methods in Section 4.3.
We perform the first experiment with two real datasets

(CS, BDD) and one synthetic dataset (GTA5), and show
an improvement of 1.91 − 13.23(5.34% − 54.15%) mIoU
points over the single-source baselines. In the second ex-
periment, we replace the two real source datasets with two
synthetic source datasets (SC, GTA) and one real dataset
(BDD) with the BDD dataset as the Best Source, and show
an improvement of 3.3% − 38.1% mIoU points over the
single-source baselines. By comparing these two sets of ex-
periments, we demonstrate that using multiple real-world
datasets is more beneficial than using multiple synthetic
datasets.

In the third experiment, we replace the AdaptSegNet
[38] backbone with a stronger SOTA backbone ADVENT
[41], and use LS GAN for adversarial training instead of
Vanilla GAN, and achieve a higher mIoU of 39.23. This
suggests that the performance of our approach will increase

Experiment mIoU (↑) Car Truck Bus Auto

CS, BDD, GTA −→ IDD, Baseline: [38]

Pseudo labeling (PL) 35.68 51.16 33.89 28.99 9.39
PL + training 35.72 52.18 33.93 31.65 9.38

SC, BDD, GTA −→ IDD, Baseline: [38]

Pseudo labeling (PL) 34.60 48.36 30.78 20.82 9.68
PL + training 34.40 49.14 30.44 22.59 9.48

CS, BDD, GTA −→ IDD, Baseline: [41]

Pseudo labeling (PL) 37.27 58.76 36.58 22.15 11.78
PL + training 37.09 58.63 36.65 24.26 11.85

Ablation Experiments on IDD, Baseline: [38]

KL Divergence 35.43 52.12 33.99 31.46 9.29

Table 2: Pseudo labeling strategy for boundless DA: We show
that pseudo labeling can provide semantic information abuot cate-
gories that do not belong to any source domain, for instance, auto-
rickshaws (Auto) found in the IDD dataset (in bold). Moreover,
pseudo labeling is simple in that the generated proxy labels do no
need to be re-trained as there is no marked improvement in mIoU.
We also show that thresholding outperforms KL divergence via an
ablation study.

as newer robust backbone architectures are proposed. We
also validate this hypothesis by conducting experiments on
structured environments as the target domain.

Results for the Boundless Case: In Table 2, we show the
results for the proposed pseudo labeling strategy for bound-
less DA method. Note that the thresholding operator, τ , is a
tunable hyperparameter. A low value of τ will create a bias
towards the private classes, a high value of τ will create a
bias towards shared classes. A trade-off determines the op-
timal value of τ for best performance on both private and
shared classes. Typically, tuning between 80% − 90% of
max confidence score for the particular class works well.

The unsupervised loss function in Equation 3 can be used
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(a) Dirt roads (b) BoMuDANet (c) Unmarked lanes (d) BoMuDANet

(e) Heavy traffic (f) BoMuDANet (g) Boundless class (h) BoMuDANet

(i) Unstructured roads (j) BoMuDANet (k) Clear roads (l) BoMuDANet

(m) Unstructured roads (n) BoMuDANet (o) Unstructured and dense traffic (p) BoMuDANet

Figure 5: Visual Results: BoMuDANet works well in various unconstrained environments including unmarked lanes, dirt roads, heavy
traffic, and boundless category objects (auto-rickshaws) and results in higher accuracy. Each color represents a different object as shown
in the color scheme.

to retrain the network on ŷpseudo, along with yST which acts
as a regularizer. The first row in each experiment shows
the results obtained by proposed strategy of pseudo-labeling
while the second row shows the results obtained by re-
training the generated pseudo labels. However, we found
that the performance of the retrained model is very similar
to original model, mitigating the need for costly retraining
and therefore contributing to the simplicity of the proposed
pseudo labeling strategy.

Qualitative Results and Realtime Performance: We
present the qualitative results in Figure 5. Our method
works well in environments that have dirt roads, absence
of clear lane markings, multiple road objects and unstruc-
tured traffic. Figures 5g and 5h show that BoMuDANet can
recognize auto-rickshaws (boundless category object) rea-
sonably well.

We have included a video demonstration of BoMu-
DANet in realtime in 6 diverse traffic videos containing both
unconstrained (IDD) as well as structured (CityScapes) en-
vironments, along with comparisons. BoMuDANet oper-
ates at 2 fps on IDD and 21 fps on CityScapes with a model
size of 26.5 million parameters. We refer the reader to the
supplementary video.

4.3. Comparsons with SOTA
In Unstructured Environments (Table 3, On IDD): In
Table 3 (On IDD), we compare our approach against other
unsupervised segmentation methods. ZS3Net [3] does zero
shot semantic segmentation, while [4] (UDA) and [4] (Apt.)
builds upon ZS3Net for domain adaptation. [4] (Comb.)
refers to the combined approach for boundless unsupervised
domain adaptation (“BUDA”). It can be clearly observed
that our method surpasses all past unsupervised segmenta-
tion methods by 5.17% - 34.34% on shared classes, with
a much smaller architecture (Table 3, model size) which is
beneficial for practical autonomous driving real-time appli-
cations.

Our hypothesis for the superiority of BoMuDANet over
BUDA is that the latter comprises performance on closed-
set classes in order to achieve improved performance on
open-set classes [3, 4]. In contrast, our method classifies
open-set categories without sacrificing accuracy on closed-
set categories (Table 2, Figure 5). The decreased per-
formance of BUDA on “shared” classes could be due to
decreased generalization capabilities of the model when
trained on the new classes. We also outperform the semi-
supervised method [17] by 42.9%, that uses ground-truth in
100 samples for supervision. [17] fails to acknowledge dif-
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On IDD

Method Model # Size(M↓) mIoU(S↑) mIoU(P↑)

[16] ResNet-18 11.70 27.45 NA
[3] ResNet 101 44.50 29.20 7.90
[4] (UDA) ResNet 101 44.50 32.40 8.10
[4] (Apt.) ResNet 101 44.50 32.70 8.60
[4] (Comb.) ResNet 101 44.50 37.30 18.50
BoMuDANet DRN-D-38 26.50 39.23 11.85

On CS

Method Model Size(M↓) mIoU(S↑) # Sources

[8] ResNet-101 44.50 39.40 Single
[38] ResNet-101 44.50 42.40 Single
[41] ResNet-101 44.50 43.10 Single
[41] ResNet-101 44.50 43.80 Single
[28] ResNet-101 44.50 46.30 Single
[21] ResNet-101 44.50 49.90 Single
[51] VGG-16 138.00 29.40 Multi
[53] VGG-16 138.00 41.40 Multi
BoMuDANet DRN-D-38 26.50 44.63 Multi
BoMuDANet ResNet-101 [41] 44.50 49.59 Multi
BoMuDANet ResNet-101 [21] 44.50 55.90 Multi

Table 3: Comparison with SOTA: We compare with the SOTA in
both unstructured (IDD) as well as structured (CS) traffic. Higher
(↑) mIoU and mAcc indicates direction of better performance.
Bold indicates best while blue indicates second-best. mIoU(S)
and mIoU(P) denote the performance on shared/known and pri-
vate/unknown classes, respectively. Conclusion: Our model is
SOTA on IDD by 5.17% − 42.9% and on CS in the multi-source
setting by 12.70% − 90.13%, with a reduction in model size by
upto to 5.2×.

ferences between various domains, which leads to a degra-
dation in performance.

In Structured Environments (Table 3, On CS): We ad-
ditionally benchmark BoMuDANet in structured environ-
ments, using CS as the target domain and BDD, IDD and
GTA as the source domains. Our method is SOTA in the
multi-source setting by at least 12.70%−90.13% with a re-
duction in model size by upto 5.2×. Methods with ResNet-
101 backbone have an inference time of 156.44 ms, and
models with DRN-D-38 backbone have an inference time of
51.58 ms. On CS, BoMuDA outperforms the corresponding
single-source DA baselines by 2.5% − 21.2% respectively.
Furthermore, stronger backbones will help our model ben-
efit accordingly (Table 1 I and III; and second half of Table
3). Further, comparison of our network (with corresponding
backbones) against single-source baselines reveals that our
model is the SOTA (Table 1, second half of Table 3).

The core step in the approach of [53] is the use of the
CycleGAN [56], which uses images and ground truth from
all source domains at every training step. Our multi-source
approach, in contrast, is more computationally efficient
and requires data only from the “best source’. Pre-trained
single-source adaptation weights can be directly used for
the other datasets, thus offsetting the need for images and
GT from all source domains. The improvement in our ap-
proach comes from individually distilling relevant informa-

tion from multiple domains as opposed to considering im-
ages from all source domains in every iteration.

4.4. Ablation Studies and Additional Experiments
We show the benefits of using multiple sources com-

pared to a single source in Table 1. The multi-source model
outperforms the corresponding single source baselines by
3.3%− 54.15%, demonstrating the efficiency of using mul-
tiple sources. In boundless DA, we replace the thresholding
operator with the KL divergence loss to measure the sim-
ilarity between the open-set classes and physically similar
categories in Table 2. We demonstrate the iteration wise
performance of the self-training algorithm and a study of
tuning the hyperparameters λdistil and λunsup in the sup-
plementary material. Additionally, selecting the best source
at the pixel-level degrades accuracy by 18.05 % due to loss
of contextual information. Finally, thresholding on pseudo
labels [4] to reduce the number of false positives reduces
the mIoU by 4.54 %.

5. Conclusion, limitations and future work
We present a novel learning methods for visual scene

understanding in unstructured traffic environment. Our ap-
proach consists of a semantic segmentation technique that
solves three key aspects of domain adaptation: unsuper-
vised, multi-source and boundless, in unconstrained envi-
ronments. We present a novel training routine that builds
on the ideas of self-training and pseudo-labeling. The self-
training routine is used to selectively distil information from
various sources by iterative self-training, in addition to ex-
ploiting a chosen best source via domain adaptation. In ad-
dition, BoMuDANet can identify unknown objects encoun-
tered during the testing phase via a simple pseudo labeling
strategy. We highlight the benefits of our approach in terms
of performing accurate segmentation and visual scene un-
derstanding in challenging datasets such as IDD. We high-
light improved accuracy over prior methods and perform
qualitative evaluation based on a user study.

Our approach has some limitations. Our current ap-
proach can only recognize new objects by taking advan-
tage of the structural similarities between various objects in
road environments. Currently, our model is unable to detect
classes like animals and other classes that do not share any
similarities with the ‘known’ classes. In addition, the exis-
tence of multiple ‘unknown’ objects that share similarities
with the same set of ‘known’ classes can cause inter-class
confusion. As part of future work, it would be useful to
use the pseudo labeling strategy as a prior, and develop a
training method that exploits zero-shot learning strategies.
The core step in the self-training algorithm is the selection
of a ‘best source’, which can vary from image to image.
Our current formulation does not account for this factor dur-
ing training. In addition, we do not account for variations
within the target dataset, where images can have varying
levels of similarities with the source datasets. Future work
in this area can focus on an importance weighting scheme
for a multi-source domain adaptation network that is more
robust. We would also like to evaluate our approach in other
challenging scenarios and integrate with planning and navi-
gation.
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