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Abstract

Mode collapse is a critical problem in training genera-
tive adversarial networks. To alleviate mode collapse, sev-
eral recent studies have introduced new objective functions,
network architectures, or alternative training schemes.
However, their achievement is often the result of sacrific-
ing the image quality. In this paper, we propose a new
algorithm, namely, the manifold-guided generative adver-
sarial network (MGGAN), which leverages a guidance net-
work on existing GAN architecture to induce the generator
to learn the overall modes of a data distribution. The guid-
ance network transforms an image into a learned manifold
space, which is effective in representing the coverage of the
overall modes. The characteristics of this guidance network
helps penalize mode imbalance. Results of the experimen-
tal comparisons using various baseline GANs showed that
MGGAN can be easily extended to existing GANs and re-
solve mode collapse without losing the image quality. More-
over, we extend the idea of manifold-guided GAN training to
increase the original diversity of a data distribution. From
the experiment, we confirmed that a GAN model guided by a
joint manifold can sample data distribution with greater di-
versity. Results of the experimental analysis confirmed that
MGGAN is an effective and efficient tool for improving the
diversity of GANs.

1. Introduction
Generative adversarial networks (GANs) [11] are a fam-

ily of generative models that implicitly learn the data distri-
bution in an unsupervised manner. This is accomplished by
learning to generate new data samples instead of explicitly
constructing a density function. Since GANs do not rely on
strong statistical assumptions on distributions, there are no
performance limitations on modeling complex manifolds of

*This work was done during his doctoral course in Yonsei University.

a data distribution. Owing to this attractive nature, GANs
have been successful in image-generation tasks.

Despite their promising achievements, GANs are notori-
ously difficult to train because of the training instability and
sensitivity to hyperparameters. Training instability causes
two problems: poor image quality and lack of image di-
versity. Existing studies [5, 10] have shown that these two
issues are in a trade-off relationship with each other. Thus,
the goal of existing GAN models is mainly to focus on im-
proving either the image quality or the image diversity. In
this study, our primary interest is to improve image diversity
without sacrificing image quality.

The lack of image diversity in GAN training is also
known as mode collapse, in which Pmodel captures a single
or a few major modes of Pdata while ignoring many minor
modes. To address this problem, we propose a novel al-
gorithm, namely, the manifold-guided generative adversar-
ial network (MGGAN), which integrates a newly proposed
guidance network to the existing GAN architecture. Note
that the standard GAN consists of a discriminator network
and a generator network. The discriminator aims to distin-
guish the fake images produced by the generator from the
real images. Meanwhile, the generator aims to fool the dis-
criminator by generating fake images that look as realistic
as possible. On the basis of the standard GAN architec-
ture, we leverage the guidance network, which induces the
generator to learn the overall modes of Pdata. The goal of
the guidance network is to induce the generator such that
Pmodel matches Pdata in the learned manifold space. To
this end, the guidance network consists of an encoder for
manifold mapping and a discriminator for evaluating the
dissimilarity between the distributions of Pdata and Pmodel

in the manifold space. In this way, we enforce that the char-
acteristics of the learned manifold space be reflected in the
generator training. It is important to note that the encoder
of the guidance network should be predetermined; encoder
training is independent of the discriminator of the guidance
network. The reason is that the learned manifold should
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consistently provide a meaningful representation that is co-
herent with the goal of the guidance network. Then, all
parameters from the discriminator of the guidance network
are trained jointly with the generator and discriminator net-
works.

The guidance network plays a role in penalizing the
mode imbalance in GAN training. Therefore, the mani-
fold space of the guidance network should represent the
mode coverage of a data distribution well. In this regard,
we employ an encoder layer of a pretrained autoencoder
to define the manifold mapping of the guidance network.
Since the autoencoder can be interpreted as minimizing a
forward Kullback–Leibler (KL) divergence [34], the mani-
fold learned by the encoder is effective in representing the
mode coverage of Pdata [30]. Hence, the feedback from
this encoder manifold regularizes the mode imbalance. By
learning two distributions (i.e., data distribution and regu-
larized data distribution by manifold), the generator effec-
tively covers various modes. Concurrently, we keep the ob-
jective of the original discriminator as modeling each mode
correctly, thus our model does not sacrifice the image qual-
ity; for example, a non-saturated GAN model tends to fol-
low a reverse Kullback-Leibler (KL) divergence.

Finally, on the basis of extensive evaluations on various
benchmark datasets, we show that the proposed algorithm is
effective in resolving mode collapse without losing the im-
age quality. Moreover, our manifold-guided training can be
adopted to various baseline GAN models and consistently
improve their performance.

2. Related Works
Regularizing the discriminator. To address mode col-

lapse, Arjovsky et al. [3] suggested the Wasserstein dis-
tance for GAN metrics, namely, WGAN. Although this new
metric is effective in alleviating mode collapse, their weight
clipping implementation unfortunately causes a pathologi-
cal behavior [13]. D2GAN [27] employed two antithetical
discriminators: one minimizes the forward KL divergence
and the other minimizes the reverse KL divergence. Since
the generator aims to fool both discriminators simultane-
ously, it is effective to escape from mode collapse. How-
ever, their scheme increases training instability by oscillat-
ing between two antithetical discriminators. Our MGGAN
is similar to D2GAN in that our guidance network holds
the forward KL properties inherited by the pretrained au-
toencoder. However, training the MGGAN is quite stable
because two discriminators are formulated with the same
divergence.

Unrolled GAN [25] introduced a surrogate objective
function to better simulate a discriminator response and
achieved the robust performance against mode collapse.
However, it is not clear whether their achievement sac-
rifices the visual quality because of no real data experi-

ments. Heavy computational overheads due to k-step dis-
criminator updates is also a well-known drawback of Un-
rolled GAN. DRAGAN [16] proposed a gradient penalty
(GP) term to regularize large gradients, which is also ef-
fective in mitigating mode collapse. LSGAN [23] replaced
the sigmoid cross-entropy loss term in standard GAN with
a least squares loss term, equivalent to Pearson χ̃2 diver-
gence. While such a replacement reduces the possibility of
mode collapse, neither DRAGAN nor LSGAN has shown a
significant achievement for improving diverse image gener-
ation with real datasets.

Later, SNGAN [26] introduced advanced normalization
layers and achieved state-of-the-art image quality on var-
ious benchmark datasets, better than GP-based methods
[16, 31]. Mescheder et al. [24] analyzed the convergence of
existing regularization strategies on a simple yet prototyp-
ical example and showed that the unregularized gradient-
based GAN optimization does not always converge to the
Nash equilibrium. Then, they chose the simplified ver-
sion of zero-centered gradient penalties that leads to local
convergence. Progressively growing GAN [14] suggested
a new training method that educates the generator and the
discriminator progressively from low resolution to high res-
olution. Although these studies have successfully stabilized
GAN training, they mostly focus on generating high-quality
and high-resolution samples rather than on resolving the
mode collapse problem. PacGAN [21] provided theoretical
analysis of the benefits of showing multiple samples simul-
taneously, by packing to the discriminator and successfully
mitigated the mode collapse problem. The main difference
between PacGAN and our MGGAN is that PacGAN utilizes
the relationships among multiple samples (i.e., data space),
while MGGAN utilizes the feature distribution formed by
the predefined encoder (i.e., manifold space) to improve
GAN training.

Learning to map between the latent and the data do-
main. Several recent studies have proposed to learn a map-
ping function from Pdata to Pz , namely, an inference map-
ping. ALI [9] and BiGAN [8] suggested a discriminator for
joint distribution matching, which learns a relationship be-
tween data and latent distribution. They used the inference
mapping for sample reconstruction and conditional gener-
ation, but do not improve either the image quality or the
image diversity.

MDGAN [6], α-GAN [30] and VEEGAN [33] utilized
a reconstruction loss as an additional constraint to the in-
ference mapping. Although the reconstruction loss is ef-
fective, its training suffers from instability because its unit
mismatches that of an adversarial loss; reconstruction loss
is a distance measure, whereas adversarial loss is a diver-
gence measure. MDGAN separated training into a mode
regularization step (encouraging the mode coverage) and a
diffusion step (leading the high quality generation). Follow-
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Figure 1. Structure of the proposed model. xreal and xfake are samples of Pdata and Pmodel, respectively; z is a latent vector; E, G, and
D are an encoder, a generator, and a discriminator network, respectively. The subscript of D means input sample space. The guidance
network consists of E and Dm, where m implies manifold space. FC means fully connected layer.

ing the principle of the variational inference [15], α-GAN
adopted the adversarial loss to match the latent distribution;
α-GAN replaces the autoencoder part of MDGAN by the
variational autoencoder. Unlike MDGAN and α− GAN
, VEEGAN [18] applies the reconstruction loss in the la-
tent domain rather than in the data domain to mitigate the
image-quality degradation (i.e., image blur). Although both
MDGAN and VEEGAN are effective in handling mode col-
lapse, their results often sacrifice the image quality. AL-
ICE [19] aimed to improve the training instability of GANs
by adopting a conditional entropy, formulated as the cycle
consistency [36]. In summary, the aforementioned tech-
niques improve joint distribution matching toward either
reconstructing samples or resolving mode collapse. How-
ever, they commonly suffer from the discrepancy between
the theoretical optimum and the practical convergence [19].
This results in either image blurs during the generation or
inaccurate inference mapping.

3. Manifold-guided GAN

Our goal is to generate diverse samples, i.e., solving
mode collapse, without sacrificing the image quality. To
achieve this, we propose a new algorithm that induces a
generator to learn the entire modes of Pdata as well as pro-
duces realistic samples. Specifically, we introduce a guid-
ance network, which leads the generator to produce sam-
ples reflecting the specific manifold characteristics. The
proposed model is constructed by combining the standard
GAN, which consists of a generator, G, and a discrimina-
tor, Dx, with this guidance network, and this is shown in
Fig. 1.

For the sake of distinguishing between the true and the
estimated probability distribution, we mark with a hat the
estimated variables; in our study, since the encoder maps the
true probability distribution to the manifold, E(x ∼ Pdata)
is mapped onto Pm and E(x ∼ Pmodel) is mapped onto
Pm̂, where m represents the manifold space.

Our guidance network aims to reduce the divergence be-

tween the projections of Pdata and Pmodel on the manifold
space. The guidance network is composed of an encoder,
E, and a discriminator, D. The encoder maps Pdata and
Pmodel to the manifold space. The discriminator for the
guidance network, Dm, distinguishes the encoded Pmodel

from the encoded Pdata, i.e., Pm and Pm̂, respectively.
The following equations show the objective function for our
MGGAN, where the guidance network is implemented with
the non-saturated GAN:

min
Dx,Dm

Ex∼Pdata
[log (Dx (x)) + log (Dm (E (x))) ]+

Ez∼Pz [log (1−Dx (G (z))) + log (1−Dm (E (G (z))))] ,

min
G

− Ez∼Pz [ α log (Dx (G (z))) + (1− α)log (Dm (E (G (z))))] .

(1)
As described in the above equations, the two discrimina-
tors, Dx and Dm, do not explicitly affect each other, al-
though both of them affect the generator. From the bottom
equation, the generator attempts to meet two goals simulta-
neously: the first is to minimize the dissimilarity between
Pdata and Pmodel, equivalent to that of a non-saturated
GAN, and the second is to minimize the dissimilarity be-
tween their mapped distributions onto a manifold space. It
is worth noting that our two discriminators concurrently af-
fect the generator training, and, thus, the two discriminators
are implicitly influenced by each other through the genera-
tor. Also, the encoder of a guidance network is designed to
derive the most representative manifold of Pdata where the
coverage of all modes of Pdata is captured. As a result, the
guidance network can induce the generator training in that
the generator is capable of producing diverse samples be-
cause Pmodel tends to encapsulate all modes of Pdata influ-
enced by the characteristics of the encoder of the guidance
network.

3.1. Characteristics of the guidance network

As shown in Fig. 1, the guidance network consists of an
encoder and a discriminator. To solve the mode collapse,
we designed the encoder E such that the output distribution
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Figure 2. Mode collapse test learning a mixture of eight Gaussian spreads in a circle with standard deviations of 0.01 (left) and 0.35 (right).

of encoder Pm can cover the overall range of all modes of
Pdata; all modes of Pdata should be reflected in construct-
ing Pm. To meet these criteria, we employ the encoder of a
pretrained autoencoder.

The autoencoder first learns the latent representation of
a dataset using the encoder and then reconstructs it by de-
coding it from the latent. Because the autoencoder net-
work is trained to minimize the reconstruction errors (i.e.,
L1, L2, or a cross-entropy loss between the input and its
reconstruction), the autoencoder could observe all modes
of a true data distribution. In fact, this is closely related
to the forward KL divergence property [34]. Suppose we
model the reconstruction errors by the cross-entropy loss
(i.e., H(Pdata,Pmodel), where H is the entropy); the autoen-
coder can be interpreted as following a forward KL diver-
gence between Pdata and Pmodel (i.e., KL(Pdata ||Pmodel)
= H(Pdata,Pmodel) - H(Pdata)). This forward KL property
ensures that the manifold derived by the encoder can ac-
count for all modes of a data distribution regardless of the
reconstruction quality; it tends to average all Pdata modes
[12], as shown by the red graph in Fig. 1. Although us-
ing the autoencoder alone causes quality degradation of the
image generation (e.g., image blurs), this is advantageous to
achieve the goal of the guidance network, which induces the
generator to learn a true distribution without missing modes.
Owing to its being a useful property of the autoencoder, the
encoder serves as an effective manifold space such that Pm

can reflect the overall modes of Pdata. Specially, we pre-
train and fix the parameters of the autoencoder using a real
dataset. In this way, it is possible to keep the manifold prop-
erty of the encoder and reduce uncertainty of the inference.

Since the manifold space is a topological space, a general
distance measure is not suitable for the dissimilarity mea-
sure between two samples, one from Pm and the other from
Pm̂ [20]. To measure the dissimilarity between Pm and
Pm̂, the discriminator of the guidance network Dm learns
to separate two distributions in the manifold space accord-
ing to the adversarial learning. To construct Dm, we use a
structure and a divergence identical to those of the discrim-
inator of the standard GAN. By controlling the weights for

two loss terms, we can strengthen or weaken the effect of
the guidance network. That is, when the weight from the
feedback of the guidance network is increased, MGGAN
can achieve greater diversity. The detailed analysis is pro-
vided in the quantitative evaluation (Table 1). Because two
terms consistently use adversarial loss, free from unit mis-
match, we still achieve stable training under various choices
of weights.

3.2. Relationship between Dm and Dx

To better understand the role of the guidance network,
we focus on the relationship between the discriminator of
the guidance network Dm and the original discriminator
Dx. Interpreting it in depth, we argue that Dm and Dx have
a complementary relationship. Suppose the data distribu-
tion is a mixture of two Gaussian modes (blue line), as de-
picted in the graph in Fig. 1. Then, each discriminator leads
the generator to reproduce the target distribution, which is
represented by the green line in the figure. In ordinary GAN
models, Dx leads the generator to choose either of the two
modes, and not both; thus, the generator influenced only
by Dx is susceptible to mode collapse. This is because Dx

follows the properties of reverse KL divergence [2]. On
the contrary, Dm induces the generator to cover the overall
modes, such as the average distribution of the two modes.
It is because Dm follows the properties of forward KL di-
vergence inherited by the latent space of the autoencoder.
We call this phenomenon mode averaging because the gen-
erator tends to learn the average-like distribution. In this
study, we intend to utilize the complementary properties of
Dx and Dm. As MGGAN utilizes two discriminators, the
mode collapse is mitigated by mode averaging, while the
mode averaging is improved by mode collapse. As a result,
we expect to improve the sample diversity while preserving
the sample quality.

3.3. Comparison to ALI/BiGAN, MDGAN, and
VEEGAN

Several recent studies have stated that traditional GANs
imposing unidirectional mapping (i.e., generation mapping)
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are insufficient for solving the lack of diversity in GAN
training. To address this problem, they suggest utilizing
an inference mapping to regularize the generator training
[9, 8, 6, 33]. The network architecture used in these stud-
ies is similar to the proposed model in that they also ex-
ploited an encoder architecture to map Pdata into a low-
dimensional manifold space. However, their encoders are
designed to map Pdata into Pz (i.e., inference mapping) to
reproduce Pdata through the generator. Meanwhile, we in-
tend to use the encoder only for regularizing Pdata to follow
the forward KL properties.

More specifically, previous studies utilizing inference
mapping employed the discriminator for joint distribution
matching [9, 8], reconstruction loss (i.e., pixel-wise L1 or
L2 loss) [6], or both [33]. Although introducing inference
mapping is effective in addressing mode collapse in GAN
training, it cannot avoid either training instability or a trade-
off issue between the image diversity and image equality.

The discriminator for joint distribution matching is used
to evaluate both the generation and the inference mapping
by distinguishing between two joint distributions: the joint
distribution of the real data and its inferred latent vector
from an encoder, and that of the real latent vector and its
generated data from a generator. In other words, a single
discriminator should achieve two different goals. D evalu-
ates 1) whether the generated data are real and 2) whether
both joint distributions match. Thus, the discriminator be-
comes insensitive to subtle changes in each distribution.
Consequently, the training is difficult to converge, thus lead-
ing to the degeneration of sample quality and to the in-
crease in training instability. With this reconstruction loss,
MDGAN and VEEGAN improve inference mapping com-
pared to ALI and BiGAN. However, it is difficult to tune
parameters for balancing between adversarial loss and re-
construction loss because their units are different. (e.g., ad-
versarial loss measures the divergence, whereas reconstruc-
tion loss measures the pixel difference)

In our work, we use the encoder only for regularizing
the generator training in a way that the generator tends to
follow the forward KL properties. It is possible because the
data distribution projected onto the encoder, Pm, is a mode
regularized version of its target data distribution. Therefore,
our guidance network encourages the generator to learn the
overall modes of Pdata and to not be distracted by either
joint distribution matching or reconstruction loss.

4. Evaluation
For the quantitative and qualitative evaluations, we uti-

lized one simulated and three real datasets: CelebA [22],
CIFAR-10 [17], and Stacked MNIST [25]. Note that the in-
put dimensionality of CelebA is (64, 64, 3), that of CIFAR-
10 is (32, 32, 3), and that of Stacked MNIST is (28, 28, 3).
A denoising autoencoder [7] was adopted for the guidance

Table 1. Results of the Stacked MNIST evaluation measuring the
covered modes over the 1k modes MNIST and the KL divergence
between the model distribution and the data distribution. MGGAN
achieved better performance than those of the other competitive
GANs (i.e., DCGAN, ALI/BiGAN, and VEEGAN).

MODEL COVERED MODES KL DIVERGENCE

DCGAN 99 3.4741
ALI/BIGAN 148 3.0982
VEEGAN 182 2.9534
MGGAN (α)
0.7 382 2.4436
0.5 418 2.4088
0.3 999 0.3642

network to encourage robust feature extraction.

4.1. Synthetic data

To demonstrate that the guidance network helps GANs
prevent mode missing, we trained and tested the network
using a simple 2D Gaussian mixture model, eight modes of
which were evenly distributed along a circle [25]. We set
the standard deviation (std) to 0.01 and 0.35, respectively,
to investigate how the interval among modes affects mode
collapse. Fig. 2 compares the MGGAN, GAN, Unrolled
GAN 1, and VEEGAN 2 models. When modes were far
apart (i.e., std = 0.01), the GAN suffered from mode col-
lapse, whereas other models effectively solved this prob-
lem. In contrast, when the modes were adjacent (i.e., std
= 0.35), unrolled GAN and VEEGAN captured almost all
modes, but generated highly scattered samples that did not
accurately represent the true distribution. Unlike in the ear-
lier example, the GAN outperformed both unrolled GAN
and VEEGAN in the latter experiment. In both cases, our
MGGAN consistently resolved mode collapse with an ac-
curate representation.

Interestingly, we observed that MGGAN first captured
each mode and then deviated from mode collapse; Fig. 2
supports this when the std is 0.01. This is because MG-
GAN is based on the standard GAN, but the guidance net-
work induces a generator to learn the entire modes. For this
reason, MGGAN shows learning patterns similar to those
of the GAN with a std of 0.35 and can generate samples of
fine quality similar to that of the GAN.

4.2. Quantitative evaluation

Here, we evaluated MGGAN on the Stacked MNIST,
CelebA, and CIFAR-10 datasets.

Stacked MNIST. For the quantitative evaluation to solve
the mode collapse, we utilized the Stacked MNIST dataset.
This dataset was synthesized by randomly concatenating
three MNIST samples to construct 1k modes (i.e., from 000
to 999). With the Stacked MNIST, we first trained other

1Refer to http://github.com/poolio/unrolled gan.
2Refer to http://github.com/akashgit/VEEGAN.
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Table 2. Comparison of the image diversity using the MS-SSIM
with the diversity ratio of each algorithm (i.e., the diversity of
the generated images divided by the diversity of a real dataset)
and FID. Four baseline GANs and our MGGANs were compared.
Note that the MS-SIMM of a real dataset is 0.3727. NB: The lower
the MS-SSIM and FID, the higher the diversity.

METRIC DCGAN LSGAN DRAGAN DFM

MS-SSIM
ORIGINAL

0.4695
(79.38%)

0.3904
(95.46%)

0.3934
(94.74%)

0.3996
(93.27%)

WITH MG
0.3872

(96.26%)
0.3784

(98.50%)
0.3899

(95.59%)
0.3814

(97.72%)

FID
ORIGINAL 14.9491 16.6938 14.8731 13.0080
WITH MG 14.0103 15.9083 14.7922 12.8047

competitive GANs (i.e., DCGAN, ALI/BiGAN, and VEE-
GAN) and our MGGAN, where the architecture of all mod-
els is identical to that of DCGAN3. Then, we counted the
number of modes produced by each GAN model. To do
this, we applied a pre-trained MNIST classifier on 50k sam-
ples generated from each model and aggregated the number
of distinct classes [25]. On the assumption that at least one
sample per mode is generated out of 50k generated samples,
the ideal performance is to cover 1k modes. Additionally,
we measured a reverse KL divergence between the gener-
ated sample distribution (i.e., model distribution) and the
data distribution, which was considered as a uniform distri-
bution over all 1k modes. The evaluation results are sum-
marized in Table 1. From this experiment, our MGGAN
achieved better performance than those of other models in
both measures; we recovered more modes, but obtained a
smaller divergence. Interestingly, the more we relied on
the guidance network (i.e., the smaller α), the greater we
recovered the modes; almost all modes were recovered at
α = 0.3. From these results, we confirmed that adding the
guidance network with the proper α effectively alleviates
the mode collapse.

CelebA. To evaluate the image diversity using the MS-
SSIM [28], we used only the CelebA dataset.

To evaluate the extendibility of our MGGAN, we
constructed four variants of MGGAN. That is, we se-
lected four different GANs as baseline networks and
then modified each by adding the guidance network.
The baseline GANs reported state-of-the-art visual qual-
ity in data generation, but were prone to mode col-
lapse. In this study, we utilized four baseline networks,
namely, DCGAN [29], LSGAN [23], DRAGAN [16], and
DFM [35], and developed variants of MGGAN, namely,
DCGAN-MG, LSGAN-MG, DRAGAN-MG, and DFM-
MG. For a fair comparison, the network architectures of
both a generator and a discriminator follow that of DC-
GAN. Moreover, we utilized the suggested hyperparam-
eters from each baseline work without any fine-tuning.
Our implementation code has been made publicly avail-

3Refer to github.com/LazarValkov/GanModeCollapseEvaluation.

able at https://github.com/QuickSolverKyle/Tensorflow-
MyGANs.

To compare the four variants of MGGAN with their re-
spective baseline GANs, we measure FID and MS-SSIM;
10K and 100 samples generated from four baseline GANs
with and without the guidance network are used. Table 2
summarizes the average score of the MS-SSIM and FID
measurements repeated 10 times for each model. From this
experiment, we find that the four variants of our MGGAN
significantly improve the image diversity compared to the
baseline GANs all the time. Note that a smaller MS-SSIM
implies better diversity and the lower FID indicates better
diversity and quality. Furthermore, the MS-SSIM values of
all MGGANs were close to that of real data (i.e., 0.3727).

These show that the proposed model is effective in han-
dling mode collapse. The reason is that the level of image
diversity from the proposed model nearly approaches its op-
timal limit, which is the image diversity of a real dataset.
Particularly, DCGAN-MG showed a notable improvement
over DCGAN because DCGAN is more prone to mode col-
lapse.

PacGAN [21] reported impressive performance with re-
gard to increasing the generation diversity by using the
Stacked MNIST and CelebA datasets. Specifically, they
performed best on Stacked MNIST by covering all modes.
To compare MGGAN with PacGAN on a real dataset (i.e.,
CelebA), we reproduce PacGAN2 based on DCGAN by re-
ferring the official code 4 and compare it with ours by us-
ing FID scores. While PacGan scores 14.1194, MGGAN
achieves 14.0103 with an α of 0.5 and a latent dimension
of 128. This result indicates that MGGAN provides com-
parable yet slightly better performance than PacGAN in the
real dataset. Other than the comparable performance for im-
proving the diversity, we highlight that the idea of MGGAN
can be extended to other applications, such as Resembled
GAN [4].

CIFAR-10. The inception score [32] was used to assess
the visual quality of GANs using the CIFAR-10 dataset, and
a larger score represents higher quality. Following Salimans
et al. [32], we computed the inception score for 50k gener-
ated images from baseline GANs and our MGGANs using
CIFAR-10. Fig. 3 plots the inception score as a function
of iteration (top) and time (bottom), respectively. The ta-
ble in Fig. 3 summarizes the average of the inception score
from four baseline GANs and the corresponding MGGANs.
We observed that the inception score from DFM was not as
high as that reported in [29]. This drop might be caused
by the modification to the network architecture of DCGAN.
Still, DFM showed the highest score among other GANs.
From this experiment, we observed that the inception scores
did not decrease in our model, and this observation held
for four different variants. More specifically, we confirmed

4Refer to http://github.com/fjxmlzn/PacGAN
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Metric Method DCGAN LSGAN DRAGAN DFM Metric Method DCGAN LSGAN DRAGAN DFM

Inception score
Original 6.4706 6.3243 6.4468 6.5854

FID
Original 53.6387 56.8106 52.8582 52.4390

with MG 6.4728 6.3416 6.4942 6.6076 with MG 53.2985 53.1518 52.4649 51.7607

Figure 3. Comparison of the inception scores as a function of iteration and time and FID (mean ± std) on CIFAR-10. The inception scores
and FID (mean ± std) in the table are the average scores of five repeated measurements of each model.

that our MGGAN can achieve the image quality of baseline
GANs within approximately 0.04 tolerance of the inception
score. We conduct an additional evaluation of measuring
the FID scores on CIFAR-10 and confirm the improvement
in all baseline networks. As the FID score measures the
sample quality and diversity simultaneously, the amount of
improvement clearly demonstrates our improvement.

We show the benefit of MGGAN by using the state-of-
the art model. Among many recent models [26, 24, 14, 1]
reporting a high inception score, we choose [26] as a base-
line GAN model because other models have nontrivial im-
plementation issues in modifying the training scheme. To
reproduce [26], we replace the batch normalization of the
DCGAN discriminator with spectral normalization. We ob-
serve that the FID scores of SNDCGAN with/without the
manifold guidance algorithm are 12.4458 and 13.3389 on
CIFAR10 dataset, respectively. From the diversity improve-
ment in SNDCGAN, we confirm that our algorithm can im-
prove the performance of the recent state-of-the art model
with a meaningful margin.

4.3. Qualitative evaluation

In this section, we discuss the effect of the guidance net-
work and determine whether it 1) causes degradation in vi-
sual quality, and 2) induces a meaningful manifold mapping
to increase the image diversity.

First, we compared the generated images from the base-
line models and the corresponding MGGANs. Fig. 4 vi-
sualizes those results. The left-hand side shows the gener-
ated images from the baseline GAN, whereas the right-hand
side presents those from the MGGAN. From this qualitative
comparison, it is difficult to recognize the quality difference
from both results. Therefore, our achievement in improving
the image diversity is not the result of sacrificing the visual
quality. These results are analogous to the quantitative eval-

uation reported in the table of Fig. 3.

Second, we examined whether the encoder mapping in-
duces a meaningful manifold space for enhancing diversity.
In this experiment, we claim that the generator can cover
more modes if it reproduces more accurate images. It is a
reasonable statement because the image reconstruction can
be an effective tool for measuring the quality of mapping
between the latent and the image. To assess the mode cover-
age, we devised a new method to generate the reconstructed
image using the manifold and the generator. For that, we
built an additional network that transforms our manifold
space Pm into a latent space Pz to infer the latent vector
of real data. Because this network transforms the encoder
output into a latent vector, we could construct a cyclic map-
ping, i.e., z ⇒ x ⇒ m ⇒ z. Although this additional net-
work is never utilized during our training, we intentionally
developed this network to derive ẑ corresponding to x and
then reconstruct x using the generator G(ẑ). On the basis of
this reconstruction experiment, we could evaluate how ac-
curate our model can reproduce the real data, even without
explicitly imposing the reconstruction loss. A network for
linking Pm and Pz is composed of 1024 fully connected
layer (FC) − batch normalization (BN) − rectified linear
unit (ReLU) (1024 FC − BN − ReLU) dimension of Pz FC.
Fig. 5 shows the reconstructed images with their target im-
ages. They were from the CelebA test dataset, and all four
variants (i.e., DCGAN-MG, LSGAN-MG, DRAGAN-MG,
and DFM-MG) were investigated. Odd columns show the
target images, whereas even columns are their reconstructed
images. The results from ALI did not faithfully restore the
attribute of the target faces, such as the gender, glasses, and
background color. On the contrary, our MGGANs repro-
duced the target images reasonably well, maintaining the
original attributes. From this experiment, we could confirm
that our MGGAN produced more accurate reconstruction
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Figure 4. Comparison between randomly generated samples from the original baseline GANs (DCGAN, LSGAN, DRAGAN, and DFM)
and the corresponding MGGANs (DCGAN-MG, LSGAN-MG, DRAGAN-MG, and DFM-MG).

ALI DCGAN-MG LSGAN-MG DRAGAN-MG DFM-MG
PSNR 11.95 ± 0.12 16.52 ± 0.06 16.47 ± 0.13 16.54 ± 0.04 16.46 ± 0.10
SSIM 0.2731 ± 0.0085 0.5112 ± 0.0060 0.5007 ± 0.0042 0.4999 ± 0.0060 0.5015 ± 0.0087

Figure 5. Reconstruction quality comparison of MGGAN variants (DCGAN-MG, LSGAN-MG, DRAGAN-MG, and DFM-MG) with ALI
[6]. The architecture of ALI follows that of the DCGAN networks; the encoder and decoder architectures of ALI are identical to the
discriminator and generator of DCGAN, respectively. Odd columns are test images of the CelebA dataset, whereas even columns are the
corresponding reconstructions from each model. To quantitatively measure how well each algorithm reconstructed the original image, we
employed the PSNR (mean ± std) and SSIM (mean ± std) as summarized in the following table.

results than those of the bidirectional mapping approach,
namely, ALI. We believe that our high reconstruction accu-
racy on the overall subjects supports the effectiveness of our
guidance network toward diverse mode coverage.

5. Conclusions
In this paper, we propose a new algorithm that induces a

generator to produce diverse samples without sacrificing vi-
sual quality, by matching the distribution under the designed
manifold using the guidance network. We found that the
encoder of a pretrained autoencoder is effective to reflect
the mode coverage of a true distribution, thus adopted it
as a guidance network. Consequently, the generator avoids
mode missing during training because it receives the feed-

back for the mode coverage of a data distribution from the
guidance network.

We believe that this idea of manifold mapping can be
further extended toward integrating prior information into
generator training. We hope that our work provides a ba-
sis for future work for controlling the generator with prior
knowledge.
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