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Abstract

Zero-shot learning (ZSL) algorithms typically work by
exploiting attribute correlations to make predictions for un-
seen classes. However, these correlations do not remain
intact at test time in most practical settings, and the result-
ing change in these correlations leads to adverse effects on
zero-shot learning performance. In this paper, we present
a new paradigm for ZSL that: (i) utilizes the class-attribute
mapping of unseen classes to estimate the change in target
distribution (target shift), and (ii) propose a novel technique
called grouped Adversarial Learning (gAL) to reduce neg-
ative effects of this shift. Our approach is widely applicable
for several existing ZSL algorithms, including those with
implicit attribute predictions. We apply the proposed tech-
nique (gAL) on three popular ZSL algorithms: ALE, SJE,
and DEVISE, and show performance improvements on 4
popular ZSL datasets: AwA2, aPY, CUB, and SUN.

1. Introduction

Zero-shot learning (ZSL) algorithms are designed to
train classifiers using examples of seen classes to be able
to generalize and predict any set of unseen classes [28, 34].
Such models generalize by utilizing additional information,
specifically, semantically relevant mid-level attributes that
(are assumed to) persist between seen and unseen classes.
Hence, the performance of a ZSL model is governed by its
ability to predict these persistent attributes in instances of
unseen classes. The standard view of ZSL assumes class-
attribute mapping for the test classes is available only at
inference time. On the other hand, the transductive ZSL
represents a relaxed view [13, 40] that allows for unlabelled
test set as unsupervised additional information. However,
obtaining a significant number of instances from unseen
classes of interest is not always feasible.

In ZSL, attribute correlations are useful when the ex-
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Figure 1. Our approach to Zero shot learning uses attribute class
map for the specific unseen classes to minimize target shift.

pected label correlation of unseen classes remain consis-
tent with that of train classes. However, we observed that a
key reason for the practical difficulty of predicting attributes
from instances of unseen classes is the adverse effect of
those attribute correlations that are highly likely to change
in the test set, we term this effect correlation shift. When
the attribute predictors of ZSL are viewed as an instance of
multilabel classification, the change in the attribute distri-
bution may be viewed with the lens of domain adaptation
literature as target shift [31]. However, existing target shift
correction techniques from domain adaptation use impor-
tance reweighting, which is not applicable to ZSL (see de-
tail in Sec.3.1), the shift in correlation between the attributes
can be considered as one aspect of target shift. We hypoth-
esize that it is necessary to estimate correlation among at-
tributes in test set to correct correlation shift. We propose
to use class-attribute vectors of test classes to estimate test
correlation.

In the low-resource scenario of ZSL, it is pragmatic
to leverage the more readily available additional informa-
tion about the attribute space. It is much easier to con-
struct a class-attribute mapping of test classes by utilizing
class descriptions from auxiliary sources such as knowledge
bases (e.g. Wikipedia). For example, to train a ZSL im-

2368



age classifier for the rare and endangered Red Wolf animal,
it would be easier to find attributes describing it such as
{slender-legged, large, carnivorous, long-ears} from com-
mon sources rather than obtaining several samples of Red
Wolf images.

To the best of our knowledge, this is the first work which
addresses the phenomenon of correlation shift (as an as-
pect of target shift) in zero shot learning. The contributions
of this work are as follows: (i) As illustrated in Fig.1, we
present a new zero-shot learning paradigm where the clas-
sifier can be tailored to a specific set of unseen classes by
only utilizing additional information such as attribute-class
mapping. Specifically, we show that the proposed frame-
work is effective in curtailing correlation shift (as an as-
pect of target shift) between attributes of seen and unseen
classes. (ii) Building on a principled analysis on a con-
trolled synthetic dataset, we propose grouped adversarial
learning (gAL) paradigm for correlation shift that is univer-
sally applicable to any attribute-prediction based ZSL ar-
chitecture that is end-to-end trainable. We demonstrate per-
formance improvements with gAL with three popular ZSL
algorithms: ALE [1], DEVISE [11] and SJE [2] on four
standard zero-shot learning benchmarks, namely, Animals-
with-Attributes-2 (AwA2) [46], Attribute Pascal and Yahoo
(aPY) [10], Scene UNderstanding (SUN) [48], and Caltech
UCSD Birds (CUB) [44] datasets. (iii) Finally, we release
a new experimental benchmark (train-test split) that maxi-
mizes correlation-shift between the seen and unseen classes
to amplify the problem of correlation shift.

2. Related Work
Zero Shot Learning: Zero shot learning has been ex-

tensively studied in recent years. Existing methods in ZSL
can be broken down into the following categories : i) in-
termediate attribute classifiers [28], ii) bilinear compatibil-
ity frameworks that treat zero-shot recognition as a rank-
ing problem [1, 2, 11], iii) linear closed-form solutions op-
timized by a ridge regression or mean-squared error ob-
jective [36, 26], iv) non-linear compatibility frameworks
[3, 45, 39], v) hybrid models [43, 33, 4, 55], and vi) gen-
erative models [47, 37, 19, 27, 6] based on GANs[16] or
VAE[25] that synthesize images for unseen classes during
training. Xian et al. [46] performed an extensive bench-
marking of several such algorithms under a common bench-
mark protocol, representation vectors and hyper-parameter
tuning, and showed that the performance of linear compat-
ibility models are comparable with the more complex joint
representation-based hybrid models. In a slightly different
line of work, some approaches [54, 29, 38] propose tech-
niques to tackle the now well-known hubness problem in
ZSL, created by projecting seen and unseen class image
features to the attribute (semantic) space. Besides inductive
and conventional ZSL, there exists an extensive line of work

on transductive ZSL [40, 12]. In transductive ZSL setting
unlabelled test instances are also provided during training,
and this is not the focus of our work. Another popular pro-
tocol is generalized ZSL [5, 27] where instances belonging
to training classes also appear in the testing phase. As our
objective is to create a ZSL model tailored to the unseen
classes, it wouldn’t be wise to expect the model to perform
equally well in presence of seen classes. For this reason, we
exclude experimentation on the GZSL protocol.

Target shift: Previous literature on target shift [53, 31,
32] utilize importance re-weighting over training instances
to match the probability of train set with that of test set. This
process performs poorly when the cardinality of label set is
large (curse of dimensionality). This setting also assumes
that instances of labels in test set should strictly be a subset
of that of train set (see Sec.3.2). This is not the case in zero
shot learning, where different label (attribute) combinations
define a class, and train and test sets have different groups
of classes.

Label correlation: Addressing the negative effects of
label correlations has been previously explored in the ar-
eas of machine learning under various terms: debiasing
[52, 49, 51], privacy preservation literature [17, 20, 8], and
multi-task learning [56, 35, 22]. De-biasing and privacy
preservation settings are interested in protected variables or
sensitive/private variables that are correlated with the de-
sired label. In multitask learning (MTL), several regulariza-
tion based methods are proposed to mitigate negative effects
of label correlation [56, 22, 35] which attempt to decorre-
late label predictors using special regularizers that enforce
predictors of different labels to use non-overlapping set of
features. The overall intent of these techniques is to decor-
relate a multi label classification model. However, such reg-
ularizers are not applicable for learned features with end-
to-end trainable neural networks. If a feature is important
to more than one label predictor, the trainable feature ex-
tractor could just duplicate that feature, which let the label
predictors pick different feature but with the same feature
information. This breaks the idea of predictors competing
for features.

3. Proposed Framework

3.1. Problem Formulation

Notations and problem setup for ZSL: Given a seen
dataset Ds = {(xs

i , y
s
i )}Ni=1 of N points where xs

i ∈ X
denotes the instance and ysi denotes class label from seen
classes ysi ∈ Ys. For the ZSL problem setup, the aim is to
build a model, which trained on Ds, can classify instances
of unseen classes xu

i with labels yui ∈ Yu, where Ys and Yu

are disjoint. Apart from instances and class labels, for every
class y ∈ Ys ∪ Yu, we are provided with D dimensional
class-attribute vector ϕy ∈ {0, 1}D, where ϕy

m = 1 if m-th
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attribute is present in class y, otherwise 0. Attribute vectors
connect seen and unseen classes in the semantic space that
aids in inference during test time. We use Φs = {ϕy}y∈Ys

to denote set of class-attribute vectors of seen classes and
Φu to denote that of unseen classes. Note that we use train
with seen and test with unseen interchangeably in this paper.

Attribute target shift : In this work, we focus on those
ZSL algorithms that map input instances to attributes ei-
ther explicitly or implicitly. Given an input instance (x),
an explicit model predicts binary attribute vector (ϕ̂(x))
whereas implicit methods provide soft scores for each at-
tribute (ϕ̂(x) ∈ RD). c is predicted as the class for an in-
stance if attribute vector ϕc is most compatible with pre-
dicted attribute vector ϕ̂(x). Emphasizing only on the task
of predicting attributes of instances, we view ZSL as a
special case of transfer learning for multilabel classifica-
tion where the attribute distributions (Pϕ) differ from seen
to unseen classes. We view the change in the attribute
distributions (Pϕ) as domain adaptation under target shift
[32, 50, 31], where attribute marginals for the training set
(seen classes P s

ϕ) and that for test set (unseen classes Pu
ϕ )

are different while, conditionals PX|ϕ remain the same.
Since correcting for target shift requires Pu

ϕ along with
the training data, we use set of attribute vectors of un-
seen classes Φu to estimate Pu

ϕ by assuming that all unseen
classes are equally likely in the test set. We could also es-
timate Pu

ϕ from unlabelled test data using Black Box Shift
Estimation (BBSE) [32], however, obtaining unlabelled test
instances changes the problem setting to transductive-ZSL,
which is beyond the current scope.

Existing approaches to correct target shift, such as im-
portance re-weighting [9, 53], match attribute distributions
of train and test set by appropriately weighing each instance
by Pu

ϕ /P
s
ϕ in the loss function. However, importance re-

weighting can’t be extended to ZSL since attribute vector ϕ
in train set do not appear in the test set essentially letting all
the weights be zero (Pu

ϕ = 0 for all P s
ϕ > 0).

3.2. Adversarial learning to address Target Shift

We begin the description of our approach to correcting
target shift in multilabel case with a two-label problem. We
start here in order to systematically build the arguments and
merits of our design choices that we later extend to more
labels and ultimately to ZSL. We begin with a standard fea-
ture extractor h : X → Rd, which projects instance x to a
latent feature vector h(x). These features are then mapped
to labels space, in the case of the two label problem, as ϕ1

using a attribute predictor f1, and ϕ2 using f2. Note, ϕ1, ϕ2

predictions for x are f1(h(x)) and f2(h(x)), respectively.
Let the two-attribute distributions be given by p(ϕ1, ϕ2),
that can be factorized into three constituents: the marginals
(p(ϕ1) and p(ϕ2)), and the correlation coefficient (ρϕ1,ϕ2

)
between ϕ1 and ϕ2. Hence, target shift for the two attributes

can be viewed as the combination of shifts in two marginal
distributions and a further shift in correlation among at-
tributes. We later refer to the portion of change attributed
to correlation as correlation shift, which we propose to cor-
rect with adversarial learning.

We adopt the popular formulation of adversarial learn-
ing designed for unsupervised domain adaptation [15] and
widely used to debias models [20, 17, 52]. Specifically, for
prediction model of ϕ1, we use ϕ2 as an adversarial task and
vice versa (ϕ2 against ϕ1)., i.e., separate models are used to
predict each attribute. If ϕ1 and ϕ2 are correlated in the train
set but relatively uncorrelated in the test set, the objective is
to identify a feature extractor for ϕ1 that is disinclined to uti-
lize feature information pertaining to ϕ2, thereby ensuring
ϕ̂1 and ϕ2 remain uncorrelated, hence correcting correla-
tion shift. The above intuition is grounded in the objective
function:

min
f1,h

max
f2

N∑
i=1

ℓ( f1(h(xi)), ϕ1(xi))

−λ ℓ( f2(h(xi)), ϕ2(xi)),

(1)

where, ℓ(·, ·) is binary classification loss and λ ∈ R+

is the adversarial weight, the hyperparameter which con-
trols the trade-off between predicting ϕ1, and decorrelating
(ϕ̂1, ϕ2). Intuitively, one can see that in Eq.1, higher the
value of λ, lesser the information to predict ϕ2 would be
present in h(x), resulting in lower correlation between pre-
dicted attribute ϕ̂1 and ϕ2. A similar model for predicting
ϕ2 with ϕ1 as adversarial arm will be used.

The primary advantage of adversarial learning in cor-
recting correlation shift in ZSL over re-weighting methods,
is that it can be applied to ZSL methods with implicitly
predicted attributes. Further, with the right weighting
scheme, predictors for single attribute may have several
adversarial branches connected to it that simultaneously
minimize all pairwise correlation shift against it. We use
gradient reversal layer with SGD to optimize the objective
as done in [14]. Choosing the right λ is essential to
correcting target shift. We show that having an estimate of
correlation shift helps in finding better λ values using some
heuristics (Sec 3.3).

Synthetic experiments: We continue to systematically
study the two-label problem and the effects of adversarial
training to curtail target shift. We now generate synthetic
data as it allows us to create training and test sets with
specific feature correlations which is not otherwise possible
on real data. This analysis reveals some counter-intuitive
observations that motivate the proposed formulation which
is presented later in Sec.3.3.
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Figure 2. Synthetic experiments analysis: (a) Probabilistic data generation to create data with target shift (b) Model accuracy on test set
with varying label correlation, when model was trained on training set with correlation 0.6 (vertical dotted lines in the diagram) (c) Model
weights on features. Note that best models for yp and ya give equal positive weights to first five and last five features respectively.

Data Generation: The synthetic dataset consists of real
vectors x ∈ R10, with corresponding binary labels yp and
ya (primary and auxiliary). As show in Fig.2(a) we gener-
ate data from a probabilistic generative system with differ-
ent label distributions P (Yp, Ya) for train and test sets, with
same conditional P (X|Yp, Ya) throughout, thereby creating
a target shift between them. A data point x is generated by
first sampling (yp, ya) from the label distribution. Then the
features are sampled from two 5 dimensional multivariate
Gaussian distributions with identity covariance matrix such
that Nk=5(µ1,I), if yp=1 or else, Nk=5(µ2,I), where µ1, µ2

are chosen such that the best linear classifier has positive
and equal weights for all the 5 features for both yp and ya,
therby ensuring all 5 features are equally important. Fur-
ther, we have P (Yp=1) = P (Ya=1)=0.5 to ensure no class-
imbalance exists between the two labels. The distance be-
tween the Gaussian distributions corresponding to primary
label and auxiliary label is fixed at 1.5, which corresponds
to Bayes accuracy of 77.3%. We fix label correlation in
train set to 0.6 and create test sets with correlations from
−1 to 1. We aim to analyze the predictive power for the pri-
mary label yp trained at a given label correlation and eval-
uated against multiple test sets with varying label correla-
tions. Specifically, we train the models on training set with
P (Yp|Ya) = 0.8 and test performance on test sets which
only differ from the train set in P (Yp|Ya). We sample 1000
instances for train and a very high number of 50,000 in-
stances in test to avoid sampling bias in all evaluations.

We compare following algorithms in this analysis: A Base-
line linear logistic regression classifier trained only on the
primary label yp, a Sharing model with two-label MLP and
one hidden layer (of two neurons) that predict both yp and

ya. Here, the common hidden layer encourages sharing be-
tween modes, and Adv-λ, which is an adversarial learning
model with one hidden layer of two neurons (as encoder), a
label predictor for primary label yp and a discriminator to
predict auxiliary label ya with an adversarial weight λ. All
the models are linear functions with no activation functions.

Observations and Insights: Fig.2(b) illustrates the
test accuracy on primary label prediction against all label
correlations in test set. The performance of baseline model
is monotonically affected by the change in correlation be-
tween Yp and Ya. Further, we observe that the performance
is less affected when the correlation increases with the same
polarity. A similar observation was made by [18] in bias
setting and is termed bias amplification. On the other hand,
adversarial models (adv-1.0) are more invariant to various
label correlations in the test set that is consequence of target
shift. The choice of adversarial weight (hyper-parameter
λ) is critical to the performance of the model for a given
test correlation. For instance, in this setup, λ=1.0 is the
best choice when test set is uncorrelated i.e., ρtep,a = 0.0,
whereas a larger λ is more suitable for test correlations
near −0.5. Interestingly, the choice of λ even causes the
models to achieve higher accuracy in a target shifted test
set than the training set. Fig.2(c) visualizes model weights
on 10-dimensional feature vector for all models. As the λ
for adversarial models increases, we observe that the model
weights for the features corresponding to the auxiliary
label are reduced. Furthermore, for larger value of λ, the
model assigns negative weights on features corresponding
to ya. Negative weights on last five features imply that the
model has captured opposite correlation between labels
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even though such a correlation is not observed in training.

3.3. Grouped Adversarial Learning (gAL)

We now describe our novel grouped adversarial learning
to correct the effects of target shift in attribute prediction
of zero-shot learning algorithms where, typically, a large
number of attributes (e.g., parts of animals or birds) are
predicted for unseen classes. To reiterate, our framework
leverages additional information available about the unseen
classes to diminish the effects of correlation shift in their
attribute predictors. However, to simply extend the afore-
mentioned intuition requires applying adversarial learning
to a large number of attributes, leading to multiple adver-
sarial branches. To ensure tractability, we devise a measure
termed ∆corr to weight the adversarial arms. Further, in-
spired from multi task learning [41, 21, 24, 22], we take a
course-grained approach and split the attributes into groups
such that only inter-group correlation shift is minimized.
Our approach is suitable to several ZSL algorithms that
produce scores corresponding to attributes. In this work,
we specifically apply gAL to three popular ZSL methods:
ALE [1], DEVISE [11], and SJE [2].

Attribute importance with ∆corr

For attributes ϕ1 and ϕ2, we estimate correlation coefficient
for seen classes ρs(ϕ1, ϕ2) from labelled train set and that
of test set ρu(ϕ1, ϕ2) using class-attribute mapping. ∆corr

is defined as:

∆corr(ϕ1, ϕ2) =

max{ sgn(ρs(ϕ1, ϕ2))− (ρs(ϕ1, ϕ2)− ρu(ϕ1, ϕ2)), 0},
(2)

where sgn is the signum function.
We showed in Sec. 3.2 and Eq. 1 that higher adver-

sarial weight is necessary to counteract a large correlation
shift. However, when there is higher correlation in test set
than that in train set (with same sign), we see that adversar-
ial learning degrades the performance. Hence, we propose
an adversarial weighting scheme using ∆corr such that at-
tribute pairs with positive ∆corr are permitted to be adver-
sarial to each other with λ ×∆corr as adversarial weights,
where λ is the common hyperparameter across all pairs of
attributes.

Attribute Grouping

For a given attribute predictor, we propose to retain only
attributes from outside its group as adversarial branches
thereby permiting the predictors of attributes of same group
to share feature representation and leverage their correla-
tions. Earlier works rely on group memberships that are

based on semantic similarity of attributes [22] or human
perceptions. However, in the context of target shift, we
hypothesize that grouping tasks based on correlation shift
may be more beneficial. Specifically, the proposed mea-
sure of correlation shift, ∆corr, should be low among at-
tribute pairs in the same group and high across groups. To
achieve this, we form groups by clustering attributes using
spectral co-clustering [7] with ∆corr as the distance mea-
sure. Nevertheless, we also report our results on semantic
groups (whenever applicable) for a fair comparison.

Figure 3. Proposed model architecture illustrated for 3 groups of
attributes for brevity. Each group (gk) is adversarially trained with
all remaining groups. The implicit attribute scores and the class-
attribute mapping is used to determine the class prediction loss.

Model Architecture

Our proposed model architecture is illustrated in Figure
3. Given group memberships of attributes and the weight-
ing scheme, we propose a one-vs-all architecture for label
prediction, with every group jointly predicting the mem-
ber attributes constrained by all other groups as adversarial
branches. Let L denote number of groups attributes were
split into. In the model, first we have feature extractors
h1, h2, . . . , hL, which projects input instances x to L latent
representations, each corresponding to a group. Further, to
each feature extractor hi, we connect one primary branch
fii which maps to attributes of group i and (L − 1) adver-
sarial branches fij : j ̸= i which maps to attributes of
group j. fij(hi(x)) ∈ Rdj , provides scores for each at-
tribute in group j. So, a model with L groups would have a
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total of L primary arms and L(L−1) adversarial arms. The
primary arm of the group latent representation is respon-
sible for predicting all the group attributes, thus enabling
sharing. During backpropagation, each latent representa-
tion is updated from the primary arm and adversarially up-
dated from the remaining (L − 1) adversarial arms. The
objective function for gAL is,

min
fii,hi

max
fij
i̸=j

∑N

k=1

[
ℓZSL([f11(hi(xk)), . . . , fLL(hL(xk))],Φ

s
, yk)

− λ

L∑
i=1

L∑
j=1
j ̸=i

∆ij ℓadv(fij(hi(xk)), ϕj(xk))

]
,

(3)

where ℓZSL is the loss function of any ZSL method
which takes in score vector on attributes (given in the equa-
tion as concatenation of group of attributes)1 and set of
class-attribute vectors Φ to predict class label. ∆ij is the
fixed adversarial weight between groups i and j which is
the highest pairwise ∆corr between members of group i
and j computed using Eq.2, λ is the hyperparameter to con-
trol overall trade-off between class prediction and correct-
ing correlation shift, and ϕj(xk) is attribute vector of group
j for instance xk. ℓadv is a multilabel classification loss.

We can apply the gAL technique on any ZSL algo-
rithm whose loss functions takes scores over attributes as
input. We apply gAL on three popular ZSL methods in
our experiments: ALE [1], DEVISE [11] and SJE [2]. In
all these three methods, class score is the dot product of
class-attribute vector and attribute scores (this is called lin-
ear compatibility in [46]). Score for class c is computed
as ŷc = [f11(hi(xk)), . . . , fLL(hL(xk))]

⊤ϕc. Given class
prediction vector ŷ(x) and ground truth y(x), one could ap-
ply any multiclass classification loss here. DEVISE uses
SVM-rank based loss, while ALE and SJE uses some ex-
tra weighting schemes over the SVM-Rank loss. We tried a
fourth ZSL method of using a categorical cross-entropy loss
over the class predictions denoted as softmax [47].

To optimize gAL objective function, special gradient
flipping layer before the adversarial arms called gradient
reversal layer [14] is used. This ensures that the model
performs poorly in prediction of adversarial labels in each
group, leading to decorrelated learning of attributes. For
the attribute predictors in adversarial branches, there could
be effects of class imbalance from the target shift, hence we
choose ℓadv as balanced binary cross-entropy (bce) loss.

3.4. Implementation Details

Here we provide additional details to aid reproducibility
of the model architecture and training.

1[·, . . . , ·] denotes concatenation of vectors.

• The best number of groups formed by spectral co-
clustering (between 3 and 10) is found empirically per
dataset and per classifier.

• For building our proposed gAL architecture, we first
attach 500 linear layers to the input Res101 features.
Next, we add another 100 layers to form the latent
group representations. These are fully connected to the
primary and adversarial attribute prediction neurons.
None of the internal layers use any non-linear activa-
tion function. The primary group attribute predictions
are concatenated before being used as input to any of
the 4 classifiers (ALE, DeViSE, SJE or softmax).
The adversarial attribute predictions go through an ad-
ditional sigmoid activation layer before being used to
compute the adversarial group losses (balanced bce
loss).

• All weights in the final classifier layers (both primary
and adversarial) are penalized by L2 regularization.
The internal linear layers are regularized by Dropout
with dropout probabilities between 0.2 to 0.5.

• All models are optimized using SGD with nesterov
momentum of 0.9. Batch size is picked from {64, 128}
and learning rate from {0.01, 0.001}.

• Adversarial weight λ and the margin for SVM-rank
based losses (ALE, SJE, DeViSE) are picked from a
large parameter sweep for best validation error.

• We use PyTorch 1.2.0 to implement our algorithms and
run all experiments on a single Tesla K80 GPU.

4. Experiments
4.1. Datasets and Protocol

Protocol: We follow the experimental protocol introduced
in previous literature [46] for the four datasets described
in Table 1. The experimental protocol is designed such
that the validation set is also zero-shot in nature. We
utilize the 2048-D ResNet-101 feature representation and
“attribute-class prior” matrices provided by the authors of
[46].

Correlation-shift analysis and new splits: Table 1 also
shows the mean difference in correlation, measured by
∆corr (Eq. 2) and ∆corr measured for the top 50% of at-
tribute pairs. We highlight the significantly high change in
correlation for the AWA2 and aPY datasets. Further, we
generate a new experimental split of train, validation and
test through a greedy selection approach, termed CS split
(correlation-shift split), such that the difference in corre-
lation (measured by ∆corr) is maximized, while keeping
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Dataset #attributes
#seen classes
(train + val)

#unseen
classes

#seen images
(train + val)

#unseen
images

∆ corr
mean mean @top 50%

aPY 64 15+5 12 6086+1329 7924 0.073 0.145
AWA2 85 27+13 10 20218+9191 7913 0.161 0.319
CUB 312 100+50 50 5875+2946 2967 0.019 0.036
SUN 102 580+65 72 11600+1300 1440 0.016 0.033
aPY-CS 64 15+5 12 4299+6691 4349 0.132 0.246
AWA2-CS 85 27+13 10 22103+10383 4836 0.255 0.483
CUB-CS 312 100+50 50 5901+2958 2929 0.041 0.076
SUN-CS 102 580+65 72 11600+1300 1440 0.074 0.136

Table 1. Statistics of datasets with attribute ∆corr between train and test sets.

the class-count per split unchanged from the existing proto-
col [46]. Under these CS splits, ∆corr for AWA2 and aPY
is even higher than before. The considerable drop in per-
formance of baselines on these splits further highlights the
problems of target shift and showcases the ability of gAL to
correct for them. We skip experimentation on CUB-CS and
SUN-CS as the increase in ∆corr is not significant.

4.2. Results and Discussion

The experimental results of gAL on the standard bench-
mark [46] and our novel correlation-shift splits are reported
in tables 2 and 3 respectively. We report class-averaged top-
1 accuracies for all datasets. Highest accuracies for each
dataset are shown in bold and second best numbers in blue.
We show performance of ZSL algorithms reported by [46]
in Table 2:α for easy reference. Table 2:β shows other
recent methods reported on the same benchmarks. In the
absence of official implementations of ALE [1], SJE [2]
and DeViSE [11], we use a public Python implementation2

whose performance is shown in Table 2:γ (marked ∗).

Next, we show the corresponding gAL variants of these
algorithms, built on top of the same codebase. We also
include the softmax baseline [47] trained with categorical
cross-entropy loss. Except for softmax-gAL on SUN,
we report substantial improvement in performance over
baseline for all four datasets. The magnitudes of improve-
ment are indicated in green. The highest improvement was
observed for SJE-gAL on aPY and DeViSE-gAL on CUB,
giving a boost of 7.6% over baseline.

The approaches corrected for correlation shift with gAL
compare favourably with existing approaches on AWA2,
SUN, and aPY datasets. The failure to achieve competitive
results on CUB dataset can be attributed to the relatively
low correlation shift and the hard task of predicting large
number of attributes (312, largest among the 4 datasets)
for class inference. However, gAL variants continue to

2All baselines (marked ∗) computed from: https://github.com/mvp18/
Popular-ZSL-Algorithms.

perform better than baselines here also.

It is interesting to compare our proposed linear compati-
bility approach (network of linear layers with regularizers)
to a non-linear compatibility based method from Table 2
such as PSR [3] or GAN-based methods like SP-AEN [6]
and f-CLSWGAN [47], that generate additional data to aid
training. Note that QFZSL is a transductive algorithm, and
the accuracies reported here correspond to the inductive
variant.

On our newly introduced CS splits, the improvement
over baseline is more pronounced as shown in table
3. The highest improvement over baseline is seen for
ALE-gAL on AWA2-CS with a margin of 17.2%. The
considerably lower accuracies of all approaches compared
to Table 2 demonstrate the difficulties faced by existing
ZSL algorithms in conditions of high correlation shift.
Consequently, the significant improvements over baseline
show the effectiveness of gAL.

All gAL variants presented here are based on groups formed
by spectral co-clustering[7] with ∆corr as the distance
measure (see Sec. 3.3). AWA2 and CUB datasets addition-
ally provide semantic grouping of attributes that have been
extensively utilized in previous literature[22]. However,
we observe that the groups formed by co-clustering pro-
vide superior empirical performance (see Appendix Sec.
A.1). Further, these groups continue to maintain semantic
relevance. For instance, the cluster {‘lean’, ‘swims’, ‘fish’,
‘arctic’, ‘coastal’, ‘ocean’, ‘water’} clearly represents the
aquatic animal classes of AWA2. As mentioned, the adver-
sarial weighting scheme and the choice of hyperparameter
λ are critical to gAL performance. Relevant ablations are
included in the supplementary material.

The improvement to accuracy brought about gAL to com-
patible ZSL algorithms from literature indicates that target
shift in ZSL is an important problem not studied by the com-
munity. Benchmarking ZSL performance on these datasets
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Method aPY AWA2 CUB SUN

α

DAP [28] 33.8 46.1 40.0 39.9
IAP [28] 36.6 35.9 24.0 19.4
CONSE [33] 26.9 44.5 34.3 38.8
CMT [39] 28.0 37.9 34.6 39.9
SSE [55] 34.0 61.0 43.9 51.5
LATEM [45] 35.2 55.8 49.3 55.3
ESZSL [36] 38.3 58.6 53.9 54.5
ALE [1] 39.7 62.5 54.9 58.1
DEVISE [11] 39.8 59.7 52.0 56.5
SJE [2] 32.9 61.9 53.9 53.7
SYNC [4] 23.9 46.6 55.6 56.3
SAE [26] 8.3 54.1 33.3 40.3
GFZSL [43] 38.4 63.8 49.3 60.6

β

SP-AEN [6] 24.1 58.5 55.4 59.2
f-CLSWGAN [47] – – 61.5 62.1
QFZSL [40] – 63.5 58.8 56.2
PSR [3] 38.4 63.8 56.0 61.4
Kai et al.[30] 38.0 71.1 54.4 62.6
DLFZRL [42] 46.7 70.3 61.8 61.3
CDL [23] 43.0 – 54.5 63.6

γ

ALE* 32.8 52.9 50.0 61.9
ALE-gAL 38.3↑ 5.5 58.2↑5.3 52.3↑2.3 62.2↑0.3

DEVISE* 33.3 57.7 44.1 55.7
DeViSE-gAL 38.9↑5.6 59.4↑1.7 51.7↑7.6 57.4↑1.7

SJE* 32.9 58.3 49.4 53.5
SJE-gAL 40.5↑7.6 62.2↑3.9 53.2↑3.8 60.3↑6.8

softmax 33.8 55.4 50.1 61.7
softmax-gAL 40.0↑6.2 62.1↑6.7 52.2↑2.1 60.8↓0.9

Table 2. (α) Performance reported in [46], (β) recent approaches following same settings, (γ) performance improvement with gAL on
three ZSL algorithms. This table only contains papers which exactly follow the protocol mentioned in [46], using the ResNet features
provided.

has been inconsistent due to unavailability of public im-
plementations and lack of implementation details in some
references. Though other approaches have superior perfor-
mance on these datasets, our goal is to showcase the effect
of target-shift. This is the first paper to address the prob-
lem of correlation shift in ZSL setting, though there was a
mention about adverse effects of correlation in [22].

Method aPY-CS AWA2-CS
ALE* 21.1 25.3
ALE-gAL 24.3↑3.2 42.5↑17.2

DEVISE* 19.5 33.1
DEVISE-gAL 25.7↑6.2 38.2↑5.1

SJE* 18.7 27.9
SJE-gAL 23.9↑5.2 40.2↑12.3

softmax 18.4 32.1
softmax-gAL 24.6↑6.2 41.5↑9.4

Table 3. Performance of gAL variants on our proposed CS splits.

5. Conclusion

This paper shows that our grouped adversarial learning
coupled with adversarial weighting strategies can be ef-
fective in curtailing target-shift in zero shot learning set-
tings and consequently improving performance. Traditional
zero-shot learning algorithms utilize a set of seen classes
(and associated information such as attributes-class map-
ping) to prepare a classifier for any set of unseen classes.
This paper presents a variant of zero-shot learning that uti-
lizes additional information from specific unseen classes of
attributes-class mapping to create a tailored classifier. We
show that such a paradigm of zero shot learning can be use-
ful for correcting target shift in attributes. By utilizing the
additional information to design and weight the proposed
grouped adversarial learning, we substantially improve the
performance of three popular ZSL algorithms on four stan-
dard benchmark datasets.
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