
Analyzing and Mitigating JPEG Compression Defects in Deep Learning

Max Ehrlich1 Larry Davis1 Ser-Nam Lim2 Abhinav Shrivastava1
1University of Maryland 2Facebook AI

{maxehr, lsd}@umiacs.umd.edu sernamlim@fb.com abhinav@cs.umd.edu

Abstract

With the proliferation of deep learning methods, many
computer vision problems which were considered academic
are now viable in the consumer setting. One drawback of
consumer applications is lossy compression, which is nec-
essary from an engineering standpoint to efficiently and
cheaply store and transmit user images. Despite this, there
has been little study of the effect of compression on deep
neural networks and benchmark datasets are often loss-
lessly compressed or compressed at high quality. Here we
present a unified study of the effects of JPEG compression
on a range of common tasks and datasets. We show that
there is a significant penalty on common performance met-
rics for high compression. We test several methods for mit-
igating this penalty, including a novel method based on ar-
tifact correction which requires no labels to train.

1. Introduction

The JPEG compression algorithm [1] has remained the
most popular compression algorithm since the early 90s.
Despite rapid advances in video compression and appli-
cation of those technologies to create superior still image
compression algorithms, JPEG is still ubiquitous. JPEG is
considered a simple solution to storage and transmission of
user data. It is well supported and compresses data quite
well despite glaring quality loss at low bitrates. Meanwhile,
computer vision, driven by the deep learning revolution of
2012 [2], reaches new milestones regularly with respect to
performance, and is continually adopted in the mainstream
industry and consumer-facing applications.

Despite this continuing application of deep learning to
consumer methods, and the immense popularity of JPEG
compression in consumer application, the effect of JPEG
compression on deep learning models has been poorly stud-
ied. Many consumer applications rely on pretrained models
either in whole or in part since labeled datasets are com-
putationally expensive to create. These pretrained models
are often designed for academic scenarios and use standard
datasets. While many of these datasets, like ImageNet [3],

0 2 4 6 8 10 12
Loss After Task-Targeted Artifact Correction

0

2

4

6

8

10

12

Lo
ss

 A
fte

r S
up

er
vi

se
d 

Fi
ne

-T
un

in
g

MobileNetV2 + C1

ResNet18 + PPM

HRNetV2 + C1

ResNet50 + PPM

ResNet50 + UPerNet

ResNet101 + UPerNet

ResNet101 + PPM

VGG-19
MobileNetV2

ResNet-50InceptionV3

ResNet-18
ResNeXt-50

ResNet-101

ResNeXt-101

EfficientNet B3

FasterRCNN

RetinaNet

MaskRCNN

FastRCNN

Figure 1: Study results at a glance. Each point shows the perfor-
mance loss, after applying mitigation, for a model evaluated on
quality 10 JPEGs (lower is better), comparing Supervised Fine-
Tuning to Task-Targeted Artifact Correction. ▲ Orange triangles
are classification models evaluated with Top-1 accuracy on Im-
ageNet, ■ Green squares are detection models evaluated using
mAP on MS-COCO, and ♦ blue diamonds are semantic segmenta-
tion models evaluated using mIoU on ADE20k. Point size shows
the inference throughput (larger is better).

COCO [4], and others, are JPEG compressed, it is often at
reasonable quality levels. This is, in general, not reflective
of the quality levels seen in consumer applications where
the compression level is not always under the control of the
deployed system. In light of this, we believe that a compre-
hensive study which characterizes performance loss due to
JPEG compression is long overdue.

In this study, we quantify the effect of JPEG compression
over standard performance metrics on a range of datasets
and computer vision tasks. We do this by evaluating pre-
trained models in a systematic and consistent way. In addi-
tion to this, we also explore several strategies for mitigating
any performance penalty, including a novel method which
we call Task-Targeted Artifact Correction. This method
uses the error of the downstream task logits on JPEG im-

2357



ages with respect to uncompressed versions of the same im-
ages, and as such is completely self-supervised: it requires
no training labels making it ideal for consumer applications
where labels are often expensive to obtain and unreliable.
We show that for severe to moderate JPEG compression,
there is a steep performance penalty and that this penalty
can be mitigated effectively by using our proposed strate-
gies. The study results are summarized in Figure 1, which
can be used to quickly choose a model and mitigation tech-
nique for a particular application.

Our study helps future scientists make informed deci-
sions when faced with the following two important ques-
tions: (1) Is JPEG compression effecting the model? (2) If
so, can anything be done about it? Our overall findings are
as follows:

1. Heavy to moderate JPEG compression incurs a signif-
icant performance penalty on standard metrics, which
we show on a set of standard computer vision tasks
and datasets. We consider this study to be the primary
contribution of our paper and have taken great care to
ensure fair comparisons over a plethora of commonly
used models. Furthermore, our benchmarking code is
fully pluggable and will be released so that models can
continue to be evaluated as they are developed. This
study is significantly more comprehensive than any
prior work studying any form of compression (see Sec-
tion 2 for an overview of prior studies.)

2. If the target application has enough labeled data, and
preservation of the model result on uncompressed or
losslessly compressed images is not important, then
fine tuning the task model using JPEG as a data aug-
mentation strategy effectively mitigates this perfor-
mance loss.

3. If the target application lacks labels, supervised train-
ing is impractical, or performance on uncompressed
or losslessly compressed images must be preserved,
then JPEG artifact correction can be used as a pre-
processing step. We show that off-the-shelf artifact
correction improves the performance of downstream
tasks greatly, and our self-supervised technique makes
a further improvement, approaching that of fine tuning
the downstream task directly and surpassing it on some
tasks all without requiring ground truth labels.

2. Prior Work
We begin by reviewing several recent works which at-

tempt to characterize computer vision task performance un-
der various image corruptions. We then review deep learn-
ing methods which make direct use of JPEG data and con-
clude with a review of artifact correction techniques which
consider downstream tasks.
Analysis of Compression Defects. Recently, several
works emerged that consider network performance in the
presence of JPEG compression. In dos Santos et al. [5],

the authors revisit Gueguen et al. [6] and compare the per-
formance of the previous model under different compres-
sion settings. They find that the model still faces a per-
formance penalty for compressed images even though it
is trained on DCT coefficients. Mandelli et al. [7] use
two models from the EfficientNet [8] family and com-
pare multimedia-forensics tasks (camera model identifica-
tion and generated image detection) with computer vision
tasks (ImageNet [3] and LSUN [9] classification). The au-
thors test on several JPEG quality factors as well as examine
cropping defects (which misalign the JPEG grid). They find
that while all models have a loss of performance on low-
quality images, computer vision tasks tended to be more
robust than multimedia-forensics tasks. Benz et al. [10]
show a method for improving batch normalization, which
increases robustness to several image corruptions. While
they do not treat compression specifically, the ImageNet-
C [11] dataset includes compressed images as a type of cor-
ruption. Hendrycs and Diettrich, in addition to introduc-
ing the ImageNet-C [11] dataset, perform a limited bench-
marking of several classification models over several JPEG
compression settings, including other corruptions they in-
troduce. An older work examining this problem by Zheng
et al. [12] considers classification and ranking using a tech-
nique called stability training, which tries to match network
output on an uncorrupted image with that of the corrupted
image. They consider moderate JPEG compression.

Deep Learning with JPEG Data. There have been sev-
eral works in recent years which attempt to merge deep
learning with low-level JPEG primitives. Ghosh and Chel-
lappa [13] include a DCT as part of their initial layer
and show a performance improvement on classification.
Gueguen et al. [6] read JPEG DCT coefficients directly
into their network and show that the DCT representation re-
quires fewer parameters to learn comparable results to pix-
els, yielding a speed improvement. Ehrlich and Davis [14]
formulate a fully JPEG domain residual network and again
show a speed improvement. Lo and Hang [15] show a
method for semantic segmentation on DCT coefficients and
show both a performance and speed improvement over us-
ing pixels. Deguerre et al. [16] show a method for object
detection on DCT coefficients and again show performance
and speed improvement over pixels. Ehrlich et al. [17] for-
mulate a JPEG artifact correction network on DCT coef-
ficients and attain state-of-the-art results for color images.
Choi and Han use a network to learn task-guided quantiza-
tion matrices that maximize task performance after JPEG
compression [18].

Artifact Correction for Task Improvement. Several re-
cent works have studied using artifact correction in the pres-
ence of downstream tasks [19]–[21]. Galteri et al. train
a GAN [22] for JPEG artifact correction with the primary
goal of making an image for human consumption. In [19],

2358



they use an ensemble of networks for each JPEG qual-
ity level and manually pick the network at inference time;
in [20] they use an auxiliary network to classify a JPEG to
its quality level and automatically pick the artifact correc-
tion network at inference time. In both works, they show an
improvement on object detection tasks. Katakol et al. [21]
tests semantic segmentation with several different compres-
sion algorithms using adversarial restoration.

3. Methodology

Our goal is to simulate a system receiving a JPEG com-
pressed image compressed at some unknown quality level
q1. We assume that q is chosen uniformly at random from
the range [10, 90], below quality 10 there is little informa-
tion preserved and above quality 90, the image is nearly
identical to the uncompressed version. In all cases, the im-
ages are compressed before being put through any trans-
formations that the target model prescribes2. For evalua-
tion, the images are compressed at each value in the given
range in steps of 10, and each model and each mitigation
method are evaluated on these images. We use the Indepen-
dent JPEG Group’s libjpeg [23] software for compression.

For any mitigation methods that require fine tuning,
training images are randomly compressed from the same
range as a form of data augmentation [24]. The images are
always compressed at some quality factor, there are no un-
compressed images used for fine tuning. Since the simu-
lated system is assuming JPEG inputs, there is no need for
non-JPEG images for fine tuning. The models are trained
with a learning rate starting from 1 × 10−3 and ending at
1×10−6 for 200 epochs using a cosine annealing [25] learn-
ing rate scheduler. We use stochastic gradient descent with
momentum for the optimizer with the momentum set to 0.9
and the weight decay set to 5×10−4. As a rule, we only use
validation sets for reporting final numbers as most datasets
do not provide labeled test data. When training different
mitigation techniques for the same model, the same batch
size is used 3.

For methods requiring artifact correction, we use QGAC
[17]. It is important to understand that correction-based mit-
igation has only recently become practical as the state-of-
the-art has shifted from “quality-aware” models to “qual-
ity blinded” models. Quality aware models train a different
model for each JPEG quality setting, i.e., there would be a
unique model for quality 10 JPEGs, quality 20 JPEGs, etc.

1Most JPEG compression software specifies a scalar quality value in
[0, 100] in lieu of a target bitrate, this quality value is not part of the JPEG
standard.

2For example, cropping to 224×224 for ImageNet based models. Note
that while this is more difficult to implement, the reverse process would
incur an unrealistically greater loss of quality.

3e.g., fine tuning a ResNet 18 uses the same batch size as fine tuning
artifact correction using resnet18 as the task supervision, but may not use
the same batch size as COCO object detection experiments.

This is a critical limitation because the JPEG quality is not
stored in the JFIF file format, making quality-aware models
impossible to use in a real setting. Theoretically, these mod-
els could be examined in the contrived scenerio of the study,
however, this would require a combinatorially large num-
ber of models to be trained - one per quality level per AC
model per task model. QGAC is quality-blinded meaning
that a single model handles all JPEG quality settings. Addi-
tionally, it supports color images, achieves state-of-the-art
performance on common benchmarks, and has public code
and weights making it a prime candidate for use by other re-
searchers. For completeness, we conducted a limited study
using two common quality-aware models in Section 4.4 by
limiting the compression quality settings and downstream
tasks to make the training tractable.

We evaluate the models with no mitigation as a base-
line to characterize the effect of JPEG compression when
applied directly to machine learning models. We addition-
ally evaluate two common mitigation methods. Finally, we
propose a new mitigation method which requires no super-
vision to train, something which is crucial outside of the
academic setting. We now briefly describe these methods.

Baseline. The baseline method simply passes the JPEG
compressed evaluation images to the model unchanged.
This serves as an important quantifier for how the JPEG
quality affects pre-trained models. This method requires no
fine tuning.

Supervised Fine-Tuning. In the Supervised Fine-Tuning
mitigation, the task network is fine tuned using the protocol
given above with JPEG images as input. In other words, we
JPEG compress all images from the training set of the given
task and fine tune the network from pretrained weights on
the given task to improve performance on JPEG inputs.
There are two major drawbacks to this method. The first
is that it requires a training set of labeled data. This is not
always easy to obtain in consumer applications. The second
is that it sacrifices performance on uncompressed images in
exchange for performance on compressed images. As we
show in Section 4, this method provides good results and
a fast runtime, especially at training time (See Appendix E
for throughput results).

Artifact Correction. For the artifact correction method,
we JPEG compress the evaluation images and then perform
artifact correction on them before passing them to the task
model. This method requires no fine tuning, and we use
pretrained weights for the artifact correction model and for
the task model. This method does not sacrifice performance
on clean images, since these can be detected (by file exten-
sion or mime type) and artifact correction can be skipped in
this case; however, this method is not trainable and we will
show in the results section that it gives worse performance
than fine tuning methods.

2359



Artifact
Correction

(Trainable Weights )

Task 
(Fixed Weights)

JPEG

Error

Degraded 
Prediction

Original
Prediction

Figure 2: Task-Targeted Artifact Correction. The original image
(green) is passed through the task network to obtain the unnormal-
ized prediction logits. Then the image is JPEG compressed and
artifact corrected using an artifact correction network with train-
able weights. The corrected image is then passed through the task
network. The l1 error between the logits on the original image and
the logits on the corrected image is used as loss to tune the artifact
correction network weights.

Task-Targeted Artifact Correction. In this novel miti-
gation technique, we fine tune the artifact correction net-
working using error on the task network logits. To do this,
we minimize the l1 distance between the task network logits
computed on an uncompressed and compressed version of
the same image. Formally, given a mini-batch of images B,
we minimize

Lθ = ∥Task(B)− Task(AC(JPEGq(B); θ))∥1, (1)

where Task is any task network, AC is the artifact correction
network with parameters θ, and q is the JPEG quality level.
This is shown schematically in Figure 2. In this way, the ar-
tifact correction network learns to correct in a way that max-
imizes the performance of the downstream network. Note
that this method is entirely self-supervised, no ground truth
labels are used (the only loss comes from the difference in
behavior on the compressed vs. uncompressed versions of
the images). Not only is this easier to deploy in a consumer
setting where labeled data is hard to obtain, but it also alle-
viates any concern that the artifact correction network may
be learning to perform the task for the task network, artifi-
cially increasing the number of parameters and making for
an unfair comparison. By using l1 error on the network out-
put, the method is applicable to many different tasks with
little or no modification. This method again does not sac-
rifice performance on uncompressed images since the task
network weights are unchanged and an uncompressed input
can be detected and the artifact correction step skipped. We
show in Section 4 that this method approaches fine tuning
the task network directly, even exceeding it in some tasks,
despite having no access to ground truth labels.

In addition to this, Task-Targeted Artifact correction sup-
ports flexible training scenarios. We show in Section 4.3
that the networks weights are transferrable e.g., an arti-
fact correction network which was trained for one network
can be used for other networks. This allows a lightweight
training setup where a “fast-to-train” network is used to cre-
ate the artifact correction network weights and then reused
for models which would be cumbersome to train. Sim-
ilarly, Task-Targeted Artifact Correction supports multi-
head training, where multiple downstream tasks are used
at the same time during training. While this method bears a
superficial similarity to stability training [12], both transfer
and multihead are impossible with stability training and the
exact loss formulation we use (Equation 1) is universal: it
can be easily applied to many tasks.

4. Results
Since our study is focused on both analyzing (Sections

4.1 and 4.2) and mitigating (Sections 4.3, and 4.4), our re-
sults are organized into one of these two categories. First,
we show an abridged version of the study on JPEG com-
pression, the full study results are available in Appendix
D. After this, we present a preliminary study of two recent
forensics models which were tested using the same method-
ology as the main study. We then examine the transferabil-
ity and multihead scenarios mentioned in Section 3 in detail,
a unique property of Task-Targeted Artifact Correction that
makes it a flexible mitigation option.

4.1. Analyzing: Abridged Study Results

We show a subset of our results highlighting interesting,
unusual, or edge cases as well as discussing overall findings
for each major task. We aim to provide a good covering
of common tasks and datasets and picked several models
and a single representative dataset per task. While our work
is the most comprehensive study of its kind to date, it is
not exhaustive: there exist models and datasets which we
did not test on. In most cases, we started from pretrained
weights available in commodity deep learning libraries.

The results presented in the body of the paper are re-
stricted to qualities [10, 50] (heavy to moderate compres-
sion) for brevity and because these are the most interesting
results. Results on the full range of qualities we considered
([10, 90]) along with tables of results are available in our ap-
pendices. In each case, the results are shown as plots giving
loss in performance on a task appropriate metric vs. JPEG
quality level. We studied Classification, Object Detection,
Instance and Semantic Segmentation as a set of computer
vision tasks.

The abbreviated results are shown in Figure 3, which
shows the results of all models with no mitigation sepa-
rated by task, and Figure 4, which shows the behavior of
individual models with mitigations applied compared to no

2360



10 20 30 40 50
Quality

0

2

4

6

8

10

12

14

Ac
cu

ra
cy

 L
os

s (
%

)

EfficientNet B3
InceptionV3
MobileNetV2
ResNet-101
ResNet-18
ResNet-50
ResNeXt-101
ResNeXt-50
VGG-19

(a) Classification

10 20 30 40 50
Quality

0
2
4
6
8

10
12
14
16

m
AP

 L
os

s

FasterRCNN
FastRCNN
MaskRCNN
RetinaNet

(b) Detection and Instance Segmentation

10 20 30 40 50
Quality

0.0

2.5

5.0

7.5

10.0

12.5

15.0

m
Io

U 
Lo

ss

HRNetV2 + C1
MobileNetV2 (dilated) + C1 (ds)
ResNet101 + UPerNet
ResNet101 (dilated) + PPM
ResNet18 (dilated) + PPM
ResNet50 + UPerNet
ResNet50 (dilated) + PPM

(c) Semantic segmentation

Figure 3: Performance loss due to JPEG compression by task. The plots show all models from a single task with no mitigation applied.
For segmentation tasks, the format of the model name is Encoder Model + Decoder Model and “ds” indicates that the model was
trained with deep supervision. Note that methods which use a Pyramid Pooling Module (PPM) decoder always use deep supervision.

10 20 30 40 50
Quality

0

2

4

6

8

10

12

14

Ac
cu

ra
cy

 L
os

s (
%

)

EfficientNet B3
InceptionV3
MobileNetV2
ResNet-101
ResNet-18
ResNet-50
ResNeXt-101
ResNeXt-50
VGG-19

(a) Classification

10 20 30 40 50
Quality

0
2
4
6
8

10
12
14
16

m
AP

 L
os

s

FasterRCNN
FastRCNN
MaskRCNN
RetinaNet

(b) Detection and Instance Segmentation

10 20 30 40 50
Quality

0.0

2.5

5.0

7.5

10.0

12.5

15.0

m
Io

U 
Lo

ss

HRNetV2 + C1
MobileNetV2 (dilated) + C1 (ds)
ResNet101 + UPerNet
ResNet101 (dilated) + PPM
ResNet18 (dilated) + PPM
ResNet50 + UPerNet
ResNet50 (dilated) + PPM

(c) Semantic segmentation

Figure 4: Performance loss of tested models with mitigation applied. ••• Circle: No Mitigation, +++ Cross: Off-the-Shelf Artifact Correction,
♦ Diamond: Task-Targeted Artifact Correction, ■ Square: Supervised Fine-Tuning. The models in this figure correspond to those shown
in Figure 3. These plots are best viewed digitally and are intended to show the trend of models for each task. For plots with individual
models, please see Appendix D.

mitigation in condensed form. Please see Appendix D for
full plots and tables for individual models. All performance
measures show the absolute drop in performance, e.g., a
14% drop indicates that the model performs 14% worse on
JPEG images at the given quality than on uncompressed
images. For the reference numbers that we used for this
comparison, see Appendix D.4. As a general rule, we ob-
served that more complex tasks incurred a larger perfor-
mance penalty on JPEG compressed inputs. Additionally,
the more complex the task, the more likely it was to be aided
by Task-Targeted Artifact Correction, and the less likely it
was to be aided by Supervised Fine-Tuning. In Figure 5,
we show qualitative results for detection, instance and se-
mantic segmentation. Please see Appendix C to view these
results in more detail. We now briefly discuss the details of
the study for each task.

Classification. We tested classification models using the
ImageNet [3] dataset. We tested the following models: Mo-
bileNetV2 [26], ResNet 18, 50, and 101 [27], ResNeXt 50
and 101 [28], VGG 19 [29], InceptionV3 [30], and Effi-
cientNet B3 [8]. The pretrained weights for the task net-
works in this section come from the torchvision library [31].
The evaluation metric used was Top-1 Accuracy. Models

in this task generally responded better to Supervised Fine-
Tuning than to Task-Targeted Artifact Correction with the
notable exception of MobileNetV2 and EfficientNet which
responded better to Task-Targeted Artifact Correction. We
ran GradCAM [32] to examine Class Activation Maps for
JPEG inputs as well as all mitigations. We found that JPEG
degrades the gradient quality as well as induces localization
errors. Please see Appendix A for this analysis.

Detection and Instance Segmentation. Next, we show
results on object detection and instance segmentation.
These models were tested using the MS-COCO dataset
[4]. We tested three detection models: Fast R-CNN [33],
Faster R-CNN [34], and RetinaNet [35], and we used Mask
R-CNN [36] for instance segmentation. The pretrained
weights come from the Detectron2 library [37]. In all cases,
we use a model with a ResNet 50 [27] backbone, and for
the R-CNNs we use a Feature Pyramid Network [38] for
the detector. For Task-Targeted Artifact Correction train-
ing, we use loss on only the backbone features rather than
the detection logits. The evaluation metric used was mean
average precision (mAP). Models in this section responded
well to all mitigation techniques, with Task-Targeted Arti-
fact Correction helping the most for low-quality settings.

2361



No Mitigation Off-the-Shelf
Artifact Correction

Task-Targeted
Artifact Correction

Supervised Fine-Tuning Ground Truth

Figure 5: Qualitative results. Top: FasterRCNN Detection, Middle: MaskRCNN Instance Segmentation, Bottom: HRNetV2 + C1 Semantic
Segmentation. All inputs were compressed at quality 10. Note the poor quality of the results with no mitigation. In particular, the detection
prediction of “boat”, while incorrect, is reasonable based on the deformed shape and lack of texture of the compressed image. Despite
the compression, the network is displaying some understanding that there is an ocean scene. Similarly, for MaskRCNN, skateboard is
predicted seemingly on the shape of the region alone. As mitigations are applied, the confidence of the correct detections for both detection
and instance segmentation increases. For semantic segmentation, the result is mostly incorrect with seemingly random classification regions
which mitigations are able to clean up significantly.

The moderate quality settings, however, responded better to
Supervised Fine-Tuning For a further analysis of detection,
we used TIDE [39] and determined that missed detections
make up the bulk of errors caused by JPEG compression,
please see Appendix B for this analysis.

Semantic Segmentation. For semantic segmentation, we
show results on ADE20K using the accompanying code
[40], [41]. This code is organized into pluggable en-
coders and decoders. We test the following encoders: Mo-
bileNetV2 [26], ResNet 18, 50, and 101 [27], and HRNet
[42]. We test the following decoders: C1 with deep supervi-
sion [43], PSPNet (the Pyramid Pooling Module) with and
without deep supervision [43], and UPerNet [44]. Similar
to the object detection experiments, we train Task-Targeted
Artifact Correction using loss from the encoder features
only. The metric used is mean of per-class intersection-
over-union of classified pixels (mIoU). In general, segmen-
tation models were greatly affected by compressed inputs
and Supervised Fine-Tuning was not an effective mitiga-
tion, with some models performing worse after fine tuning
than with no mitigation at all. Conversely, Task-Targeted
Artifact Correction was able to effectively mitigate perfor-
mance loss for low and moderate qualities.

4.2. Analyzing: Limited Study on Forensics

In addition to the above computer vision tasks, we con-
ducted a limited study on two recent forensics models:
Wang et al. [24] and Chai et al. [45]. The goal of both
of these models is to detect an image which, in whole or in
part, was generated by a GAN [22], and can be expressed
as a two-class classification problem with classes “real” and
“fake”. Wang et al. uses a ResNet 50 architecture [27] to
classify the images. Chai et al. uses a slightly modified
Xception [46] model to classify patches, forming an image
label by majority vote among the patches. Both methods
use their own bespoke datasets and provide pretrained mod-
els which we obtained and used for our experiments. The
evaluation metric we used was intended to match the one
presented in each paper. For Wang et al. that is accuracy of
the real/fake prediction, while for Chai et al. it is accuracy
of the predicted patches. The results are shown in Figure 6.
Despite the similar formulation, both networks have com-
pletely different behavior on compressed images than tra-
ditional ImageNet [3] classification and furthermore have
completely different behavior to each other. We note that
both models have nearly 100% accuracy on clean images
they were trained on. Under JPEG compression, even up to
the quality 90 (the maximum that we tested) performance of
Chai et al. stays around 50% indicating the equivalent to a

2362



10 20 30 40 50
Quality

0

10

20

30

40

Ac
cu

ra
cy

 L
os

s (
%

)

Chai et. al
Wang et. al

(a) Forensic task performance with
no mitigation.

10 20 30 40 50
Quality

0

20

40

Ac
cu

ra
cy

 L
os

s (
%

)

Chai et. al
Wang et. al

(b) Forensics task performance
with mitigation

Figure 6: Forensic model results. ••• Circle: No Mitigation, +++
Cross: Off-the-Shelf Artifact Correction, ♦ Diamond: Task-
Targeted Artifact Correction, ■ Square: Supervised Fine-Tuning.

random guess while Wang et al. is able to match its perfor-
mance by quality 50. While both models incorporated slight
JPEG-as-data-augmentation into their pretrained weights,
they are greatly aided by additional Fine-Tuning although
artifact correction of any kind provided little to no benefit.
Since these methods are intended to spot potentially mali-
cious behavior, we find it troubling that a simple perturba-
tion like JPEG is capable of fooling the networks to such a
degree and we hope that this study will provide an impetus
for further investigation.

4.3. Mitigating: Transferability and Multihead

In this section, we show results which are intended to
give a better understanding of our proposed Task-Targeted
Artifact Correction. In particular, we examine the transfer-
ability of the targeted models, e.g., if a model which was
trained for one network and task, like a lightweight Mo-
bileNetV2 for ImageNet classification, for example, can be
used to mitigate performance loss of a more complex and
harder to train network like a ResNet-101, or even used in a
wholly different task like detection. We also examine if this
performance mitigation holds when a correction network is
targeted to multiple models simultaneously, in other words,
when multiple task networks are providing supervisory sig-
nal. These scenarios improve the practical application of the
method by allowing for more flexible training and model
reuse in addition to the stated advantage of not requiring la-
bels. A table of results for all plots in this section is given
in Appendix F.
Intra-Task Transferability. For intra-task transferability,
we tested two scenarios. We first trained Task-Targeted Ar-
tifact Correction models on ResNet 18 [27] and MobileNet
V2 [26], two of our smallest models which are fast to train.
We then tested these models on ImageNet [3] classification
using ResNet 101 [27] as the downstream network, one of
our largest and slowest to train models. The result shown
in Figure 7a is comparable with the task-targeted model
trained on the ResNet 101 itself, indicating good transfer.

Inter-Task Transferability. For inter-task transferability,
we used the same artifact correction models trained in the

Table 1: Comparison with Common AC Baselines for Task-
Targeted Artifact Correction. ARCNN and IDCN are both “quality
aware” models. Metrics are classification: top-1 accuracy, detec-
tion: mAP, segmentation: mIoU. QGAC outperforms both.

Task (Network) AC Network Quality 10 Quality 20

MobileNetV2 (Classification)
ARCNN 61.19 66.89
IDCN 62.62 65.72
QGAC 64.64 68.63

FasterRCNN (Detection)
ARCNN 24.99 27.02
IDCN 25.99 28.23
QGAC 31.43 33.85

HRNetV2 + C1 (Semantic Segmentation)
ARCNN 29.35 35.90
IDCN 32.62 37.00
QGAC 34.14 37.61

previous section but now used them to test using COCO [4]
object detection on Faster R-CNN [47] and ADE20K [40],
[41] semantic segmentation using the HRNetV2 [42] en-
coder with C1 decoder. These results are shown in Figures
7b and 7c, and again show good transfer with comparable
performance to task-targeted networks trained for each of
the networks.

Multihead. We tested two setups for multihead training:
a two task setup and a three task setup. For the two
task setup, we train the artifact correction network using a
ResNet 18 [27] as well as a Faster R-CNN [47] providing
downstream loss. For the three task setup we add in seman-
tic segmentation using HRNetV2 [42] + C1. To train this,
we alternate batches, taking one batch from ImageNet, per-
forming a full forward pass using the Resnet 18, then taking
a batch from COCO and performing another full forward
pass using the Faster R-CNN backbone and in three task
case following the same procedure with ADE20K. The l1
loss of the features for each separate network is taken and
the backpropagated loss is summed. The result, shown in
Figure 8 is on-par with artifact correction models trained
with a single model, and in the classification case, both
multi-head models perform better than the single task cor-
rector indicating better generalization.

4.4. Mitigating: Limited Comparison with Other
Artifact Correction Models

As discussed in Section 3, artifact-correction based mit-
igation has only recently become viable using quality-
blind methods. Using quality-aware methods, which train
a unique model for each quality setting, is impossible in
real scenarios because the quality setting is not stored in
the JPEG file, and in the context of the study, leads to an
intractable training protocol which would require models
to be trained per-quality level and per-model. Neverthe-
less, since quality aware models dominated the literature
for many years, there is some interest in their behavior in
this context. To make this tractable we restrict this part of
the study to two models: ARCNN [48], a standard baseline

2363



10 20 30 40 50
Quality

0

1

2

3

4

5

Ac
cu

ra
cy

 L
os

s (
%

)

Fine-Tuned
Task-Targeted Artifact Correction
MobileNetV2 Transfer
ResNet-18 Transfer

(a) ResNet101 Results with Transfer.

10 20 30 40 50
Quality

0

1

2

3

4

5

6

m
AP

 L
os

s

Fine-Tuned
Task-Targeted Artifact Correction
MobileNetV2 Transfer
ResNet-18 Transfer

(b) FasterRCNN Results with Transfer.

10 20 30 40 50
Quality

1

2

3

4

5

6

7

m
Io

U 
Lo

ss

Fine-Tuned
Task-Targeted Artifact Correction
MobileNetV2 Transfer
ResNet-18 Transfer

(c) HRNetV2 + C1 Results with Transfer.

Figure 7: Transfer Results. In all plots, we add an evaluation using artifact correction weights that were trained on ResNet-18 and
MobileNetV2, our lightest weight models. Note that “Fine-Tuned” and “Task-Targeted Artifact Correction” methods are both trained using
their respective task network directly e.g. in (a) they use a ResNet 101. - - dashed lines indicate results shown in Section 4.1.

10 20 30 40 50
Quality

1

0

1

2

3

4

5

Ac
cu

ra
cy

 L
os

s (
%

)

Fine-Tuned
Task-Targeted Artifact Correction
Multihead (2 Model)
Multihead (3 Model)

(a) ResNet50 Results with Multihead.

10 20 30 40 50
Quality

0

1

2

3

4

5

6

m
AP

 L
os

s

Fine-Tuned
Task-Targeted Artifact Correction
Multihead (2 Model)
Multihead (3 Model)

(b) FasterRCNN Results with Multihead.

10 20 30 40 50
Quality

1

2

3

4

5

6

m
Io

U 
Lo

ss

Fine-Tuned
Task-Targeted Artifact Correction
Multihead (3 Model)

(c) HRNetV2 + C1 Results with Multihead.

Figure 8: Multihead Results. In all plots, we add an evaluation using artifact correction weights that were trained using multiple task
networks. For the two task setup, we used ResNet-50 and FasterRCNN. For the three task setup, we used ResNet-50, FasterRCNN, and
HRNetV2 + C1. Note that HRNetV2 + C1 has no two-task multihead model. - - dashed lines indicate results shown in Section 4.1.

in artifact correction, and IDCN [49] a recent model. AR-
CNN was modified to handle color images and IDCN han-
dles them natively. Both models were ported to our frame-
work and retrained to within 0.5dB PSNR of the published
numbers. We additionally restrict the quality settings to 10
and 20 only (the quality settings reported by IDCN). Table 1
shows that both models perform worse than QGAC, further
motivating our use of it for the main study.

5. Conclusion
In this paper we conducted a large scale study of

JPEG compression on common computer vision tasks and
datasets. Our study shows that JPEG compression has a
steep penalty across the board for heavy to moderate com-
pression settings. We also tested several strategies for mit-
igating this performance penalty including a novel method
which requires no labels. Our proposed mitigation strategy
achieves better results than other unlabeled mitigations and
since it requires no labels it is ideal for consumer facing
applications where labels are often hard to obtain. For com-
plex tasks, our method outperforms the supervised method
despite having no access to ground truth labels. Our method
promotes model reuse by allowing transfer of weights be-
tween tasks and multihead training. For further results, in-
cluding throughput for each tested model (Appendix E) we

invite readers to our appendices.
We hope to extend this work by considering more com-

pression methods. Despite their relative disuse, there are
other still image compression techniques, such as JPEG
2000 [50], HEIF [51], WebP [52], and BPG [53] that
should be considered. Consideration of learned-image-
compression algorithms is also a useful addition. Finally,
video processing models are becoming commonplace, and
video compression is almost exclusively lossy. An extended
study should consider these models over different video
compression settings.

It is our hope that this will be a living study that it will
be updated as new models, compression algorithms, and
mitigation techniques are developed. Our benchmarking
code is pluggable to allow for experimentation with differ-
ent models, and will be made freely available. Futher, since
our Task-Targeted Artifact Correction method shows good
transferability, we plan to make the weights we trained for
this study available for general use. Many applications will
benefit from using our TTAC weights with no modification.

Acknowledgement This project was partially supported
by independent grants from Facebook AI, DARPA
SemaFor (HR001119S0085) and DARPA SAIL-ON
(W911NF2020009) programs.

2364



References
[1] G. K. Wallace, “The jpeg still picture compression

standard,” IEEE transactions on consumer electron-
ics, vol. 38, no. 1, pp. xviii–xxxiv, 1992.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Im-
agenet classification with deep convolutional neural
networks,” in Advances in neural information pro-
cessing systems, 2012, pp. 1097–1105.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei, “ImageNet: A Large-Scale Hierarchical
Image Database,” in CVPR09, 2009.

[4] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona,
D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft
coco: Common objects in context,” in European con-
ference on computer vision, Springer, 2014, pp. 740–
755.

[5] S. F. dos Santos, N. Sebe, and J. Almeida, “The good,
the bad, and the ugly: Neural networks straight from
jpeg,” in 2020 IEEE International Conference on Im-
age Processing (ICIP), IEEE, 2020, pp. 1896–1900.

[6] L. Gueguen, A. Sergeev, B. Kadlec, R. Liu, and
J. Yosinski, “Faster neural networks straight from
jpeg,” in Advances in Neural Information Processing
Systems, 2018, pp. 3933–3944.

[7] S. Mandelli, N. Bonettini, P. Bestagini, and S.
Tubaro, “Training cnns in presence of jpeg com-
pression: Multimedia forensics vs computer vision,”
arXiv preprint arXiv:2009.12088, 2020.

[8] M. Tan and Q. V. Le, “Efficientnet: Rethinking model
scaling for convolutional neural networks,” arXiv
preprint arXiv:1905.11946, 2019.

[9] F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and
J. Xiao, “Lsun: Construction of a large-scale image
dataset using deep learning with humans in the loop,”
arXiv preprint arXiv:1506.03365, 2015.

[10] P. Benz, C. Zhang, A. Karjauv, and I. S. Kweon, “Re-
visiting batch normalization for improving corrup-
tion robustness,” arXiv preprint arXiv:2010.03630,
2020.

[11] D. Hendrycks and T. Dietterich, “Benchmarking neu-
ral network robustness to common corruptions and
perturbations,” arXiv preprint arXiv:1903.12261,
2019.

[12] S. Zheng, Y. Song, T. Leung, and I. Goodfellow, “Im-
proving the robustness of deep neural networks via
stability training,” in Proceedings of the ieee con-
ference on computer vision and pattern recognition,
2016, pp. 4480–4488.

[13] A. Ghosh and R. Chellappa, “Deep feature extraction
in the dct domain,” in Pattern Recognition (ICPR),
2016 23rd International Conference on, IEEE, 2016,
pp. 3536–3541.

[14] M. Ehrlich and L. S. Davis, “Deep residual learning
in the jpeg transform domain,” in Proceedings of the
IEEE International Conference on Computer Vision,
2019, pp. 3484–3493.

[15] S.-Y. Lo and H.-M. Hang, “Exploring semantic seg-
mentation on the dct representation,” in Proceedings
of the ACM Multimedia Asia on ZZZ, 2019, pp. 1–6.

[16] B. Deguerre, C. Chatelain, and G. Gasso, “Fast object
detection in compressed jpeg images,” arXiv preprint
arXiv:1904.08408, 2019.

[17] M. Ehrlich, L. Davis, S.-N. Lim, and A. Shrivastava,
“Quantization guided jpeg artifact correction,” Pro-
ceedings of the European Conference on Computer
Vision, 2020.

[18] J. Choi and B. Han, “Task-aware quantization net-
work for jpeg image compression,” in European
Conference on Computer Vision, Springer, 2020,
pp. 309–324.

[19] L. Galteri, L. Seidenari, M. Bertini, and A. Del
Bimbo, “Deep generative adversarial compression
artifact removal,” in Proceedings of the IEEE In-
ternational Conference on Computer Vision, 2017,
pp. 4826–4835.

[20] ——, “Deep universal generative adversarial com-
pression artifact removal,” IEEE Transactions on
Multimedia, 2019.

[21] S. Katakol, B. Elbarashy, L. Herranz, J. van de Wei-
jer, and A. M. Lopez, “Distributed learning and in-
ference with compressed images,” arXiv preprint
arXiv:2004.10497, 2020.

[22] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y.
Bengio, “Generative adversarial nets,” in Advances
in neural information processing systems, 2014,
pp. 2672–2680.

[23] I. J. Group. “Libjpeg.” (), [Online]. Available:
http://libjpeg.sourceforge.net.

[24] S.-Y. Wang, O. Wang, R. Zhang, A. Owens, and
A. A. Efros, “Cnn-generated images are surprisingly
easy to spot...for now,” in CVPR, 2020.

[25] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gra-
dient descent with warm restarts,” arXiv preprint
arXiv:1608.03983, 2016.

2365



[26] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and
L.-C. Chen, “Mobilenetv2: Inverted residuals and
linear bottlenecks,” in Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep resid-
ual learning for image recognition,” in Proceedings
of the IEEE conference on computer vision and pat-
tern recognition, 2016, pp. 770–778.

[28] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He,
“Aggregated residual transformations for deep neu-
ral networks,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017,
pp. 1492–1500.

[29] K. Simonyan and A. Zisserman, “Very deep convo-
lutional networks for large-scale image recognition,”
arXiv preprint arXiv:1409.1556, 2014.

[30] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and
Z. Wojna, “Rethinking the inception architecture for
computer vision,” in Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
2016, pp. 2818–2826.

[31] S. Marcel and Y. Rodriguez, “Torchvision the
machine-vision package of torch,” in Proceedings of
the 18th ACM international conference on Multime-
dia, 2010, pp. 1485–1488.

[32] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam,
D. Parikh, and D. Batra, “Grad-cam: Visual expla-
nations from deep networks via gradient-based lo-
calization,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 618–626.

[33] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE
international conference on computer vision, 2015,
pp. 1440–1448.

[34] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-
cnn: Towards real-time object detection with region
proposal networks,” IEEE transactions on pattern
analysis and machine intelligence, vol. 39, no. 6,
pp. 1137–1149, 2016.

[35] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár,
“Focal loss for dense object detection,” in Proceed-
ings of the IEEE international conference on com-
puter vision, 2017, pp. 2980–2988.

[36] K. He, G. Gkioxari, P. Dollár, and R. Girshick,
“Mask r-cnn,” in Proceedings of the IEEE in-
ternational conference on computer vision, 2017,
pp. 2961–2969.

[37] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Gir-
shick, Detectron2, https : / / github . com /
facebookresearch/detectron2, 2019.

[38] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariha-
ran, and S. Belongie, “Feature pyramid networks for
object detection,” in Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
2017, pp. 2117–2125.

[39] D. Bolya, S. Foley, J. Hays, and J. Hoffman, “Tide:
A general toolbox for identifying object detection er-
rors,” in ECCV, 2020.

[40] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Bar-
riuso, and A. Torralba, “Semantic understanding of
scenes through the ade20k dataset,” arXiv preprint
arXiv:1608.05442, 2016.

[41] ——, “Scene parsing through ade20k dataset,” in
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017.

[42] K. Sun, Y. Zhao, B. Jiang, T. Cheng, B. Xiao, D.
Liu, Y. Mu, X. Wang, W. Liu, and J. Wang, “High-
resolution representations for labeling pixels and re-
gions,” arXiv preprint arXiv:1904.04514, 2019.

[43] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid
scene parsing network,” in Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, 2017, pp. 2881–2890.

[44] T. Xiao, Y. Liu, B. Zhou, Y. Jiang, and J. Sun, “Uni-
fied perceptual parsing for scene understanding,” in
Proceedings of the European Conference on Com-
puter Vision (ECCV), 2018, pp. 418–434.

[45] L. Chai, D. Bau, S.-N. Lim, and P. Isola,
“What makes fake images detectable? understand-
ing properties that generalize,” arXiv preprint
arXiv:2008.10588, 2020.

[46] F. Chollet, “Xception: Deep learning with depthwise
separable convolutions,” in Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, 2017, pp. 1251–1258.

[47] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn:
Towards real-time object detection with region pro-
posal networks,” in Advances in neural information
processing systems, 2015, pp. 91–99.

[48] C. Dong, Y. Deng, C. C. Loy, and X. Tang, “Com-
pression artifacts reduction by a deep convolutional
network,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 576–584.

[49] B. Zheng, Y. Chen, X. Tian, F. Zhou, and X. Liu,
“Implicit dual-domain convolutional network for ro-
bust color image compression artifact reduction,”
IEEE Transactions on Circuits and Systems for Video
Technology, vol. 30, no. 11, pp. 3982–3994, 2019.

2366



[50] M. W. Marcellin, A. Bilgin, M. J. Gormish, and M. P.
Boliek, “An overview of jpeg-2000,” in Proceedings
of the Conference on Data Compression, ser. DCC
’00, USA: IEEE Computer Society, 2000, p. 523,
ISBN: 0769505929.

[51] M. Hannuksela, E. Aksu, V. M. Vadakital, and J.
Lainema, “Overview of the high efficiency image file
format,” in JCTVC-V0072, 2015.

[52] A. WebP, New image format for the web, 2020.

[53] F. Bellard, Bpg image format. [Online]. Available:
https://bellard.org/bpg/.

2367


