
Appendix–MGGAN: Solving Mode Collapse Using Manifold-Guided Training

1. Preliminaries

In this section, we first show why the GAN is vulnerable
to the mode collapse problem by analyzing its formulation.

GAN Training utilizes two separate networks with com-
petitive goals. First, a discriminator, D, is trained to dis-
tinguish between the real and the fake data. Then, a gen-
erator, G, aims to create the fake data to be as real as pos-
sible to fool the discriminator. More specifically, the gen-
erator learns the generation process, which maps from the
prior distribution Pz to the data distribution Pdata . This
is equivalent to an implicit model Pmodel , which approxi-
mates Pdata . This problem can be formulated as a minimax
game [7, 8]:

min
G

max
D

E
x∼Pdata

[log(D(x))] + E
z∼Pz

[log(1−D(G (z))] ,

where E denotes expectation, and x and z are samples
drawn from Pdata and Pmodel , respectively. Suppose that
the generator produces perfect samples (i.e., Pmodel ≡
Pdata ). Then, the discriminator no longer distinguishes the
fake data from the real data, and, thus, the game ends. This
is called the Nash equilibrium.

However, this adversarial minimax game causes train-
ing instability, which is associated with two major prob-
lems of GAN training: gradient vanishing and mode col-
lapse. Gradient vanishing becomes a serious problem be-
cause GAN training is forced to terminate. There are two
well-known scenarios of gradient vanishing. The first is
when the discriminator easily wins against the generator.
At the early stage of the training, the generator produces
images with poor quality. Hence, distinguishing those with
poor fake data from those with real data becomes a rela-
tively easy task. The second scenario is that any subset of
Pdata and Pmodel is disjoint such that the discriminator sep-
arates the real from the fake data perfectly; i.e., the gener-
ator no longer improves the data because the discrimina-
tor has reached its optimum [1]. For both scenarios, poor
results are generated because training stops even though
Pmodel has not learned Pdata properly. Mode collapse de-
scribes the case in which the generator repeatedly produces
the same or a similar output. The reason is that Pmodel only
encapsulates a single or a few modes of Pdata to easily fool
the discriminator.

To alleviate the training instability, Goodfellow et al. [7]
recommended implementing an alternative cost function for
alleviating the gradient vanishing problem caused by the
first scenario and it is defined as

min
G

− E
x∼Pdata

log(D(G(x))).

From this modification, the authors intend to accelerate
the early stage of generator training, preventing the discrim-
inator from easily reaching the optimum. Fedus et al. [6]
referred to it as non-saturated GAN to distinguish it from
the standard GAN.

Although the standard GAN [7] theoretically proves
that generative modeling can be formulated by minimizing
the Jensen-Shannon divergence (JSD), its authors recom-
mend the non-saturated GAN for the actual implementa-
tion [7, 6]. The non-saturated GAN is designed to min-
imize KL(Pmodel||Pdata) − 2JSD for generator update,
which holds a property of the reverse KL divergence be-
tween Pdata and Pmodel [1]. Arjovsky and Bottou [1] and
Arjovsky et al. [2] pointed out that the reverse KL diver-
gence is vulnerable to mode collapse. Because the reverse
KL divergence evaluates the dissimilarity between two dis-
tributions in every fake sample (i.e., Pmodel(x) > 0, for
all x), there is no penalty for covering only a fraction of
the true data distribution. Such a theoretical justification is
analogous to empirical observations; non-saturated GANs
suffer frequently from mode collapse.

2. Ablation study

Types of autoencoders. Our final model used the de-
noising autoencoder for the guidance network. The dimen-
sion reduction methods affect the performance because each
method follows a different objective function. We investi-
gated different dimension reduction methods using a con-
ventional autoencoder, denoising autoencoder (DAE), vari-
ational autoencoder (VAE) [10], and adversarial autoen-
coder (AAE) [11]. We set α to 0.5 in all the evaluations
and the results are in Table 1. We conclude that the DAE-
based guidance network is better than the other networks for
improving the diversity. It was expected because DAE faith-
fully recovers the overall modes by minimizing the sample
reconstruction error and obeying the forward KL property.



Table 1. Comparison of the performance following the different
dimension reduction methods on the evaluation of the Stacked
MNIST dataset.

MODEL COVERED MODES KL DIVERGENCE

AUTOENCODER 306 2.8994
DAE 418 2.4088
VAE 262 3.0238
AAE 301 2.8992

Meanwhile, VAE and AAE opt to sacrifice the reconstruc-
tion accuracy in favor of generation ability.

Effect of the latent dimension. We investigate the effect
of the latent dimension using the Stacked MNIST dataset
as this dimension can be an important hyperparameter. As
shown in Table 3, MGGAN became less effective in captur-
ing various modes when the dimension was too high. The
reason was that the Pdata projected on that manifold may
not be much different from Pdata; as the latent dimension
approaches to the data dimension, the feedback from guid-
ance network is nearly identical to that of the discrimina-
tor. Likewise, if the dimension was too low, the encoder
discards too much information of Pdata; the loss from the
guidance network was less informative to GAN training.
Yet, in either case, MGGAN still achieved better perfor-
mance than those of the other competitive GANs (i.e., DC-
GAN, ALI/BiGAN, and VEEGAN).

To analyze the effect of latent size on various datasets,
we evaluate the FID of the generated samples using CIFAR-
10 and CelebA datasets. From this empirical study, we aim
to observe whether the complexity of datasets affects the
optimal size of the latent dimension (CIFAR-10 and CelebA
are more complicated than Stacked MNIST). Interestingly,
the optimal latent size is 128 regardless of the complexity
of the dataset.

Effect of alpha. We measured the inception score on
CIFAR-10 along the change in the alpha value and the FID
score on both CIFAR-10 and CelebA. Table 2 shows that
the inception score was similar to those of the baseline
GANs when α was greater than 0.5. However, the lower
the alpha value, the poorer the quality. Also, we conduct
an additional evaluation of measuring the FID scores on
both CIFAR-10 and CelebA, and confirm the improvement
in all baseline networks. As the FID score measures the
sample quality and diversity simultaneously, the amount of
improvement clearly demonstrates our improvement. From
these results, one might consider that MGGAN still suf-
fers from the trade-off between quality and diversity dis-
cussed in existing studies [4, 6]. However, we consistently
observed that MGGAN improved the diversity while pre-
serving the quality with the proper α, which, in our case,
was 0.5. Using the proper alpha value, MGGAN improved
the diversity without sacrificing the quality.

Table 2. Comparison of the inception scores and FID (mean ± std)
along the change in α. We evaluated the DCGAN-based MGGAN.
When α is zero, training is failed in all cases.

Dataset α 1.0 0.7 0.5 0.3

CIFAR-10
Inception

score 6.4706 6.4709 6.4728 6.4259

FID (mean ± std)
53.6387
±1.4198

53.0271
±1.4224

53.2985
±1.3253

52.6721
±1.4255

CelebA FID (mean ± std)
14.9491
±0.3549

13.5833
±0.4388

14.0103
±0.3889

14.7570
±0.5833

Figure 1. Latent space interpolations from the CelebA dataset.
Left- and rightmost columns (marked red box) are the test images
and, just beside them (marked yellow box) are the correspond-
ing reconstructions. Intermediate columns between them (marked
green box) are linear interpolations in the latent space between re-
constructions.

3. More qualitative results

In this section, we generated samples by walking in a la-
tent space to verify whether data generation is the result of
data memorization. Because our generator learns represen-
tative features in manifold, Pm, derived from Pdata solely,
it might be reasonable to suspect overfitting of the train-
ing data. To clarify this issue, we show the image genera-
tion results by latent walking in Fig. 1. Note that we chose



Table 3. Comparison of the performance by varying the latent dimension on the evaluation of the Stacked MNIST, CIFAR-10, and CelebA
dataset.

STACKED MNIST CIFAR-10 CELEBA
DIMENSION COVERED MODES KL DIVERGENCE FID FID

1024 238 2.5289 54.6684 ± 1.3484 15.1771 ± 0.6553
512 382 2.5585 53.9497 ± 1.4322 15.1282 ± 0.3831
256 418 2.4088 53.3623 ± 1.4224 14.2799 ± 0.4322
128 407 2.6080 53.2985 ± 1.3253 14.0103 ± 0.3889
64 327 2.9929 54.4036 ± 1.2877 15.2169 ± 0.4121

Figure 2. Nearest neighbors in ResNet-18-avgpool feature space
among the generated samples and training dataset from CelebA.
Leftmost columns (marked red box) are the generated images and,
just beside them are the nearest neighbors from rank one to seven
in order.

two latent vectors, which were derived from the CelebA test
dataset using the above network (connecting the manifold
to the latent space). According to Radford et al. [12], Dinh
et al. [5], and Bengio et al. [3], the interpolated images
between two images in a latent space do not have mean-
ingful connectivity when the networks just memorize the
dataset, such as the lack of smooth transitions or the fail-

ure to generate. However, because our MGGAN produces
natural interpolations with various examples, we conclude
that MGGAN learns the meaningful landscape in a latent
space. Furthermore, we search the top-7 most similar train-
ing samples for each generated sample by performing the
nearest neighbors in the feature space of pretrained classi-
fier networks (i.e., ResNet-18-avgpool [9]) and show them
in Fig. 2. The leftmost columns (marked by the red box)
are the generated images, and the seven samples in each row
are the corresponding neighbors from rank one to seven.
As the nearest neighbors are similar to the generated image
but visually distinct, we confirm that our achievement is not
caused by memorizing the training dataset.
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