# Analyzing and Mitigating JPEG Compression Defects in Deep Learning: Appendices

| GradCam Visualizations | 2  |
|------------------------|----|
| Detection Errors       | 5  |
| Qualitative Results    | 6  |
| Full Study Results     | 10 |
| D.1. Plots of Results  | 10 |
| D.2 Tables of Results  | 15 |
| D.3 Reference Results  | 17 |
| Chroughput             | 18 |
| Aultihead Results      | 19 |

## A. GradCam Visualizations

In order to provide more insight into the potential cause of misclassifications on JPEG images, besides the obvious answer of "quality degredation", we provide visualizations using GradCam [1]. The visualizations are shown in Figures 1 - 3, see Figure 6 for enlarged inputs as well as predicted and ground-truth classes (the fine tuned model also predicts the correct class on this image). The visualizations compare the gradient and class-activation-maps (CAMs) for each mitigation technique to passing the JPEG directly ("no mitigation") and to passing the original image directly. What we see is quite telling. The gradient with no mitigation is degraded significantly with respect to the original input, however the CAM indicates that it is still focusing in the correct location in the image. Fine-tuning the model greatly improves the quality of the gradient, however the CAM localization is now off. Off-the-shelf artifact correction improves the gradient quality, however the localization is now less constrained and the network appears unsure of where in the image to focus. Finally, Task-Targeted artifact correction seems to make an improvement in the gradient while preserving the CAM localization.



(d) Fine tuned Model CAM

(e) Original Model CAM with JPEG Input

Figure 1: Fine Tuned Model Comparison

2

(f) Original Model CAM with Original Input



(a) Off-the-Shelf AC Gradient



(d) Off-the-Shelf AC CAM



(b) Original Model Gradient with JPEG Input



(e) Original Model CAM with JPEG Input

(c) Original Model Gradient with Original Input



(f) Original Model CAM with Original Input

Figure 2: Off-the-Shelf Artifact Correction Comparison



(a) Task-Targeted AC Gradient

(d) Task-Targeted AC CAM



(b) Original Model Gradient with JPEG Input



(e) Original Model CAM with JPEG Input



(c) Original Model Gradient with Original Input



(f) Original Model CAM with Original Input

Figure 3: Task-Targeted Artifact Correction Comparison

#### **B.** Detection Errors

Here we look deeper at the detection errors produced by JPEG compressed inputs using TIDE [2]. TIDE computes a breakdown of exactly which errors contributed to mAP loss during evaluation of detection and instance segmentation and shows the breakdown graphically in a condensed yet informative format. We ran TIDE evaluation on FasterRCNN for box detection and MaskRCNN for instance segmentation with no mitigations applied to understand how JPEG effects specific detection errors.

The results show similar behavior for both methods. On low quality JPEGs, the bulk of the errors are missed detections. This can be seen in the pie chart showing the relative proportions of missed detections, which is roughly 50% for quality 10, and in the high number of false negatives in the bar chart on the lower right. As the quality increases, the proportion of missed detections gradually decreases and at high quality, localization errors make up a larger proportion of the errors. It should be noted that although the proportion of error attributed to localization increases, the detections overall are much more reliable on high quality JPEGs as expected. This can be seen in the significantly lower false negative rate as well as the scale of the x-axis of the bar chart in the bottom left of the images.



Figure 4: FasterRCNN TIDE Plots





# coco\_instances\_results



Figure 5: MaskRCNN TIDE Plots

coco\_instances\_results



# **C.** Qualitative Results

Since the proposed Task-Targeted Artifact Correction is at its core an image-to-image regression technique, we provide some qualitative results here that show images with their downstream task network behavior. All of the images in this section were compressed at quality 10 before being corrected. Where appropriate we also visualize the result of the Supervised Fine-Tuning method for comparison.



(a) JPEG Q=10, Prediction: "Norwich terrier", Fine-Tuned Prediction: "Pembroke, Pembroke Welsh corgi"



(b) Off-the-Shelf Artifact Correction, Prediction: "basenji"



(c) Task-Targeted Artifact Correction, Prediction: "Pembroke, Pembroke Welsh corgi"



(d) Original, Prediction: "Pembroke, Pembroke Welsh corgi"

Figure 6: MobileNetV2, Ground Truth: "Pembroke, Pembroke Welsh corgi"



(a) JPEG Q=10



(c) Task-Targeted Artifact Correction



(b) Off-the-Shelf Artifact Correction



(d) Supervised Fine-Tuning



(e) Original



(f) Ground Truth





(a) JPEG Q=10



(b) Off-the-Shelf Artifact Correction



(c) Task-Targeted Artifact Correction



(d) Supervised Fine-Tuning



(e) Original



(f) Ground Truth





(a) JPEG Q=10



(d) Off-the-Shelf Artifact Correction



(g) Task-Targeted Artifact Correction



(j) JPEG Q=10



(b) Degraded Prediction



(e) Off-the-Shelf Artifact Correction Prediction



(h) Task-Targeted Artifact Correction Prediction



(k) Supervised Fine-Tuning Prediction

Figure 10: HRNetV2 + C1



(c) Ground Truth



(f) Ground Truth



(i) Ground Truth



(l) Ground Truth

# **D. Full Study Results**

Here we give the full results of the study including plots and tables of results for JPEG quality levels [10, 90]. The results are shown visually in plots similar to those given in the body of the paper and the raw numbers are provided in tables.

#### **D.1.** Plots of Results



Figure 11: Classification





(i) EfficientNet B3



Figure 13: Detection and Instance Segmentation



12



Figure 15: Semantic segmentation









Figure 17: Forensics



## **D.2.** Tables of Results

| Model             | Metric          | Reference | Mitigation                        | Q=10  | Q=20  | Q=30  | Q=40  | Q=50  | Q=60  | Q=70  | Q=80  | Q=90  |
|-------------------|-----------------|-----------|-----------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                   |                 |           | Supervised Fine-Tuning            | 79.78 | 81.84 | 82.47 | 82.68 | 82.78 | 82.75 | 82.83 | 82.85 | 82.83 |
| EfficientNet B3   | Top-1 Accuracy  | 83.98     | None                              | 77.24 | 81.11 | 81.95 | 82.52 | 82.67 | 82.91 | 83.10 | 83.37 | 83.75 |
| Efficienti (et B5 | 10p-17 Accuracy | 05.70     | Off-the-Shelf Artifact Correction | 75.92 | 80.02 | 81.47 | 82.12 | 82.44 | 82.71 | 82.94 | 83.23 | 83.70 |
|                   |                 |           | Task-Targeted Artifact Correction | 81.03 | 82.71 | 83.21 | 83.53 | 83.64 | 83.71 | 83.73 | 83.80 | 83.76 |
|                   |                 |           | Supervised Fine-Tuning            | 75.11 | 77.25 | 77.77 | 77.89 | 78.13 | 78.13 | 78.24 | 78.26 | 78.32 |
| IncentionV3       | Top-1 Accuracy  | 77 33     | None                              | 69.38 | 74.15 | 75.44 | 75.98 | 76.38 | 76.69 | 76.95 | 77.14 | 77.30 |
| inception (5      | Top T Recuracy  | 11.55     | Off-the-Shelf Artifact Correction | 71.21 | 75.04 | 76.09 | 76.42 | 76.68 | 76.79 | 76.97 | 77.06 | 77.13 |
|                   |                 |           | Task-Targeted Artifact Correction | 73.65 | 75.89 | 76.53 | 76.82 | 76.93 | 76.99 | 77.09 | 77.15 | 77.10 |
|                   |                 |           | Supervised Fine-Tuning            | 65.65 | 69.21 | 69.92 | 70.20 | 70.37 | 70.53 | 70.50 | 70.55 | 70.54 |
| MobileNetV2       | Top-1 Accuracy  | 70.72     | None                              | 57.23 | 65.55 | 67.87 | 68.95 | 69.47 | 69.98 | 70.24 | 70.60 | 70.86 |
| Mooner (et v 2    | Top T Recuracy  | 10.12     | Off-the-Shelf Artifact Correction | 57.33 | 65.25 | 67.76 | 68.93 | 69.60 | 70.07 | 70.40 | 70.71 | 70.58 |
|                   |                 |           | Task-Targeted Artifact Correction | 64.64 | 68.63 | 69.71 | 70.18 | 70.32 | 70.44 | 70.50 | 70.52 | 70.34 |
|                   |                 |           | Supervised Fine-Tuning            | 74.63 | 76.50 | 77.07 | 77.20 | 77.27 | 77.29 | 77.43 | 77.44 | 77.53 |
| DecNet 101        | Top-1 Accuracy  | 76.91     | None                              | 66.12 | 73.00 | 74.65 | 75.39 | 75.83 | 76.29 | 76.51 | 76.79 | 76.96 |
| Residet-101       |                 |           | Off-the-Shelf Artifact Correction | 67.91 | 73.64 | 75.09 | 75.84 | 76.23 | 76.52 | 76.56 | 76.80 | 76.74 |
|                   |                 |           | Task-Targeted Artifact Correction | 72.99 | 75.53 | 76.30 | 76.60 | 76.59 | 76.72 | 76.70 | 76.72 | 76.59 |
|                   |                 | 68.84     | Supervised Fine-Tuning            | 65.49 | 68.46 | 69.07 | 69.16 | 69.36 | 69.33 | 69.38 | 69.53 | 69.49 |
| D N - 4 10        | Top-1 Accuracy  |           | None                              | 57.62 | 65.26 | 67.07 | 67.68 | 68.08 | 68.30 | 68.61 | 68.84 | 68.92 |
| Residet-10        |                 |           | Off-the-Shelf Artifact Correction | 61.19 | 66.39 | 67.87 | 68.39 | 68.61 | 68.77 | 68.97 | 68.99 | 68.90 |
|                   |                 |           | Task-Targeted Artifact Correction | 63.83 | 67.06 | 68.04 | 68.24 | 68.35 | 68.48 | 68.52 | 68.60 | 68.50 |
|                   |                 |           | Supervised Fine-Tuning            | 73.18 | 75.46 | 76.02 | 76.24 | 76.36 | 76.42 | 76.52 | 76.52 | 76.55 |
| ResNet 50         | Top-1 Accuracy  | 75 31     | None                              | 63.43 | 71.20 | 73.23 | 74.10 | 74.43 | 74.63 | 75.01 | 75.09 | 75.34 |
| Residet-50        |                 | 75.51     | Off-the-Shelf Artifact Correction | 66.90 | 72.45 | 73.95 | 74.60 | 74.93 | 75.18 | 75.26 | 75.42 | 75.30 |
|                   |                 |           | Task-Targeted Artifact Correction | 70.48 | 73.56 | 74.39 | 74.81 | 74.94 | 75.00 | 74.98 | 74.98 | 74.89 |
|                   |                 |           | Supervised Fine-Tuning            | 75.60 | 78.00 | 78.50 | 78.71 | 78.86 | 78.97 | 79.01 | 78.98 | 79.06 |
| ResNeXt 101       | Top 1 Accuracy  | 78.81     | None                              | 68.83 | 74.84 | 76.39 | 77.05 | 77.60 | 78.00 | 78.16 | 78.56 | 78.75 |
| Resivert-101      | Top-1 Accuracy  | /0.01     | Off-the-Shelf Artifact Correction | 71.19 | 75.88 | 77.14 | 77.80 | 78.15 | 78.30 | 78.57 | 78.66 | 78.61 |
|                   |                 |           | Task-Targeted Artifact Correction | 74.73 | 77.33 | 78.08 | 78.29 | 78.55 | 78.62 | 78.68 | 78.73 | 78.68 |
|                   |                 |           | Supervised Fine-Tuning            | 74.21 | 76.23 | 76.79 | 77.01 | 77.08 | 77.18 | 77.16 | 77.30 | 77.17 |
| ResNeXt 50        | Top 1 Accuracy  | 76.00     | None                              | 66.96 | 73.21 | 74.85 | 75.62 | 76.07 | 76.37 | 76.63 | 76.88 | 77.06 |
| Resivert-50       | Top-1 Accuracy  | 10.99     | Off-the-Shelf Artifact Correction | 68.05 | 73.56 | 75.11 | 75.95 | 76.38 | 76.59 | 76.71 | 76.99 | 76.90 |
|                   |                 |           | Task-Targeted Artifact Correction | 72.22 | 75.45 | 76.09 | 76.62 | 76.86 | 76.83 | 76.85 | 76.99 | 76.81 |
|                   |                 |           | Supervised Fine-Tuning            | 69.50 | 72.66 | 73.29 | 73.74 | 73.83 | 73.85 | 73.95 | 74.14 | 74.11 |
| VGG-19            | Top-1 Accuracy  | 73 44     | None                              | 59.27 | 68.08 | 70.49 | 71.53 | 71.99 | 72.42 | 72.80 | 73.24 | 73.46 |
| +00-17            | 10p-1 Accuracy  | 15.44     | Off-the-Shelf Artifact Correction | 61.93 | 68.79 | 70.82 | 71.83 | 72.50 | 72.94 | 73.13 | 73.40 | 73.44 |
|                   |                 |           | Task-Targeted Artifact Correction | 67.50 | 71.32 | 72.33 | 72.76 | 73.03 | 73.16 | 73.50 | 73.48 | 73.44 |

Table 1: Results for classification models.

| Model      | Metric | Reference | Mitigation                        | Q=10  | Q=20  | Q=30  | Q=40  | Q=50  | Q=60  | Q=70  | Q=80  | Q=90  |
|------------|--------|-----------|-----------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|            |        |           | Supervised Fine-Tuning            | 29.09 | 33.34 | 34.72 | 35.08 | 35.49 | 35.82 | 35.96 | 36.06 | 36.17 |
| EasterDCNN | m A D  | 25 27     | None                              | 20.35 | 30.03 | 32.59 | 33.43 | 34.04 | 34.31 | 34.73 | 34.93 | 35.25 |
| FasterKUNN | IIIAP  | 55.57     | Off-the-Shelf Artifact Correction | 28.45 | 31.86 | 33.10 | 33.85 | 34.05 | 34.47 | 34.70 | 34.77 | 34.71 |
|            |        |           | Task-Targeted Artifact Correction | 31.43 | 33.85 | 34.29 | 34.81 | 34.81 | 34.97 | 35.01 | 34.88 | 34.81 |
|            |        |           | Supervised Fine-Tuning            | 28.01 | 31.94 | 33.08 | 33.56 | 33.88 | 34.17 | 34.42 | 34.44 | 34.66 |
| EastDCNN   | mAD    | 34.02     | None                              | 19.99 | 29.04 | 31.22 | 32.19 | 32.65 | 33.00 | 33.34 | 33.40 | 33.80 |
| FasikCinin | IIIAF  |           | Off-the-Shelf Artifact Correction | 27.62 | 30.91 | 32.04 | 32.56 | 32.78 | 33.18 | 33.28 | 33.48 | 33.44 |
|            |        |           | Task-Targeted Artifact Correction | 30.11 | 32.31 | 33.07 | 33.31 | 33.39 | 33.53 | 33.69 | 33.68 | 33.59 |
|            |        | 32.84     | Supervised Fine-Tuning            | 26.32 | 30.48 | 31.79 | 32.21 | 32.55 | 32.83 | 33.11 | 33.20 | 33.32 |
| MashDCNN   | m A D  |           | None                              | 18.35 | 27.58 | 29.83 | 30.80 | 31.32 | 31.62 | 32.02 | 32.29 | 32.62 |
| MaskkCinin | IIIAP  |           | Off-the-Shelf Artifact Correction | 25.82 | 29.35 | 30.67 | 31.32 | 31.59 | 31.85 | 32.03 | 32.24 | 32.16 |
|            |        |           | Task-Targeted Artifact Correction | 28.48 | 30.85 | 31.71 | 32.00 | 32.19 | 32.24 | 32.35 | 32.43 | 32.26 |
|            |        |           | Supervised Fine-Tuning            | 27.64 | 31.97 | 33.03 | 33.50 | 33.80 | 34.12 | 34.30 | 34.33 | 34.40 |
| PatinaNat  | mAD    | 22 57     | None                              | 18.76 | 28.23 | 30.63 | 31.59 | 32.27 | 32.57 | 32.88 | 33.02 | 33.42 |
| Ketinalvet | mAP    | 33.37     | Off-the-Shelf Artifact Correction | 26.74 | 29.90 | 31.24 | 31.87 | 32.19 | 32.60 | 32.86 | 33.02 | 32.93 |
|            |        |           | Task-Targeted Artifact Correction | 29.66 | 31.86 | 32.73 | 32.97 | 32.98 | 33.13 | 33.24 | 33.23 | 33.09 |

Table 2: Results for detection models.

| Model                           | Metric | Reference | Mitigation                                                             | Q=10                    | Q=20                    | Q=30                    | Q=40                    | Q=50                    | Q=60                    | Q=70                    | Q=80                    | Q=90                    |
|---------------------------------|--------|-----------|------------------------------------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| HRNetV2 + C1                    | mIoU   | 40.59     | Supervised Fine-Tuning<br>None<br>Off-the-Shelf Artifact Correction    | 34.76<br>24.95<br>32.30 | 37.35<br>35.16<br>36.54 | 38.74<br>38.03<br>38.40 | 38.78<br>38.52<br>38.52 | 39.27<br>39.02<br>40.08 | 39.75<br>40.09<br>40.44 | 39.98<br>40.50<br>40.46 | 39.86<br>40.41<br>40.22 | 39.96<br>40.54<br>40.60 |
|                                 |        |           | Task-Targeted Artifact Correction                                      | 34.14                   | 37.61                   | 39.23                   | 39.24                   | 39.92                   | 40.53                   | 40.62                   | 40.39                   | 40.55                   |
|                                 |        |           | Supervised Fine-Tuning                                                 | 19.07                   | 22.37                   | 23.43                   | 23.62                   | 23.60                   | 24.15                   | 24.44                   | 24.37                   | 24.46                   |
| MobileNetV2 (dilated) + C1 (ds) | mIoU   | 29.52     | Off-the-Shelf Artifact Correction                                      | 21.17                   | 25.27                   | 27.13                   | 27.16                   | 29.14                   | 28.80<br>29.32<br>20.56 | 29.37<br>29.26<br>20.54 | 29.06                   | 29.43<br>29.54<br>20.52 |
|                                 |        |           | Supervised Fine-Tuning                                                 | 35.32                   | 37.41                   | 38.27                   | 38.28                   | 38 55                   | 38 59                   | 38.72                   | 38.58                   | 38.70                   |
| ResNet101 + UPerNet             | mIoU   | 41.08     | None                                                                   | 26.14                   | 36.70                   | 39.45                   | 39.81                   | 39.55                   | 40.47                   | 40.98                   | 40.97                   | 41.07                   |
|                                 | inice  |           | Off-the-Shelf Artifact Correction<br>Task-Targeted Artifact Correction | 33.90<br>35.82          | 37.39<br>38.67          | 39.12<br>39.96          | 39.38<br>39.98          | 40.32<br>40.22          | 40.58<br>40.79          | 40.78<br>40.97          | 40.79<br>40.91          | 41.04<br>41.00          |
|                                 | mIoU   | 40.26     | Supervised Fine-Tuning                                                 | 31.86                   | 35.45                   | 36.73                   | 36.94                   | 36.91                   | 37.33                   | 37.67                   | 37.55                   | 37.65                   |
| ResNet101 (dilated) + PPM       |        |           | Off-the-Shelf Artifact Correction                                      | 31.44                   | 35.86                   | 38.01                   | 38.26                   | 39.54<br>30.28          | 39.73<br>39.73          | 40.03<br>39.94          | 40.17                   | 40.21                   |
|                                 |        |           | Supervised Fine-Tuning                                                 | 29.84                   | 32.33                   | 33.08                   | 33.01                   | 33.38                   | 33.61                   | 33.50                   | 33.29                   | 33 33                   |
| ResNet18 (dilated) + PPM        | mIoU   | 36.65     | None                                                                   | 21.16                   | 31.99                   | 34.72                   | 35.36                   | 35.41                   | 36.16                   | 36.56                   | 36.60                   | 36.59                   |
| Restorio (dilaced) + 1110       | intee  |           | Off-the-Shelf Artifact Correction<br>Task-Targeted Artifact Correction | 28.64<br>31.69          | 32.59<br>34.55          | 34.56<br>35.80          | 34.53<br>35.80          | 35.96<br>36.12          | 36.21<br>36.50          | 36.29<br>36.66          | 36.25<br>36.54          | 36.64<br>36.60          |
|                                 |        |           | Supervised Fine-Tuning                                                 | 32.88                   | 35.11                   | 35.94                   | 35.90                   | 36.41                   | 36.58                   | 36.63                   | 36.49                   | 36.55                   |
| ResNet50 + UPerNet              | mIoU   | 39.21     | None<br>Off-the-Shelf Artifact Correction                              | 24.29<br>31.83          | 34.78<br>35.52          | 37.34<br>37.20          | 37.71<br>37.26          | 37.70<br>38.44          | 38.57<br>38.67          | 39.12<br>38.87          | 39.13<br>38.86          | 39.16<br>39.12          |
|                                 |        |           | Task-Targeted Artifact Correction                                      | 34.36                   | 36.94                   | 38.17                   | 38.07                   | 38.55                   | 38.93                   | 39.14                   | 39.06                   | 39.09                   |
|                                 |        |           | Supervised Fine-Tuning                                                 | 32.26                   | 35.33                   | 36.04                   | 36.04                   | 36.53                   | 36.75                   | 36.93                   | 36.71                   | 36.92                   |
| ResNet50 (dilated) + PPM        | mIoU   | 38.91     | None<br>Off-the-Shelf Artifact Correction                              | 23.05<br>28.36          | 33.95<br>32.69          | 36.66<br>35.24          | 37.07                   | 37.40<br>37.74          | 38.58<br>38.04          | 38.93<br>38.18          | 38.70<br>38.13          | 38.86<br>38.73          |
|                                 |        |           | Task-Targeted Artifact Correction                                      | 31.92                   | 35.43                   | 37.04                   | 36.92                   | 38.05                   | 38.69                   | 38.79                   | 38.52                   | 38.74                   |

| Table 3: | Results | for | segmentation | models. |
|----------|---------|-----|--------------|---------|
| Table 3: | Results | for | segmentation | models. |

| Model       | Metric         | Reference | Mitigation                                                                                               | Q=10                             | Q=20                             | Q=30                             | Q=40                             | Q=50                             | Q=60                             | Q=70                             | Q=80                             | Q=90                             |
|-------------|----------------|-----------|----------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Chai et. al | Patch Accuracy | 93.83     | Supervised Fine-Tuning<br>None<br>Off-the-Shelf Artifact Correction<br>Task-Targeted Artifact Correction | 53.04<br>49.87<br>50.56<br>51.99 | 54.81<br>49.46<br>50.20<br>52.46 | 56.12<br>49.48<br>50.34<br>52.70 | 56.86<br>49.86<br>50.63<br>52.98 | 57.34<br>50.33<br>51.14<br>53.21 | 57.66<br>50.74<br>51.63<br>53.33 | 58.07<br>51.12<br>52.26<br>53.48 | 58.58<br>51.83<br>53.22<br>53.58 | 59.41<br>53.26<br>54.12<br>53.28 |
| Wang et. al | Accuracy       | 99.96     | Supervised Fine-Tuning<br>None<br>Off-the-Shelf Artifact Correction<br>Task-Targeted Artifact Correction | 89.70<br>54.25<br>50.00<br>50.00 | 96.69<br>91.08<br>50.00<br>50.00 | 98.41<br>97.56<br>50.00<br>50.00 | 99.04<br>98.79<br>50.00<br>50.00 | 99.44<br>99.28<br>50.00<br>50.00 | 99.54<br>99.38<br>50.00<br>50.00 | 99.65<br>99.60<br>50.00<br>50.00 | 99.88<br>99.81<br>50.00<br>50.00 | 99.91<br>99.84<br>50.00<br>50.00 |

Table 4: Results for forensics models.

# **D.3. Reference Results**

The following table gives the reference numbers of the pretrained weights as evaluated by our system on uncomressed images.

| Model                                               | Value               |
|-----------------------------------------------------|---------------------|
| ImageNet Classification, Metric: Top-1 Accuracy     |                     |
| ResNet 18                                           | 68.84               |
| ResNet 50                                           | 75.31               |
| ResNet 101                                          | 76.91               |
| ResNeXt 50                                          | 76.99               |
| ResNeXt 101                                         | 78.81               |
| VGG 19                                              | 73.44               |
| MobileNetV2                                         | 70.72               |
| InceptionV3                                         | 77.33               |
| EfficientNet B3                                     | 83.98               |
| COCO Object Detection and Instance Segmentatio      | n, Metric: mAP      |
| FastRCNN                                            | 34.02               |
| FasterRCNN                                          | 35.38               |
| RetinaNet                                           | 33.57               |
| MaskRCNN                                            | 32.84               |
| ADE20k Semantic Segmentation, Metric: mIoU          |                     |
| HRNetV2 + C1                                        | 40.59               |
| MobileNetV2 (dilated) + C1                          | 29.52               |
| ResNet 18 (dilated) + PPM                           | 36.65               |
| ResNet 50 (dilated) + PPM                           | 38.91               |
| ResNet 101                                          | 41.08               |
| ResNet 101 (dilated) + PPM                          | 40.26               |
| Forensics (dataset varies), Metric: Accuracy (exact | formulation varies) |
| Chai <i>et al</i> .                                 | 93.84               |
| Wang <i>et al</i> .                                 | 99.96               |



Figure 19: Throughput results for all tested models.

#### **E.** Throughput

Although artifact correction is mentioned in prior works and presented here as a viable compression mitigation technique, we would be remiss if we did not note the slower throughput of these methods. In Figure 19 we show the training and inference throughput for batches of size 1 of both the artifact correction mitigation as well as the supervised fine tuning mitigation. These results are critical when considering which mitigation method is most viable for a particular application: although Task-Targeted Artifact Correction is more flexible, it comes with a cost in throughput.

Table 5: Transfer and multihead results. Reference indicates the performance of the pretrained weights on uncompressed images. **Best** result in bold, <u>second best</u> underlined.

| Mitigation                        | Q=10         | Q=20        | Q=30         | Q=40         | Q=50         |
|-----------------------------------|--------------|-------------|--------------|--------------|--------------|
| HRNetV2 + C1, Reference: 40.59    | mIoU (Se     | mantic Seg  | gmentation   | n)           |              |
| None                              | 24.95        | 35.16       | 38.03        | 38.52        | 39.02        |
| Off-the-Shelf Artifact Correction | 32.30        | 36.54       | 38.40        | 38.52        | 40.08        |
| Supervised Fine-Tuning            | 34.76        | 37.35       | 38.74        | 38.78        | 39.27        |
| Task-Targeted Artifact Correction | 34.14        | 37.61       | 39.23        | 39.24        | 39.92        |
| MobileNetV2 Transfer              | 33.20        | 37.05       | 38.93        | 38.95        | 39.33        |
| ResNet18 Transfer                 | 33.77        | 37.44       | 39.22        | 39.21        | 39.25        |
| Multihead (Three Model)           | <u>34.38</u> | 37.68       | 39.39        | 39.39        | <u>39.72</u> |
| Faster RCNN, Reference: 35.37 m   | AP (Obje     | ct Detectio | on)          |              |              |
| None                              | 20.35        | 30.03       | 32.59        | 33.43        | 34.04        |
| Off-the-Shelf Artifact Correction | 28.45        | 31.86       | 33.10        | 33.85        | 34.05        |
| Supervised Fine-Tuning            | 29.09        | 33.34       | 34.72        | 35.08        | 35.49        |
| Task-Targeted Artifact Correction | 31.43        | 33.85       | <u>34.29</u> | <u>34.81</u> | <u>34.81</u> |
| MobileNetV2 Transfer              | 30.05        | 33.04       | 33.86        | 34.35        | 34.48        |
| ResNet18 Transfer                 | 30.72        | 33.30       | 34.20        | 34.57        | 34.66        |
| Multihead (Two Model)             | <u>31.09</u> | 33.39       | 34.19        | 34.67        | 34.68        |
| Multihead (Three Model)           | 30.96        | 33.41       | 34.29        | 34.68        | 34.70        |
| ResNet-101, Reference: 76.91, Top | -1 Accura    | acy (Imag   | e Classific  | ation)       |              |
| None                              | 66.12        | 73.00       | 74.65        | 75.39        | 75.83        |
| Off-the-Shelf Artifact Correction | 67.91        | 73.64       | 75.09        | 75.84        | 76.23        |
| Supervised Fine-Tuning            | 74.63        | 76.50       | 77.07        | 77.20        | 77.27        |
| Task-Targeted Artifact Correction | 72.99        | 75.53       | 76.30        | 76.60        | 76.59        |
| MobileNetV2 Transfer              | 72.18        | 75.35       | 76.15        | 76.49        | 76.58        |
| ResNet18 Transfer                 | 71.80        | 75.05       | 76.00        | 76.40        | 76.49        |
| ResNet-50, Reference: 75.31, Top- | 1 Accura     | ey (Image   | Classifica   | tion)        |              |
| None                              | 63.43        | 71.20       | 73.23        | 74.10        | 74.43        |
| Off-the-Shelf Artifact Correction | 66.90        | 72.45       | 73.95        | 74.60        | 74.93        |
| Supervised Fine-Tuning            | 73.18        | 75.46       | 76.02        | 76.24        | 76.36        |
| Task-Targeted Artifact Correction | 70.48        | 73.56       | 74.39        | 74.81        | 74.94        |
| Multihead (Two Model)             | <u>71.66</u> | 74.14       | 74.90        | <u>75.05</u> | 75.10        |
| Multihead (Three Model)           | 71.49        | 74.23       | 74.96        | 75.05        | 75.15        |
|                                   |              |             |              |              |              |

# F. Multihead Results

Table 5 shows the raw numbers for our transfer and multi-head experiments.

## References

- [1] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, "Grad-cam: Visual explanations from deep networks via gradient-based localization," in *Proceedings of the IEEE international conference on computer vision*, 2017, pp. 618–626.
- [2] D. Bolya, S. Foley, J. Hays, and J. Hoffman, "Tide: A general toolbox for identifying object detection errors," in *ECCV*, 2020.