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Abstract

Face recognition has been an active and vital topic
among computer vision community for a long time. Previ-
ous researches mainly focus on loss functions used for facial
feature extraction network, among which the improvements
of softmax-based loss functions greatly promote the per-
formance of face recognition. However, the contradiction
between the drastically increasing number of face identities
and the shortage of GPU memory is gradually becoming
irreconcilable. In this work, we theoretically analyze the
upper limit of model parallelism in face recognition in the
first place. Then we propose a load-balanced sparse dis-
tributed classification training method, Partial FC, which is
capable of using a machine with only 8 Nvidia Tesla VI00
GPUs to implement training on a face recognition data
set with up to 29 million IDs. Furthermore, we are able
to train on data set with 100 million IDs in 64 RTX2080Ti
GPUs. We have verified the effectiveness of Partial FC in 8
mainstream face recognition trainsets, and find that Partial
FC is effective in all face recognition training sets. The
code of this paper has been made available at https :
//github.com/deepinsight/insightface/
tree/master/recognition/partial_fc.

1. Introduction

Face recognition is playing an increasingly important
role in modern life and has been widely used in residen-
tial security, face authentication [4, 18, 19, 6, 16, 15] and
criminal investigation. The softmax loss and its variants
[17,4, 15, 10] are widely used as objectives for face recog-
nition. In general, they make global feature-to-class com-
parisons during the multiplication between the embedding
features and the linear transformation matrix. In spite of
that, when there are huge number of identities in the train-
ing set, the cost of storage and calculation of the final linear
matrix easily exceed the current GPU capabilities, resulting
in failure to train.

In this work, we analyze the drawbacks of model par-
allelism, and then propose Partial FC, a sparse variant of
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Figure 1: Partial FC increases training speed by 2.5 times
on a 4-million-identity training set and increases maximum
number of supported identities by 8 times.

model parallel architecture for training face recognition.
Since random sampling results in the imbalance of dis-
tributed computing and storage, which affects the efficiency
of training, we propose an effective solution that can solve
this problem and is significantly better than dense training
methods. We verify the method in 8 large-scale face recog-
nition training sets, with Partial FC, we are able to use only
8 Nvidia Tesla V100 GPUs to implement training on a face
recognition data set with up to 29 million IDs and use 8 ma-
chines with 64 Nvidia 2080Ti GPUs to implement training
on data set with 100M IDs. We achieve on par performance
with dense trained model in the ultra-large-scale face recog-
nition training set in the academic field, while less training
time is required.

2. Method
2.1. Model parallel

The most widely used classification loss function, soft-
max loss, can be described as
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Figure 2: Class centers are represented by square, face embeddings are represented by rectangle, class centers are distributed
on different GPUs. The embeddings of images and class centers have same color if they all represent the same identities.
When the buffer is filled with positive class centers, the rest of the buffer is filled with random negative class centers, negative
class centers are represented by gray. There is no overlap cross all GPUs, because the class centers they maintained are
orthogonal. Partial FC reduces a large amount of GPU memory because it reduces both storage usage of the class centers and

softmax logits.
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where z; € R? denotes the embedding feature of the i-th
sample, belonging to the y;-th class. w; € R? denotes the
j-th column of the weight W € R%X®. The batch size
and the class number are NV and C'. Naturally, each col-
umn of the linear transformation matrix is viewed as a class
center, and the j-th column of the matrix corresponds to
the class center of class j. we denote w,, as positive class
center of x;, and the others are negative class centers. It is
painful to train models with massive identities without using
model parallel, subject to the memory capacity of a single
GPU. The bottleneck exists in storing the matrix of softmax
weight W € R?XC, where d denotes embedding feature di-
mension and C' denotes the number of classes. A natural
and straightforward approach to break the bottleneck is to
partition W into k sub-matrices w of size d X 7 ¢ and places
the ¢-th sub-matrices on the ¢-th GPU. Consequently, to cal-
culate the final softmax outputs, each GPU has to gather
features from all other GPUs, as the weights are split up
among different GPUs. The definition of softmax function
is

0(X,i) = ———rx- )

The calculation of the numerator can be done independently
by each GPU as input feature X and corresponding weight
sub-matrix w; are stored locally. To calculate the denomina-
tor of the softmax function, sum of all ewJT X to be specific,
information from all other GPUs have to be collected. Nat-
urally, we can first calculate the local sum of each GPU,
and then compute the global sum through communication.
Compared with the naive data parallel, this implementation
has negligible communication cost.

2.2. Memory Limits of Model Parallel

The model parallel can completely solve the storage and
communication problems of w, since no matter how big C
is, we can easily add more GPUs. So that each GPU’s mem-
ory size storing sub-matrix w remains unchanged:

Mem,, =d x % X 4 bytes. 3)
However, w is not the only one stored on GPU memories.
The storage of predicted logits suffers from the increase of
total batch size. We denote the logits storage on each GPU
as logits = Xw, and then the memory consumption storing
logits on each GPU is therefore equal to:

Memjogits = Nk X % x 4 bytes, “4)
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where N is the mini-batch size on each GPU, and k is the
number of GPUs. Assuming that the batch size of each
GPU is constant, when C' increases, in order to keep % un-
changed, we have to increase k at the same time. Hence, the
GPU memory occupied by logits will continue to increase,
because the batch size of features increases synchronously
with k. Suppose the mini-batch size on each GPU is 64
and the embedding feature dimension is 512, then 1 million
classification task requires 8 GPUs and training 10 millions
classification task requires at least 80 GPUs. We find that
logits will take up ten times as much memory cost as w,
which makes storing logits new bottleneck to model paral-
lel. The result shows that training tasks with massive iden-
tities cannot be solved by simply adding GPUs.

2.3. Partial FC

Sparse Softmax As mentioned above, model parallelism
still has its limit. To solve this problem, we propose a pos-
sible training method. When computing the softmax loss
function in each iteration, only a part of the class centers
are randomly activated for computation. By doing so, a
large amount of storage can be reduced, and a dense large
model can be trained with a small amount of calculation.
The class centers activated in each iteration are different,
so that the parameters belong to all class centers will be up-
dated throughout the training process. In order to efficiently
select the class centers for computing in each iteration, we
use this sampling method: positive class centers must be
sampled, while negative class centers are randomly sam-
pled, as illustrated in Figure 2.

Load Balancing Sampling Since the positive class cen-
ters of each batch are random, the number of positive class
centers in each GPU is different, and because the negative
class centers are selected randomly, both the positive cen-
ters and the negative centers are randomly distributed. This
results in the imbalance of distributed computing and stor-
age, which affects the efficiency of training. Hence, we fur-
ther implement a load-balanced sampling method. In order
to equalize the calculation and storage of each GPU, we
set a memory buffer for each GPU. The size of the mem-
ory buffer is related to the sampling rate and the total num-
ber of classes. The positive center of each sample in the
batch plays a critical role in the optimization of the neu-
ral network, therefore the positive centers must participate
in model training and weights update. First, we load the
memory buffer of each GPU with their respective positive
class centers. In order to know which positive centers are in
the batch, each GPU has to obtain the information of all
samples in this batch. This information can be obtained
through the collective communication primitive allgather,
as depicted in Figure 2. After receiving the information of
all samples in the batch, the class information of each sam-
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Figure 3: Sampling class centers and backbone computation
in DNN training.

ple will be checked. If the class of a sample is maintained
by the current GPU, we transfer the weights corresponding
to this class from CPU to GPU, otherwise we do not trans-
fer. Due to the locality of model parallelism, each GPU
activates only a fraction of all positive class centers of the
overall batch, but for all GPUs, all positive class centers are
activated. Afterwards, we randomly activate the remaining
class centers maintained by each GPU to fill up the remain-
ing memory buffer. By doing so, the class centers sampled
in each GPU will not overlap each other, and the number
of class centers involved in each GPU is equal. The subse-
quent training process is consistent with the normal model
parallelism. When the weights in the GPU are updated, they
are then transferred back to CPU.

Efficiency As illustrated in Figure 3, the process of trans-
ferring weights from CPU to GPU is independent of the pro-
cess of backbone forward, which means they can be done
in parallel. Similarly, the process of transferring updated
weights from GPU to CPU is independent of the process of
backbone backward and thus they can be done in parallel
too. Therefore, the IO overhead can be completely covered
by calculations. When the number of classes is too large
to be stored in GPU memory, we can store the weights in
memory or even NVMe SSD without sacrificing the training
speed. In this case, the GPU memory needed is decided by
the sampling rate. One thing to be noticed, even if we store
all weights on GPU, Partial FC still saves a large amount of
GPU memory because it reduces the storage usage of final
logits.

3. Experiment
3.1. Datasets and Settings

Datasets. Our training sets include CASIA[II],
VGGface2[2], GlintAsia[20], MS1IMV2[4], MSIMV3[5],
Webfacel2M[22], and Megaface[9] . Furthermore, we
clean Celeb-500k [!] and MS1M-Retinaface to merge into
a new training set, which we call Glint360K. The released
dataset contains 17 million images of 360K individuals.
We explore efficient face verification datasets (e.g., LFW
[8], CFP-FP [14], AgeDB-30 [13]), IJB-C [I2]) and
ICCV21-MFR]3, 21] to test the robustness of Partial FC.
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ICCV21-MFR
Method All African | Caucasian | South Asian | East Asian AgeDB | CFPEP | LEW | IJB-C
CASIA 36.79 | 42.55 55.83 49.62 19.61 99.45 95.21 | 94.90 | 87.22
CASIA+pfc 37.11 | 38.93 53.82 48.67 19.93 99.37 95.43 | 94.60 | 84.97
VGGFace 38.58 | 35.26 54.30 44.08 24.10 99.55 97.41 | 95.08 | 91.22
VGGFace+pfc 40.67 | 36.77 60.18 49.04 24.26 99.68 98.53 | 95.40 | 92.49
GlintAsian 62.66 | 49.53 64.83 57.98 61.74 99.58 93.19 | 95.40 | 91.50
GlintAsian+pfc 63.15 | 50.37 65.23 57.94 61.82 99.65 93.03 | 95.23 | 91.14
MSIMV2 77.70 | 74.60 84.13 82.04 51.10 99.83 98.08 | 98.08 | 96.14
MSIMV2+pfc 77.74 | 74.73 84.88 82.80 52.51 99.78 98.07 | 98.02 | 96.08
MegafaceMS 1M 78.37 | 74.14 82.25 77.22 60.20 99.75 97.56 | 97.40 | 95.35
MegafaceMS1M+pfc | 78.77 | 73.69 82.95 78.79 57.57 99.80 97.87 | 97.73 | 95.40
MSIMV3 82.52 | 77.17 87.03 86.01 60.62 99.80 98.53 | 98.27 | 96.58
MSI1MV3+pfc 81.68 | 78.13 87.29 85.54 58.93 99.80 98.44 | 98.17 | 96.43
Glint360K 86.79 | 84.75 91.41 90.09 66.17 99.82 99.14 | 98.45 | 97.13
Glint360K+pfc 87.08 | 85.27 91.62 90.54 66.81 99.82 99.14 | 98.45 | 97.02
Webfacel2m 90.57 | 89.36 94.18 92.36 73.85 99.80 99.20 | 98.10 | 97.12
Webfacel2m+pfc 89.95 | 89.30 94.02 92.38 73.01 99.82 99.14 | 98.12 | 97.01

Table 1: For ICCV2021-MFR, TAR is measured on 1:1 verification, with FAR less than 0.000001(1e-6). TAR @FAR=1e-4 is
reported on the IJB-C datasets, 1:1 verification accuracy (%) is reported on the LFW, CFP-FP, AgeDB datasets. +pfc means

using Partial FC training method.

Training Settings. We use ResNet50 [4, 7], as our back-
bone network. All experiments in this paper are imple-
mented using Pytorch. The batch size is set to 1024 and
models are trained on eight NVIDIA Tesla V100 (32GB)
GPUs. we employ the SGD optimizer and the learning rate
starts from 0.2. We set the feature scale s to 64 and cosine
margin m of CosFace at 0.4, when Partial FC turns on, we
set sampling rate to 0.1.

3.2. Robustness of Partial FC

In Table 1 we show this comparison on a wide variety
of datasets, all of these are from celebrities. The num-
ber of identities in these training sets ranges from 8§ thou-
sands(VGGFace) to 0.75 millions(MegafaceMS1M), the
number of faces in these training set ranges from 0.5 mil-
lions(CASIA) to 17millions(Glint360k). On average accu-
racy in eight data sets, Partial FC outperforms fully soft-
max baseline on ICCV-MFR-ALL and IJB-C by over 0.27
and -0.1, this can prove that Partial FC is competitive with
fully softmax baseline in most data sets. Looking at in-
dividual datasets reveals some interesting behavior, Partial
FC outperforms baseline on ICCV-MFR-ALL and IJB-C by
over 2.1 and 1.9 on VGGFace2, we speculate this is due to
VGGface?2 dataset has a lot of noise, Partial FC effectively
avoids model overfit into the training set due to the sam-
pling of negative class center. Looking at where Partial FC
notably underperforms, we see that Partial FC shows a little
weak on several datasets on IJB-C, except MegafaceMS 1M
and VGGFace, this is because IJB-C’s images are mainly
derived from internet celebrities, it overlaps more or less

with the mainstream celebrity training set, in general, better
IJB-C results can be achieved as long as the training set is
overfitted. Interestingly, there are a large number of non-
celebrities in the MegafaceMS 1M training set.

3.3. Performence of Partial FC

Training with Partial FC can save a lot of GPU mem-
ory and time because it reduces the computation of large
scale classification. Using synthetic data, we test how many
identities which Partial FC could train, we use IResnet50,
set batch size to 512 and turn mixed precision training on.
As shown in Figure 1, On a server with 8§ 32G V100 GPUs,
the maximum number of identities supported by Partial FC
is 29 millions, 8 times of model parallel. In a 4 millions
ID training setting, Partial FC achieves 2.5 times faster than
model parallel.

4. Conclusion

From a HPC and system perspective, we believe that Par-
tial FC is a revolutionary innovation in large-scale classifi-
cation tasks. Compared with model parallel, Partial FC can
increase trainable identities by 8x and throughput by 2.5x.
We verity the effectiveness of Partial FC in 8 mainstream
face recognition training sets, which shows the significance
of sparse training in face recognition. We hope this train-
ing method serves as a simple baseline for future research
in large-scale facial recognition.
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