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Abstract

In recent years, the performances of face recognition
have been improved significantly by using convolution neu-
ral networks (CNN) as the feature extractors. On the other
hands, in order to avoid spreading COVID-19 virus, peo-
ple would wear mask even when they want to pass the face
recognition system. Thus, it is necessary to improve the per-
formance of masked face recognition so that users could
utilize face recognition methods more easily. In this paper,
we propose a feature extraction backbone named ResSaNet
that integrates CNN (especially Residual block) and Self-
attention module into the same network. By capturing the
local and global information of face area simultaneously,
our proposed ResSaNet could achieve promising results on
both masked and non-masked testing data.

1. Introduction

With the rapid growth of deep learning techniques, and
the increasing of large scale training data [11, I, 51], the
performance of face recognition has been improved a lot in
recent years [33, 34, 39]. Thus, face recognition algorithms
have been deployed for various applications, e.g., access
control, border control, and payment systems. However,
there are various factors that would affect the performance
of face recognition, for example, large-pose variation, un-
suitable illumination, and wearing mask. How to alleviate
these influences has become important. For example, in or-
der to prevent the spread of COVID-19 virus, almost every-
one wears a facial mask in their daily life. Thus, it is nec-
essary for face recognition model to overcome the effect of
facial mask. If the masked face could not be recognized ac-
curately, it would be inconvenient for users since they need
to take off their mask, but this would increase the risk of in-
fection. To deal with this problem, Deng et al. [4] organize
the Masked Face Recognition (MFR) challenge to bench-
mark deep face recognition methods. In this paper, we will
describe the details of our solution for the InsightFace Track
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Figure 1. The example scenarios of testing data in MFR challenge.

in this challenge.

To overcome the problem of occlusion or masked face
recognition, researchers have proposed various solutions
from different viewpoints [47, 8]. For example, from the
viewpoint of recovering facial image, Li et al. [18] uti-
lized a generative adversarial network (GAN) to perform
face completion so that the content under the mask could be
recovered, and then the distillation module was employed
to obtain more realistic faces for face recognition. From
the viewpoint of occlusion robust feature extraction, Song
et al. [31] introduced a mask learning strategy to find and
discard the feature elements that have been corrupted by
occlusions. From the viewpoint of loss function, Montero
et al. [22] proposed a loss function named MTArcFace that
combined the ArcFace loss [5] and mask-usage classifica-
tion loss so that it could force the network to learn when a
face is wearing a mask. In this paper, since GAN-based re-
covering methods are hard to reproduce the results, and we
could only submit a model for feature extraction. Thus, we
prefer to design a robust and powerful backbone, and then
train it with both masked and non-masked images to handle
these two kinds of evaluation protocols in MFR challenge,
so that it could achieve better performance in both testing
sets. The example scenarios of testing data are illustrated
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in Figure 1. In masked testing set, we need to verify that
the non-mask and mask pairs are the same person or not. In
non-masked testing set (MR-All), the testing pairs are facial
images without masks.

In recent years, several CNN architectures were intro-
duced to improve the performance on the ImageNet [26]
challenge, e.g., VGGNet [30], ResNet [13], Efficient-
Net [35], and RegNet [25], and some of them also have
been applied to the task of face recognition [39]. On the
other hands, the Transformer architectures [37] have be-
come more and more popular in both natural language pro-
cessing and vision tasks, and they also have shown the com-
petitive results with respect to CNN structures in various vi-
sion tasks [46, 20]. In this paper, inspired by non-local net-
work [41] and BoTNet [32], we propose a backbone struc-
ture named ResSaNet that integrates convolution blocks
(especially Residual block) and Self-attention module for
face recognition. Moreover, we also add some useful blocks
such as SE block [14] and FReLLU [21] activation function,
so that the recognition rate could be improved. As to the
effect of facial mask, we also do data augmentation by syn-
thesizing the masked facial images in original training data
(MS1M-RetinaFace [6]). With aforementioned techniques,
we will show that our proposed model could achieve better
results in both masked and non-masked testing set with re-
spect to the baseline model (ResNet100). Moreover, in the
section of experiment, we will also show the effectiveness
of each new block that we add, so that these results could
be viewed as the reference for designing a stronger one.

2. Related Work
2.1. Loss function for face recognition

As to the backbone model for face recognition, it is
slightly different from the traditional image classification
task (i.e., face recognition model is served as a feature
extractor). To train this model, we usually add a fully-
connected (FC) layer (as a classifier, and the output of chan-
nel is the number of identity) after the backbone, and then
calculate loss based on the output of FC. For the common
loss function of image classification (e.g., softmax loss),
it would be hard to train this model since the number of
class is so large (equal to the number of identity). Thus,
how to design a more suitable loss function has attracted
many attentions for researchers in computer vision com-
munity. In order to increase the power of discrimination,
marginal softmax loss functions (e.g., CosFace [38] and Ar-
cFace [5]) has been proposed to minimize the intra-class
variance and maximize the inter-class variance. By training
with large-scale data, these methods could outperform the
models trained by softmax loss.

In addition to margin-based loss function, Huang et
al. [16] proposed an adaptive curriculum learning loss

which would mainly address easy samples in the early train-
ing stage and hard ones in the later stage. By incorporating
the idea of curriculum learning into face recognition, the
CurricularFace loss could obtain competitive results with
respect to margin-based loss function. In this paper, since
the performance of margin-based loss functions are good
enough for masked face recognition, we directly apply them
to train our model.

2.2. Transformer structure

Self-attention models like Transformers [37] have shown
the excellent performance in natural language processing.
Recently, many works have been proposed that explored
Transformers to solve various tasks in computer vision. For
example, Dosovitskiy et al. [7] proposed the Vision Trans-
former (ViT) structure that could achieve reasonable perfor-
mance on ImageNet. However, one drawback of ViT is that
requires large-scale datasets such as ImageNet-21k and JFT-
300M (which is a private dataset) to obtain the pre-trained
model. In order to overcome this limitation, Yuan et al. [45]
introduced a layer-wise Tokens-To-Token transformation to
progressively structurize the image to tokens and model the
local structure information. Moreover, they also designed
a T2T-ViT backbone with a deep-narrow architecture. In
addition to use Transformers for image classification, Liu
et al. [20] presented Swin Transformer that could achieve
state-of-the-art in various vision tasks such as image classi-
fication, object detection, and semantic segmentation.

Different from using pure attention models, some re-
searchers proposed hybrid methods that utilize both con-
volutions and self-attention module in the same architec-
ture. For example, Yuan et al. [44] proposed convolution-
enhanced image Transformer (CeiT) that utilized CNN to
extract low-level features, and then employed Transformers
to establish long-range dependencies. Srinivas et al. [32]
presented BoTNet that integrated self-attention module into
ResNet, and this structure could achieve better results with
respect to ResNet in the task of image classification and ob-
ject detection. Similarly, Dai et al. [3] proposed a simple yet
effective network structure named CoAtNet which is com-
posed of MBConv block [27] and the Transformer block.
Different from BoTNet, CoAtNet employed MBConv block
as main component rather than residual block, and the po-
sition of Transformer blocks were placed on the last two
stages rather than the last stage. By using this design, CoAt-
Net could enjoy both good generalization like ConvNets
and superior model capacity like Transformers. Moreover,
Guo et al. [10] introduced a novel CMT (CNNs meet Trans-
formers) block, and Wu et al. [43] presented a new archi-
tecture named CvT (Convolutional vision Transformer) to
integrate convolution layers and Transformers into a same
block. Similar to ResNet, the CMT and CvT architecture
have multiple stages to generate different sizes of feature
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maps, while each stage is composed of CMT/CvT block.
One difference between CMT and CvT is that the former
has four stages while the latter only has three stages. In
this paper, since the ResNet structures were popular for face
recognition, and have shown the excellent performance, so
that we choose it as baseline, and try to integrate different
structures such as self-attention into it.

2.3. Occluded face recognition

Due to the information loss on the face area, if we do
not utilize some techniques to alleviate this influence, there
would be a degradation on the performance of face recog-
nition. In general, there are three kinds of method proposed
to overcome this problem [47]: occlusion robust feature ex-
traction method, occlusion aware face recognition, and oc-
clusion recovery based face recognition. As to the first one,
for example, Triguerosa et al. [36] proposed a method to
find out the important parts of face, and train face recogni-
tion model with the proposed batch triplet loss. On the other
hands, occlusion aware based methods only utilized visible
facial parts for recognition. For instance, Liao ef al. [19]
developed and alignment-free face representation based on
Multi-Keypoint Descriptors (MKD) to describe the holistic
or partial face, so that it could handle the problem of partial
faces. Moreover, Weng et al. [42] introduced an approach
based on feature set matching to solve the problem of partial
face recognition, while the geometric features and textural
features were considered for simultaneous matching. As
to occlusion recovery based method, Zhao et al. [48] pro-
posed a robust LSTM-Autoencoders model which consists
of two LSTM components: occlusion-robust face encoding
and recurrent occlusion removal, and these two networks
collaborate with each other to localize and remove the facial
occlusion. Moreover, Ge et al. [9] introduced the identity-
diversity inpainting method by integrating GAN with a pre-
trained CNN face recognizer so that the output image of
generator would have the similar representation in identity
space. In this paper, occlusion recovery based methods are
not suitable for the MFR challenge since we could only
submit one model to the evaluation system. Thus, we de-
velop a structure that integrates convolution blocks and self-
attention module into the same model, so that it could enjoy
the benefit of occlusion robust based approach and occlu-
sion aware based approach.

3. Our Proposed Method

In this section, we will introduce the detailed structure
of our proposed ResSaNet which is based on the IRes-
Net in InsightFace Project !, Bottleneck Transformer (BoT)
block [32], Squeeze-and-Excitation (SE) block [14], and
FReLU activation [21]. The main differences between IRes-

lhttps://qithub.com/deepinsiqht/insiqhtface/

IBasicBlock IBasic Self-Attention (IBSA)
Figure 2. The example structure of the original IBasic Block in
the IResNet of InsightFace project (left), and our proposed IBasic
Self-Attention (right).
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Figure 3. The structure of proposed IBasic Transformer (IBT).

Net and ResSaNet are illustrated in Table 1, and we would
introduce these structures in the following sections.

3.1. IBasic Self-Attention (IBSA) and IBasic Trans-
former (IBT)

In recent years, Transformer models have shown their
excellent performances [45, 20, 46] in vision tasks such as
image classification, object detection, and image segmen-
tation. However, if we directly apply these models as the
backbone for face recognition, we could not ensure that the
same structure would achieve suitable results with respect
to CNNs due to the smaller input size of face recognition
model. For example, the general input size for image clas-
sification is 224 x 224 or bigger, and some Transformers
are designed based on this input size. As to the input size
for face recognition models, the general size is 112 x 112
which is smaller. Thus, maybe we have to do some modifi-
cations so that we could directly train Transformer models
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Table 1. The architectures of IResNet series (50 and 100), and our proposed ResSaNet series (ResSaNet-50 and ResSaNet-100) . In
IResNet, the details of IBasic block are shown in Figure 2. For our ResSaNet, the structure of IBT block is depicted in Figure 3, and
SE-IBasic block is demonstrated in Figure 4. As to SE-IBasic_F block, the PReLU activation function in SE-IBasic block is replaced by
FReLU, and the structure of FReLU is depicted in Figure 5. As to the inference time, the results are evaluated on Tesla V100 GPU.

stage | output (size, #channel) | IResNet-50 | ResSaNet-50 | IResNet-100| ResSaNet-100
convl 112 x 112,64 Conv 3 x 3 Conv3 x 3 Conv3 x 3 Conv3 x 3
stagel 96 x 56, 64 [Basic x3 [Basic x3 [Basic x3 [Basic x3
stage?2 28 x 28,128 IBasic x4 | SE-IBasic_F x4 | IBasic x13 |SE-IBasic_F x13
stage3 14 x 14,256 IBasic x14 | SE-IBasic_F x14| IBasic x30 |SE-IBasic_F x30
stage4 7x 7,512 IBasic x3 IBT x3 IBasic x3 IBTx3
FC 1x 1,512
#Params 43.57 x 10°] 44.13 x 10° [ 65.16 x 10° [ 66.35 x 10°
#FLOPs 6.31 x 107 |  6.29 x 10° [ 12.12x10° | 12.11 x 10°
Inference Time (ms) 4.51 5.18 7.03 9.69
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Figure 4. The example structure of SE block (left) and the integra-
tion of IBasic block and SE block: SE-IBasic block (right).

for face recognition. On the other hands, since CNN struc-
tures have demonstrated excellent results for face recog-
nition, one thing we are curious to know : if the perfor-
mance of face recognition could be improved by integrating
the self-attention module into convolution blocks ? Since
convolution blocks could extract the local information, and
self-attention module could capture long-term dependency,
integrating both structures into the same backbone could al-
leviate the weakness of each other. Moreover, the long-term
dependency is also important for face recognition because
we could not recognize one person accurately only by see-
ing the partial face (e.g., only using eyes or nose).

Inspired by non-local network [41] and BoTNet [32],
we modify the IBasic block in IResNet by replacing one
3 x 3 convolution layer with Multi-Head Self-Attention
(MHSA) layer, while batch normalization [17] layer and
PReLU [12] layer are preserved. Figure 2 shows the dif-
ference between the original IBasic block and our IBasic
Self-Attention (IBSA) block. In MHSA layer, the attention
logits are gk T + qr " where ¢, k, 7 represent query, key and
position encodings respectively. Here, we follow the ex-

BN ‘

Output

Figure 5. The structure of FReLU.

periments in BoTNet [
encodings [

], and utilize the relative position
] in order to achieve better performance.

Moreover, since the BoT block originally was designed
for bottleneck block which is slightly different from the
IBasic block in IResNet. The order of convolution layers in
bottleneck block is 1 x 1, 3 x 3, and 1 x 1, but there are only
two 3 x 3 convolution layers in [Basic block. If we follow
the design of BoTNet to replace the second 3 x 3 convolu-
tion layer with MHSA, there would not exist feed-forward
network (FFN) after MHSA. Thus, similar to Transformer
models like ViT [7] and CMT [10], we employ a MBConv
block [27] as FFN behind our proposed IBSA block, and
the detailed structure of our proposed IBasic Transformer
(IBT) is depicted in Figure 3.

3.2. Squeeze-and-Excitation (SE) Block and FReLU
Activation

Since we select ResNet as the base model, there are sev-
eral simple yet effective structures that could be integrated
to the base model. For example, SENet [14] has demon-
strated the better performance with respect to ResNet by just
adding the SE blocks. Thus, we also employ this channel
attention to perform feature recalibration so that the infor-
mative features could be emphasized, and the worse ones
could be suppressed. The detailed structures of SE block
and SE-IBasic block are illustrated in Figure 4, where the
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Table 2. The experimental results (measured by TAR) on mask and non-masked (MR-All) testing data with different settings of data and

backbone structures.

Base Structure | Add Masked Data | Use IBSA | Use FReLU | Add SE block | Mask Dataset | MR-All Dataset
R50 63.850 80.533
R50 vV 66.700 82.401
R50 vV Vv 66.370 82.669
R50 vV v Vv 70.699 83.095
R50 Vv vV vV v 70.994 83.488
R100 69.091 84.312
R100 Vv vV vV Vv 77.649 88.093

Table 3. The results of different positions (i.e., different stages in
ResNet) for SE block, while the training data is with masked faces.

Base Structure SE Position | Mask | MR-AIl
R50_FReLU_IBSA None 70.699 | 83.095
R50_FReLU_IBSA [2,3] 70.994 | 83.488
R50_FReLU_IBSA [1,2,3] 71.374| 83.428
R50_FReLU_IBSA [2,3,4] 69.838 | 83.279

Table 4. The results of different positions for IBSA, while the
training data is with masked faces.

Figure 6. Examples of our synthetic mask data.

scale function in SE block is utilized to do channel-wise
multiplication, and r is the reduction ratio.

In addition to SE block, we also notice that FReLLU [21]
could outperform the popular activation functions such as
ReLU [24] and PReLU [12] in the task of classification,
detection, and segmentation. Thus, we replace the PReLU
with FReLU in SE-IBasic block or IBasic block. Moreover,
according to the experiments in FReLU [21], we do not do
this replacement for all stages. The structure of FReLU
is shown in Figure 5, and the main idea is using an addi-
tional depth-wise convolution layer to increase the pixel-
wise modeling capacity.

4. Experiments
4.1. Dataset and Settings

For the Masked Face Recognition Challenge [4], the
training data and testing data are restricted by the organiz-
ers. In InsightFace track, the training data could be MS1M-
RetinaFace [6] or Glint360k [ 1], and the testing data is a pri-
vate dataset that was collected by the organizers. For train-
ing data, we utilize the tool of MaskTheFace? to wear masks
for the images in MS1M-RetinaFace dataset, and then we

’https://github.com/ageelanwar/MaskTheFace

Base Structure | IBSA Setting | Mask | MR-All
R50_FReLU | stage4 x3 | 70.699 | 83.095
R50_FReLU | stage4 x6 | 69.335 | 80.389
R50_FReLU | stage3 x2 |70.915| 82.812

stage4 x3

merge these images into the original dataset to generate our
training data. The ratio of synthetic masked face is about
5 % of total image. Figure 6 shows the examples of these
masked images. Note that all of the models in following
sections are trained by our synthetic data or the original one
(no mask). For testing data, the detailed rules and statistics
are shown in the website of this track of challenge’. In a
short summary, the evaluation metric would be measured on
two types of testing data: Mask and Multi-racial (MR-All),
and number of identity in Mask data is 6,964, while there
are 6,964 masked images and 13,928 non-masked images.
In MR-AIl dataset, there are four racial sets: African, Cau-
casian, Indian, and Asian, while it contains about 0.24 mil-
lion identities and 1.62 million images. For evaluation, the
metric is TAR (True Accept Rate) on all-to-all 1:1 protocol,
with FAR (False Accept Rate) less than different thresholds
(le—* for Mask dataset, and 1e~¢ for MR-All dataset).

As to the detailed settings for model training, the config-
uration is based on the project of Arcface_torch*: the initial
learning rate is 0.05, and the optimizer is SGD. Besides, we

3https://github.com/deepinsight/insightface/
tree/master/challenges/iccv2l-mfr

4https://github.com/deepinsight/insightface/
tree/master/recognition/arcface_torch/
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Table 5. The results (measured by TAR) of baseline models (RS0 and R100) and our proposed models: ResSaNet-IBSA series and
ResSaNet-IBT series on multiple racial and masked face datasets in MFR challenge.

Model Data Set Mask | Children | Affrican | Caucasian| South Asian| East Asian| MR-AIl
R50 63.850 | 60.457 75.48 86.115 84.305 57.352 80.533
ResSaNet-IBSA-50 | 70.994 | 64.785 | 79.025 87.499 86.141 62.552 83.488
ResSaNet-IBT-50 71.877 | 66.809 | 80.061 87.628 87.671 62.090 83.621
R100 69.091 | 66.864 | 81.083 89.040 88.082 62.193 84.321
ResSaNet-IBSA-100| 77.649 | 71.408 | 85.462 91.388 90.953 68.839 88.093
ResSaNet-IBT-100 |78.123| 72.833 | 85.942 | 92.099 91.151 69.273 | 88.333

also utilize the method of partial _fc [ 1] to accelerate the time
for model training, while the loss function is Cosface [38]
(s = 64, m = 0.4). As to the settings for backbone, the
reduction ratio for SE block is 0.25, and the number of head
for MHSA is 4.

4.2. Performance of different types of blocks and
the effectiveness of masked data

In this section, we show the performance of different
types of blocks (e.g., IBSA, FReLU, and SE) in Table 2.
Firstly, the results of baseline model of ResNet-50 (R50)
and ResNet-100 (R100) come from the website of chal-
lenge, and our goal is to achieve better results w.r.t the
baselines on the testing data of Mask and MR-All. Sec-
ondly, with the same training data of MS1M-RetinaFace,
R50 structure would have an obvious improvement by using
IBSA blocks, this shows that self-attention blocks are use-
ful for face recognition. Then, based on this structure, the
replacement of FReLU would have slight improvement in
MR-AIl dataset. Although FReLU could not obtain better
results on Mask dataset, we still adopt this structure since
the improvement in MR-All dataset is also important.

Once the structure is almost fixed (IBSA and FReLU),
we add the synthetic masked images for training, so that
the results on Mask testing data could be improved. More-
over, we also add SE block to emphasize the more impor-
tant feature maps, and we show that by adding this chan-
nel attention, the performance on face recognition could be
enhanced. Finally, because training one ResNet-100 model
would take too much time, in order to obtain the experimen-
tal results faster, we put these structures on ResNet-50 and
do comparison with respect to ResNet50. Once we have
confirmed that all structures are useful, we directly adopt
these structures on ResNet-100, and as shown in Table 2,
our structure could also outperform the ResNet-100 (R100)
baseline on both Mask and MR-All testing data.

4.2.1 Performance of different settings for SE block

As to SE block, the positions in different stages are also
important since they would influence not only the accuracy

but also the inference time. As shown in Table 3, we notice
that adding SE blocks into the stage two and three in ResNet
would have an obvious improvement in both Mask and MR-
All testing set. Meanwhile, the inference time would also be
increased from 4.2 ms to 4.8 ms (evaluated on Tesla V100
GPU). Moreover, we also try to integrate SE blocks into
stage one or four of ResSaNet, but both settings do not have
significant improvement. Maybe this is due to that there are
only three blocks in stage one and four so that the effec-
tiveness of adding SE blocks is not so obvious. Based on
the experimental results on ResSaNet-50, we only add SE
blocks into stage two and three.

4.2.2 Performance of different settings for IBSA

Although IBSA block could improve the performance of
face recognition by replacing the IBasic blocks in the last
stage of ResNet, we also have done some experiments by
changing the positions of IBSA blocks to investigate the ef-
fectiveness of different settings. As shown in Table 4, we
add more IBSA blocks into stage four of the backbone, but
it could not get better result. Besides, we also include IBSA
blocks in stage three (by replacing the last two blocks), but
we could not obtain better result in MR-All. In a short sum-
mary, the suitable position of IBSA is in stage four.

After deciding the position of SE block and IBSA block,
we also investigate the different structures in IBSA block:
without FFN and with FFN (denoted as IBT). Table 5 shows
the TAR of ResNet, ResSaNet-IBSA, and ResSaNet-IBT
on Mask dataset, MR-All dataset, and the detailed results
for each racial dataset. Comparing ResSaNet-IBSA with
ResNet, our proposed ResSaNet-IBSA could outperform
ResNet in the structures of 50 layers and 100 layers. More-
over, we could also notice that by adding a FFN after IBSA
block, the performances of ResSaNet could be improved no
matter the number of layer is 50 or 100. Thus, the robust-
ness of ResSaNet could be shown according to these results.

4.3. Results on popular face recognition benchmark

In addition to the testing data in MFR challenge, we also
show the results of our proposed method on several bench-
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Table 6. The results (measured by accuracy) of our proposed models ResSaNet-50 and ResSaNet-100 on different popular datasets. Note
that both the models of R50 and R100 come from the InsightFace project, and IR-152 model comes from face.evoLVe project [

1.

Model | pso | ResSaNet-50| R100 | ResSaNet-100 | IR-152
Data Set

LEFW 0.0980] 0.9978 |0.9982| 0.9982 | 0.9982
CFP_FF 0.9970|  0.9976 | 0.9980 0.9979  |0.9983
CFP_FP 0.9780| 0.9821 | 09854 | 0.9857 | 0.9837
AgeDB 0.9815| 0.9777 |0.9827|  0.9807 0.9807
CALFW 0.9593| 0.9602 | 0.9593 | 0.9607 | 0.9603
CPLEW 0.9158| 0.9230 | 0.9283 0.9297 | 0.9305
VGG2FP  |0.9504] 09516 |0.9544| 09568 | 0.9550

marks of face recognition, e.g., LFW [15], CFP_FF [28], References

CEP_FP [28], AgeDB [23], CALFW [50], CPLEW [49],

and VGG2 _FP [2], while the training data for baseline mod-
els (R50 and R100) is the MS1M-RetinaFace, and our pro-
posed models (ResSaNet-50 and ResSa-Net-100) utilize the
masked data for model training (the total number of iden-
tity is equal to the MS1M-RetinaFace dataset). Moreover,
we also compare our model with the larger model: IR152
(which comes from the project of face.evoLVe [40] while it
was trained by MS1M dataset [11]. As shown in Table 6,
firstly, the trends of RS0 and R100 are similar. In other
words, the performance of R100 series models are better
than the results of R50 series models. Secondly, our pro-
posed ResSaNet models could achieve better performance
with respect to the counterpart in most of the testing data.
Thirdly, although the comparison between ResSaNet-100
and IR-152 is not so fair (the training data and the inference
time are not very closed), our ResSaNet-100 still could ob-
tain promising results in these testing data.

5. Conclusion and Future Work

In this paper, we propose a backbone named ResSaNet
by integrating residual blocks and self-attention module for
face recognition. By training with both masked facial im-
ages and non-masked facial images, our backbone has an
obvious improvement with respect to the baseline model in
both mask and non-masked testing data. In experiments, we
also investigate the usage of SE blocks and self-attention
module by changing the positions of them. Besides, we
also use public benchmark to evaluate the performance of
our proposed ResSaNet, and we demonstrate that ResSaNet
could achieve promising results on several datasets.

For future work, we would like to train our ResSaNet
with the larger dataset (e.g., Glint360k and Webface260M)
to evaluate the performance. Besides, we would like to de-
sign new loss function for the masked data, and also inves-
tigate the effectiveness of different margin-based loss func-
tions. Moreover, there are more and more great works re-
lated to Transformer, and they have shown the advantage for
several vision tasks. Thus, we also plan to integrate these
structures into CNNSs to check the performances.
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