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Abstract

Recently, heatmap regression models have become the
mainstream in locating facial landmarks. To keep com-
putation affordable and reduce memory usage, the whole
procedure involves downsampling from the raw image to
the output heatmap. However, how much impact will the
quantization error introduced by downsampling bring? The
problem is hardly systematically investigated among previ-
ous works. This work fills the blank and we are the first to
quantitatively analyze the negative gain. The statistical re-
sults show the NME generated by quantization error is even
larger than 1/3 of the SOTA item, which is a serious obsta-
cle for making a new breakthrough in face alignment. To
compensate for the impact of quantization effect, we pro-
pose a novel method, called Heatmap In Heatmap (HIH),
which leverages two categories of heatmaps as label repre-
sentation to encode the coordinate. And in HIH, the range
of one heatmap represents a pixel of the other category of
heatmap. Also, we even combine the face alignment with
solutions of other fields to make a comparison. Extensive
experiments on various benchmarks show the feasibility of
HIH and superior performance than other solutions. More-
over, the mean error reaches to 4.18 on WFLW, which ex-
ceeds SOTA a lot.

1. Introduction
Face alignment, or facial landmark detection, refers to

detect a set of predefined landmarks on the human face. It
is a fundamental step for many facial analysis tasks includ-
ing face verification, facial attributes analysis, and 3D face
reconstruction.

Owing to the rapid development of deep learning,
very recent works based on heatmap regression have got
much higher accuracy than direct coordinate regression.
Heatmap-based methods use the heatmap as label represen-
tation to encode the coordinate of facial landmark labels,
so that the supervised learning loss can be quantified. The
heatmap is usually generated by the 2-dimension Gaussian
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Figure 1. NME Comparison between the SOTA methods and quan-
tization error under ideal condition (loss=0). The normalized mean
error (NME,%) is tested on the various benchmark testsets.

distribution density function, and it is characterized by giv-
ing spatial support around the ground-truth location, con-
sidering not only the contextual clues but also the inherent
target position ambiguity [42]. In this way, this label repre-
sentation method effectively reduces the model overfitting
phenomenon during the training procedure. And there is no
doubt that heatmap-based methods [29, 20, 34] have domi-
nated the state-of-the-art performance on face alignment.

However, there is a major obstacle for the heatmap rep-
resentation, which is reflected in two aspects. One is down-
sampling the raw face images at arbitrarily large resolutions
into a prefixed small resolution with a data preprocessing
procedure. The other is that the model computation involves
downsampling layers, which cause the size of the output
is usually smaller than the input image. The prediction is
considered as the location (integer type) with maximal acti-
vation, which is required to remap back to the original co-
ordinate space. Both sides show that quantization error is
introduced during the total resolution reduction, which will
cause precision lost.

How much impact does the quantization error cause on
the final results? Some works[42, 26, 23, 21] have con-
sidered the phenomenon, but no one answers this question.
We are the first to conduct quantitative analysis, and the ex-
periments use the most common setting from 256x256 in-
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put images to 64x64 heatmaps and use round operation for
raw label to input label. We calculate the distance between
the ground-truth locations and the results from decoding the
ground-truth heatmap, and the results (Tab.1) show that the
NME generated by quantization error is even larger than 1/3
of the SOTA item. That is to say, how to make up for the
quantization effect is a key problem in face alignment.

DARK [42] and G-RMI [26] leverage neighbor points
information to softmax the result. Cornernet [21] and Cen-
ternet [13] consider another map to represent the offset er-
ror. Some works directly combine the solutions of other
fields (pose estimation, object detection) to fix the issue. For
example, LUVLI [20] trivially use the softmax way from
[23]. However, the number of facial landmarks(68,98,106)
is larger than the body skeletons(15,19), the proportion of
the face(>80%) in the image area is bigger than human
body (<40%), and the key-point location is much denser.
It is not appropriate to directly use the softmax solutions
from pose estimation in face alignment.

In order to address the above problems, we propose a
novel Heatmap in Heatmap(HIH), which uses the two cat-
egories of heatmaps as label representation to encode coor-
dinate of landmark labels. One keeps consistent with the
original to represent integer value, called integer heatmap.
And another one represents the remaining decimal value of
location, named decimal heatmap. The range of one deci-
mal heatmap represents one pixel in the corresponding inte-
ger heatmap, and the resolution of the decimal map means
the degree of offset accuracy. Both heatmaps take the lo-
cation of maximal activation as the coordinate result, and
the final prediction is represented by the sum of the integer
coordinate and the normalized decimal coordinate.

To verify the effectiveness of our method, we use two
different architectural designs (CNN and Transformer) to
implement HIH. Moreover, we even combine the face align-
ment with solutions of other fields to make a compari-
son. Extensive experiments on various benchmarks are
conducted to demonstrate the superior performance of HIH
than other solutions. Also to our best knowledge, it is the
first attempt at extending success of Transformer to face
alignment. Specifically, the NME even reaches 4.18 on
WFLW, which outperforms SOTA a lot.

The main contributions in this work are summarized as
follows.

1. We are the first to quantitatively analyze the quantiza-
tion error from downsampling. The statistical results show
the NME generated by quantization error is even larger than
1/3 of the SOTA item. We suppose it is a serious problem
that needs to focus on.

2. We propose a novel Heatmap in Heatmap(HIH) to
fix the mentioned issues, which uses two categories of
heatmaps as feature representation to encode coordinate la-
bels. We further use two designs (CNN and Transformer)

implementing HIH independently to verify the effectiveness
of our method. In the literature of face alignment, it is the
first attempt on extending success of Transformer.

3. Detailed experiments show HIH performs feasible in
compensating quantization effect and outperforms other so-
lutions. Our approach outperforms the state-of-the-art algo-
rithms by a significant margin on various benchmarks.

4. Results on various solutions have demonstrated the
accuracy decline caused by the quantization error is a seri-
ous problem. And methods about compensating the error is
a fast and effective way to improve performance.

2. Related Work
This work has a close connection with areas of facial

landmark detection(face alignment) and quantization error.

2.1. Face Alignment

Facial alignment has been intensively studied for years,
and people have proposed various methods in this area
which has achieved great progress. Early methods were
based on active shape models (ASMs) [31] and active ap-
pearance models (AAMs) [5]. Later constrained local mod-
els (CLMs) [6], SDM [38] were also proposed. And the
subsequent cascaded regression methods [46] promote the
accuracy of face alignment. Due to the success of deep
learning, more and more deep learning-based methods have
been applied in this area, and have dominated the state-
of-the-art performance on face alignment. These meth-
ods mainly fall into two categories: direct coordinate re-
gression [30, 43, 14, 11] and heatmap-based regression
[18, 9, 39, 35, 29, 20]. Heatmap-based methods perform
much better than direct coordinate regression due to their
spatial support.

Heatmap-based Regression Models. Heatmap regres-
sion methods are used to indirectly map the input image
to the probability heatmaps, each of which represents the
respective probability of a landmark location. In the infer-
ence stage, the location with the highest response on each
heatmap indicates the corresponding landmark. DAN [18]
is the first method that combines heatmap with landmarks
regression. It is coupled with the affine transformation to
a standard shape. Benefit from Hourglass [25], heatmap
regression methods have been successfully applied to land-
mark localization problems and have achieved state-of-the-
art performance. JMFA [9] achieves high localization ac-
curacy with a stacked hourglass network [25] in the Menpo
competition [41] . [39] adopts a supervised face transforma-
tion to normalize the faces, then employed hourglass [25]
to regress it. LAB [35] proposes to use additional bound-
ary lines as the geometric structure of a face image to help
facial landmark localization. HRNet [29] maintains multi-
resolution representations in parallel and exchanges infor-
mation between these streams to obtain a final representa-
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tion with great semantics and precise locations. Recently,
LUVLI [20] first introduces the concept of parametric un-
certainty estimation as well as considers the visibility like-
lihood.

2.2. Quantization Error

Indirect inference through a predicted heatmap offers
several advantages over direct prediction [1]. The land-
marks are estimated by the highest response of each pre-
dicted heatmap. In general, due to the high computation
demand for maintaining high resolution, the shape of out-
put heatmap is smaller than the original input image by us-
ing downsampling operations. Specifically in face align-
ment networks [29, 20, 39], the shape of the input image is
256 pixel for width and height while the output heatmap
is 64 pixel. That is to say, no matter how effective the
above methods are, there will be the quantization error
from 4 times down-sample operations influence the accu-
racy. However, they suffer from quantization error since the
heatmap’s argmax is only determined to the nearest pixel.
What’s more, the size of original face images is usually
much larger than input, and they are transformed into in-
put data by a series of preprocessing operations like rotation
and resize. These operations will inevitably lead to the exis-
tence of a decimal part of the transformed keypoints’ value.
However, the decimal part of the keypoints cannot be di-
rectly obtained even if the heatmap is restored to the same
size as input, which leads to another quantization error in
the final results.

2.3. Solutions in Other Fields

At present, most of existing solutions about quantization
error are based on human pose estimation [26, 25, 42, 23]
and object detection[21, 13], which can also be divided into
two categories: based on the heatmap result, and based on
the offset branch.

Based on the heatmap result. These coordinate decod-
ing methods are only based on the heatmap. G-RMI [26]
also take the mask into consideration and use all the sur-
rounding response to vote for the weighted value. Hour-
glass [25] first identifies the coordinates of the maximal
and second maximal activation, and then uses the position
and gradient to fine-tune the maximum response coordinate.
DARK [42] first smooth the irregular heatmap by Gaussian
smoothing, then expand Taylor’s formula to fit the deriva-
tive of the Gaussian function, and finally calculate the posi-
tion of the maximum. LUVLI [20] draws lessons from [23]
and considers the irregular heatmap distribution . Thus, it
subsequently carries out a softmax operation and then takes
advantage of joint spatial mean to get final coordinates.

Based on the offset branch. These methods [21, 13, 44]
propose to use a new branch to regress the offset caused by
quantization, which will produce no bias in encoding. Re-

cently, Cornernet [21], Centernet [13] and other keypoint-
detection methods [44] in object detection propose a shared
offset map to represent offset. PIPNet [17] and some pose
estimation methods use convolution and linear operations to
direct regress the remaining offset.

However, in the area of face alignment, there is hardly
such solution to address the quantization error. Different
from other tasks, human face accounts for a larger propor-
tion of the image, the precision threshold requires to be
more accurate, the distribution of facial landmarks is very
dense, and the number of facial landmarks is much larger
than others. Thus, it is not appropriate to copy the fixed de-
sign straightforwardly. Our experimental results show that
directly combining these methods with face alignment is in-
ferior to our proposed method, which demonstrate our con-
tributions to reducing quantization errors for heatmap based
regression methods.

0 w-1 X

Y

h-1
: ground-truth coordinate

: quantization error
: nearest coordinate

Figure 2. Illustration of quantisation error in heatmap. The yellow
points are ground-truth coordinates, and the blue points are nearest
coordinates after round operation. Each red arrow is the distance
between them, which represents the quantization error introduced
by mentioned operation.

3. Methodology
In this section, we first discuss the quantization error on

the based-heatmap face alignment. And then, we describe
in detail our proposed solution, which consists of the en-
coding and decoding method and two architecture designs.
Finally, we discuss the differences from previous solutions
of object detection and pose estimation.

3.1. Quantization error in heatmap-based methods

Heatmap is characterized by giving spatial support
around the ground-truth location, which effectively reduces
the model overfitting risk in training.

However, there is a major obstacle for the heatmap la-
bel representation, which is reflected into two sides. One
is that the computational cost is a quadratic function of the
input image resolution, preventing the CNN models from
processing the typically high-resolution raw imagery data.
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Figure 3. The overall pipeline of Heatmap In Heatmap (HIH). The whole quantization error is introduced from two sides: data preprocess-
ing and model downsampling. There exist two kinds of heatmaps that jointly represent coordinate labels: one identifies integer coordinate
and the other refines its float location. The decimal heatmap refines the pixel of maximal activation in integer heatmap. We have designed
two different schemes to realize the subsequent structure: upper one is based Transformer and the below is based CNN.

To be computationally affordable, a standard strategy is to
downsample the face images into a prefixed small resolution
with a data preprocessing procedure. The other involves
down-sample layers in networks to gather global informa-
tion and to reduce memory usage. When we remap the lo-
cation output from the lower coordinate space to the higher
resolution space, precise offsets will be lost. The gener-
ation process of the quantization error is shown in Fig.2
The distance between ground-truth value and nearest inte-
ger value is the corresponding quantization error. Since the
location cannot recover precisely, Both down-sample oper-
ations cause the quantization error introduced.

None of previous work has systematically investigated
how much impact the quantization error has on the final re-
sults. We are the first to conduct quantitative analysis, and
the statistical results (Tab.1) show that the NME generated
by quantization error is even larger than 1/3 of the SOTA
item. That is to say, How to compensate for the quantiza-
tion effect is a key problem in face alignment.

3.2. Heatmap in Heatmap

In order to address the problem, we propose a novel
Heatmap in Heatmap(HIH) method, which uses two cate-
gories of heatmaps to jointly represent coordinate labels. As
shown in Fig.3, one identifies the integer location, named
integer heatmap, and the other locates its float location,
called decimal heatmap. At the integer-heatmap coordinate
space, integer heatmap represents the integer part from 0 to
the resolution, and the decimal heatmap represents the re-
maining offset from 0 to 1. In other words, the range of one
decimal heatmap represents the range of one pixel in integer
heatmap. And to verify the effectiveness of HIH, we have
designed two different schemes to realize the structure.

3.2.1 Encoding and Decoding

Different from common heatmaps only representing the in-
teger part, we also propose a novel decimal heatmap to rep-
resent the decimal part as the offset. HIH’s integer and dec-
imal location are represented by the same heatmap method
but with different parameters(sigma, resolution, etc.). They

both use the maximal response location as the coordinate
value. The range of a decimal heatmap represents the range
of one pixel of the integer heatmap. Specifically, given a
task for detecting N facial landmarks, an original image
is transformed into the input image (hi, wi) after np times
downsampling during preprocessing. And the input image
is transformed into an integer heatmap (h,w) and a decimal
heatmap (ho, wo) during model computation.

Encoding design. The integer heatmap is computed as
same as before methods[29, 25]. The relative offset value
ok, corresponding to the integer-heatmap coordinate space,
is computed as

  \label {eq:od} o_k = (\frac {x_k}{n} - \lfloor \frac {x_k}{n} \rfloor , \frac {y_k}{n} - \lfloor \frac {y_k}{n} \rfloor )  












 (1)

where n is the down-sample factor (contain preprocess-
ing and model computation), xk and yk are the x- and y-
ground-truth coordinates of the k-th landmark on the origi-
nal image. (⌊xk

n ⌋, ⌊yk

n ⌋) denotes the corresponding integer
value on the integer heatmap. While the final offset value
o⋆k needs to be enlarged by the resolution of the decimal
heatmap. o⋆k represents the coordinates of maximal activa-
tion in decimal heatmap and is computed as

  o_k^\star = \lfloor o_k * (w_o,h_o) \rceil       (2)

And the decimal-heatmap generation is computed as
similar as Two-dimensional Gaussian distribution density
function

  O = \begin {cases} e^{\frac {-||o-o_k^\star ||_2^2}{2 \sigma ^2}} & ||o-o_k^\star ||_{\infty } \leq 3\sigma \\ 0 & \text {otherwise} \end {cases} 





   


(3)

where o is the coordinate of each pixel in the k-th deci-
mal heatmap, and O is the probability value corresponding
to location o. There are N ∗ho ∗wo such probability values
in decimal heatmaps.

Decoding design. The decimal and integer heatmaps
both are decoded by identifying the location of the maximal
activation. Suppose the predicted integer heatmaps Ĥc and
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decimal heatmap Ĥo, which are both composed of the lo-
cation’s activation. The final normalized coordinate is pre-
dicted by

  \hat {P_k} = \frac {\text {argmax}(\hat {H_c^k}) + \frac { \text {argmax}(\hat {H_o^k})}{(w_o,h_o)}}{(w,h)} \ \ \ \ \ k = 1 \dots N 


 






       (4)

where Ĥk
c is the predicted k-th integer heatmap, and Ĥk

o

is the k-th decimal heatmap. In general, (ho, wo) >
(hi,wi)
(h,w) .

The quantization error can be controlled to a small degree
according to the decimal-heatmap resolution.

3.2.2 Architecture design

As shown in Fig.3, the whole network consists of three com-
ponents: the backbone, integer part and offset part. Fol-
lowing previous works[34, 35, 9], our backbone is based
on the stacked HG architecture[25]. For each HG, the out-
put heatmap (integer heatmap) is supervised with ground
truth. And the offset part uses the fusion of the backbone
and integer heatmap as input, we propose two implemen-
tation designs of structure (CNN and Transformer) to ver-
ify the effectiveness of HIH. For simplicity, we use the
symbols HIHC and HIHT to represent the CNN-based and
Transformer-based networks.

CNN-based structure. CNN has powerful spatial infor-
mation extraction capabilities. To keep the same computa-
tion as before solutions, we use directly the above fusion
input in the remaining part. The first layer is a convolution
with batch normalization and ReLu activation, which stride
equals 1. The maxpool layer is able to reduce computation
by downsampling feature maps, which is behind the first
convolution layer. The subsequent operation is a list of con-
volution blocks to learn spatial information, which uses the
basicblock of resnet[16]. In the above basicblock, we set
the stride into 2 in the first convolution, and to increase the
receptive field quickly, we modify the kernel size of the sec-
ond convolution to 3. The final regression head is composed
of one convolution similar to the first layer and another sin-
gle convolution, which is as same as Eq.6.

Transformer-based structure. Transformers[33, 10]
have proven its dominated power in various natural lan-
guage processing tasks. Inspired by the success of Trans-
formers in the NLP field, there have been interesting at-
tempts on extending the success of the Transformers to the
computer vision field. DETR [4] use a transformer archi-
tecture for end-to-end object detection. The subsequent
Deformable DETR [48] modified the decoder structure to
improve computational efficient. Most recently, ViT [12]
treated the input images as 16x16 words and obtained ex-
cellent results on image classification.

We follow the standard Transformer architecture [33] as
closely as possible. The overall architecture of this network

is inspired by the DETR[4] and Vit[12], which remains
the same backbone as before and leverages only the en-
coder transformer. Before inputting features into the trans-
former encoder, we split the given features into patches and
each patch represents a word in NLP. Given an input im-
age I ∈ R3×hi×wi , we assume that the CNN backbone
outputs a integer heatmaps Hc ∈ RN×h×w and the sub-
sequent fusion features Hu ∈ Rd×h×w. Then, the fu-
sion features are reshaped into a sequence of flatten 2D
patches Xp ∈ RNp×(p2·d), i.e., where p is the patch size,
and Np = h×w

p2 is the number of patch images. Actually,
the resolution product of one decimal heatmap should be
Np = ho × wo. We flatten the patches and map to D di-
mension with a trainable linear projection E ∈ R(p2·d)×D.
To maintain the position information of each patch, we add
learnable position Epos ∈ RNp×D for each patch. The cal-
culation of the transformer encoder can be formulated as

  \begin {split} & y_0 = X_pE + E_{pos} \\ & q_i = k_i = v_i = LN(y_{i-1}) \\ & y_i'= MSA(q_i,k_i,v_i) + y_{i-1} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ & y_i = MLP(LN(y_i')) + y_i' \\ & y_t = LN(y_L) \end {split} \begin {split} & \ \\ & i = 1\dots L \\ & i = 1\dots L \\ & i = 1\dots L \\ & \
\end {split}    

     

     

    

 

     

     

     

(5)

where L denotes the number of encoder layers, MSA
represents the multi-head self-attention module in the con-
ventional transformer model[33]. The MLP consists of two
fully connected layers, which represents the feed forward
network.

And then the transformer output feature yt ∈ RNp×D

are reshaped to 3D feature Xt ∈ RD×ho×wo . The final
regression head reset the channel from D to N , which is
computed as

  y = Conv(Relu(BN(Conv(X_t)))) \label {eq:head}   (6)

where both convolution layers set kernel size and stride
to 1, and the output y represents the decimal heatmap.

3.3. Differences from solutions in other fields

In addition to our HIH, there are a few works of other
fields that also consider the problem of quantization er-
rors. The works contains pose estimation [26, 25, 42] and
object detection [21, 13, 44], which can be divided into
three categories: with second maximal(WSM), with offset
value(WOV), with offset map(WOM). As shown in Tab.1,
we have counted these NMEs under the ideal state (loss=0).
In this paper, we are inspired by them to try to solve the im-
pact of quantization error. For more details on these trivial
solutions, please see the supplementary material.

WSM is the most common practice in decode the
heatmap, which costs little computation comparing to
DARK[42]. Under ideal conditions, WSM still exists big
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bottlenecks. Thus, we use another heatmap information to
better fix the bottleneck caused by the quantization error.
Different from WOV, we use the map to regress indirectly,
which can elegantly address the limitations of the lack of
spatial and contextual information. Different from WOM,
we use the same as original heatmaps instead of shared
x-offset and y-offset maps to address the conflicting phe-
nomenon.

4. Experiments
4.1. Experiments Settings

Datasets Our experiments use the datasets WFLW[35],
300W[28], COFW[3]. These datasets are challenges due
to images with large head pose, occlusion, and illumination
variations.

WFLW[35] dataset is a challenging one, which contains
7,500 faces for training and 2,500 faces for testing, based on
WIDER Face[40] with 98 manually annotated landmarks.
The faces in WFLW introduce large variations in pose, ex-
pression, and occlusion. The testing set is further divided
into six subsets for a detailed evaluation, namely, pose (326
images), expression (314 images), illumination (698 im-
ages), make-up (206 images), occlusion (736 images) and
blur (773 images).

300W[28] dataset provides 68 landmarks for each face,
where the face images are collected from LFPW[2],
AFW[47], HELEN[22], XM2VTS[24] and IBUG. Follow-
ing the protocol used in [47], all 3148 training images are
from the training set of LFPW and HELEN, and the full set
of AFW. The 689 testing images are from the testing set of
LFPW and HELEN, and the full set of IBUG. The testing
images are further divided into three sets: the test samples
(554 images) from LFPW and HELEN as the common sub-
set, the 135-image IBUG as the challenging subset, and the
union of them as the full set.

COFW[3] dataset consists of 1345 images for training
and 507 faces for testing, where the face images have large
variations and occlusions. 29 landmarks are provided for
each face.

Evaluation Metrics Following previous works[29, 19,
35], We use the standard metrics NME, AUC and FR, which
are the most authoritative for face alignment. In each table,
we report results using the same metric adopted in respec-
tive baselines.

Normalized Mean Error (NME) is defined as:

  NME(\%) = \frac {1}{N} \sum _{k = 1}^{N} \frac {||P_k-\hat {P_k}||_2}{d} \times 100 







 


  (7)

where we use the distance between the outer corners of
the two eyes as normalized factor d. Pk and P̂k denote the
ground-truth and prediction location of the k-th landmark.

For simplicity, we magnify 100 times to omit the % symbol.
Lower NME is better to facial landmark detector.

Area Under the Curve (AUC) is calculated based on the
cumulative error distribution (CED) curve. The AUC for a
testset is computed as the area under the curve, up to the cut
off NME value. Higher AUC represents better detector.

Failure Rate (FR) is another metric to evaluate localiza-
tion quality, which refers to the percentage of images in the
testset when NME is larger than a perfixed threshold. And
we also omit the % symbol to simplify variables. The Lower
FR is corresponding to the better performance.

Implementation Details The raw face images are
cropped according to a retina-face [8] detector (except
COFW by itself bounding box). The cropped images then
are processed by a set of data augmentation operations for
the training dataset. Following previous works, these aug-
mentation operations contain horizontal flip (50%), rotation
(±30◦, 50%), occlusion (50%) and Gaussian blur (30%).
And then the cropped images of training or testing are re-
sized to input data with 256×256 resolution. The output
heatmap from backbone is 64×64, we use no more than
2 stacks of HG. And for the recover part, They control
the number of channels to make the parameters the same.
About baseline without recovery part, we expand the chan-
nel from 256 to 280, which is used to counteract the effect
of increasing the recovery part.

All experiments are conducted on the RTX 2080Ti de-
vice without pretraining. For training procedure, we used
the Adam optimizer with init learning rate 1e-5, which de-
creases 10 times every 50 epoch. For transformer structure
in HIH, depth is 4, embed dim is 512, the number of head
is 2 and mlp ratio is 3. All parts are supervised by L2 loss,
except the recover part of WOM uses SmoothL1 followed
by [21, 13, 44] More training details are shown in the sup-
plementary material.

Method Full Com. Cha.
LAB [35] 3.49 2.98 5.19
Wing [14] 3.60 3.01 6.01
AS w. SAN [27] 3.86 3.21 6.49
HRNET [29] 3.32 2.87 5.15
AWing [34] 3.07 2.72 4.52
LUVLI [20] 3.23 2.76 5.16
HIHC(ours) 3.36 2.95 5.04
HIHT (ours) 3.33 2.93 5.00

Table 3. Comparison in
NME on the 300W testsets.

Method NME(↓) AUC10(↑) FR10(↓)
RAR [37] 6.03 - 4.14
DAC-CSR [15] 6.03 - 4.74
LAB [35] 5.58 - 2.76
PCD-CNN [19] 5.77 - 3.73
Wing [14] 5.07 - 3.16
HRNET [29] 3.45 - 0.19
AWing [34] 4.94 0.489 0.99
HIHC(ours) 3.29 0.671 0
HIHT (ours) 3.28 0.672 0

Table 4. Comparisons in NME,
AUC and FR on the COFW.

4.2. Comparsion with State-of-the-art Methods

We compare our networks HIHT and HIHC against the
state-of-the-art methods on various benchmarks. Note
again the above networks are based on 1-stack and 2-stack
HG[25], which are slight enough compare to SOTAs. Tab.1
shows the NME results and network information on WFLW,
and Tab.2 shows the comparisons in AUC and FR on these
networks. From the tables, we observe that our lightweight
network HIH(1-stack) is even better in NME metric than
SOTA, even with quarter flops. And for the other two met-
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Method Year Params Flops Fullset Pose Exp. Ill. Mu. Occ. Blur
LAB [35] 2018 12.26M 18.96G 5.27 10.24 5.51 5.23 5.15 6.79 6.32
Wing [14] 2018 25M - 4.99 8.43 5.21 4.88 5.26 6.21 5.81
DCFE [32] 2018 - - 4.69 8.63 6.27 5.73 5.98 7.33 6.88
DeCaFA [7] 2019 ∼10M - 4.62 8.11 4.65 4.41 4.63 5.74 5.38
HRNET [29] 2019 9.66M 4.75G 4.60 7.94 4.85 4.55 4.29 5.44 5.42
AS w. SAN [27] 2019 35.02M 33.87G 4.39 8.42 4.68 4.24 4.37 5.60 4.86
AWing [34] 2019 24.15M 26.8G 4.36 7.38 4.58 4.32 4.27 5.19 4.96
LUVLI [20] 2020 - - 4.37 - - - - - -
HIHC(1-stack) ours 10.37M 6.99G 4.31 7.40 4.36 4.52 4.08 5.17 5.00
HIHT (1-stack) ours 24.08M 6.91G 4.29 7.41 4.34 4.58 4.12 5.14 4.91
HIHC(2-stack) ours 14.47M 10.38G 4.18 7.20 4.19 4.45 3.97 5.00 4.81
HIHT (2-stack) ours 28.18M 10.29G 4.21 7.20 4.28 4.42 4.03 5.00 4.79

Table 1. Comparison in inter-ocular normalized mean error (NME) on the WFLW (fullset and all subsets).

Metric Method Fullset Pose Exp. Ill. Mu. Occ. Blur

FR10(↓)

CFSS [45] 20.56 66.26 23.25 17.34 21.84 32.88 23.67
DVLN [36] 10.84 46.93 11.15 7.31 11.65 16.30 13.71
LAB [35] 7.56 28.83 6.37 6.73 7.77 13.72 10.74
Wing [14] 6.00 22.70 4.78 4.30 7.77 12.50 7.76
DeCaFA [7] 4.84 21.40 3.73 3.22 6.15 9.26 6.61
AS w. SAN [27] 4.08 18.10 4.46 2.72 4.37 7.74 4.40
AWing [34] 2.84 13.50 2.23 2.58 2.91 5.98 3.75
LUVLI [20] 3.12 - - - - - -
HIHC(1-stack) 3.08 15.64 1.91 2.29 2.91 6.79 3.36
HIHT (1-stack) 3.28 15.95 2.55 2.43 2.91 6.52 3.88
HIHC(2-stack) 2.96 15.03 1.59 2.58 1.46 6.11 3.49
HIHT (2-stack) 2.84 14.41 2.55 2.15 1.46 5.71 3.49

AUC10(↑)

CFSS [45] 0.366 0.063 0.316 0.385 0.369 0.269 0.303
DVLN [36] 0.456 0.147 0.389 0.474 0.449 0.379 0.397
LAB [35] 0.532 0.235 0.495 0.543 0.539 0.449 0.463
Wing [14] 0.554 0.310 0.496 0.541 0.558 0.489 0.492
DeCaFA [7] 0.563 0.292 0.546 0.579 0.575 0.485 0.494
AS w. SAN [27] 0.591 0.311 0.549 0.609 0.581 0.516 0.551
AWing [34] 0.572 0.312 0.515 0.578 0.572 0.502 0.512
LUVLI [20] 0.577 - - - - - -
HIHC(1-stack) 0.587 0.321 0.576 0.598 0.598 0.514 0.538
HIHT (1-stack) 0.587 0.324 0.574 0.596 0.593 0.516 0.540
HIHC(2-stack) 0.597 0.342 0.590 0.606 0.604 0.527 0.549
HIHT (2-stack) 0.593 0.332 0.583 0.605 0.601 0.525 0.546

Table 2. Comparisons in area under curve (AUC) and failure rate
(FR) on the WFLW (fullset and all subsets).

rics, it is very comparable to SOTA. To clearly discover the
superiority of HIH, we extend the network depth and en-
large the total computation to the one-third flops of SOTA
models. The experimental result shows no matter use which
metric, our HIH(2-stack) exceeds SOTA a lot. Specifically,
NME reaches 4.18 on the WFLW benchmark.

Tab.4 shows the comparisons in NME, AUC and FR on
COFW benchmark. Our HIH greatly surpasses the SOTA
methods once again, the NME reaches 3.28, and the FR
even declines to 0. The Tab.3 shows the comparison in
NME on 300W benchmarks, which contain fullset, chal-
lenge set and common set. Our method performs well,
which is comparable to the SOTA, especially in the chal-
lenge set.

4.3. Comparsion with Compensating Solutions of
Other Tasks

Besides comparing the SOTA methods, we also compare
HIH with other solutions from object detection and human
pose estimation. The detailed solutions are showed in the

Metric Method Fullset Pose Exp. Ill. Mu. Occ. Blur

NME(↓)

Baseline 4.53 7.91 4.72 4.74 4.32 5.48 5.23
WSM 4.35 7.68 4.54 4.56 4.14 5.33 5.07
WOV 4.34 7.50 4.50 4.56 4.12 5.17 4.98
WOM 4.44 7.83 4.61 4.79 4.15 5.33 5.20
HIH 4.31 7.40 4.36 4.52 4.08 5.17 5.00

FR10(↓)

Baseline 4.00 19.02 3.82 3.15 3.88 7.74 4.27
WSM 3.64 18.10 3.18 3.01 3.88 7.61 3.62
WOV 3.20 15.33 2.55 2.58 1.94 6.39 3.88
WOM 3.28 15.95 2.55 3.01 2.91 6.25 4.27
HIH 3.08 15.64 1.91 2.29 2.91 6.79 3.36

AUC10(↑)

Baseline 0.568 0.291 0.547 0.579 0.574 0.497 0.516
WSM 0.586 0.310 0.565 0.596 0.591 0.511 0.531
WOV 0.585 0.320 0.570 0.594 0.593 0.517 0.538
WOM 0.579 0.308 0.559 0.586 0.590 0.507 0.526
HIH 0.587 0.321 0.576 0.598 0.598 0.514 0.538

Table 5. Comparisons in NME, AUC and FR on the WFLW.

Method Parmas, Flops Val Com. Cha. Test.
Baseline 5.33M, 6.67G 3.581 3.157 5.321 4.132
WSM 5.33M, 6.67G 3.420 2.988 5.193 3.999
WOV 5.03M, 6.91G 3.448 3.014 5.228 4.010
WOM 4.76M, 6.85G 3.640 3.127 5.745 4.445
HIH 10.34M,6.93G 3.356 2.946 5.038 3.835

Table 6. Comparison in NME on the 300W.

supplementary material. We have controlled the same back-
bone (1-stack) and the same fusion feature method. And the
last parts, which are designed to compensate for the quan-
tization effect, keep about the same amount of calculation.
Considering other solutions all use CNN structure as com-
ponents, we also use HIHC as the comparison object.

We have conducted statistical experiments on various
benchmarks to reveal the seriousness of the influence of
quantization error. At the same time, the experiments quan-
titatively analyze the remaining quantization errors of all
methods. We also have conducted experiments on WFLW
and 300W, all results show HIH’s superior performance
than others. The baselines consist of backbone and integer
heatmap, without recovery part. And it extends correspond-
ing channels to keep the same flops as other solutions.

The Tab.6 shows the comparisons in NME and the pa-
rameter information on 300W. Note that WSM recovers the
quantization error based on the original heatmap, so it has
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Metric Network Fullset Pose Exp. Ill. Mu. Occ. Blur

NME(↓)

HIH1
C 4.90 8.10 5.00 5.11 4.63 5.68 5.54

HIH1
T 4.88 8.11 4.96 5.18 4.66 5.65 5.45

HIH2
C 4.77 7.89 4.83 5.04 4.50 5.50 5.37

HIH2
T 4.82 7.92 4.94 5.03 4.56 5.52 5.35

FR10(↓)

HIH1
C 3.72 17.79 2.23 2.58 2.91 7.20 4.40

HIH1
T 3.56 17.79 2.23 2.87 3.88 7.20 4.27

HIH2
C 3.32 15.64 1.91 3.01 1.94 5.98 4.27

HIH2
T 3.40 16.87 2.86 2.58 2.43 6.25 4.14

AUC10(↑)

HIH1
C 0.531 0.265 0.515 0.541 0.546 0.466 0.486

HIH1
T 0.531 0.267 0.515 0.537 0.542 0.468 0.489

HIH2
C 0.541 0.284 0.529 0.548 0.552 0.480 0.497

HIH2
T 0.535 0.272 0.520 0.546 0.550 0.475 0.493

Table 7. Comparisons in NME, AUC and FR on the WFLW. Tested
only on the integer heatmap.

Resolution Ideal Fullset Pose Exp. Ill. Mu. Occ. Blur
4x4 0.420 4.54 7.92 4.71 4.76 4.36 5.39 5.26
8x8 0.182 4.31 7.40 4.36 4.52 4.08 5.17 5.00

16x16 0.091 4.36 7.53 4.42 4.50 4.12 5.15 4.98

Table 8. Comparisons about decimal’s resolution in the NME on
the WFLW. The Ideal item represent the errors under ideal condi-
tions.

the same parameters as the baseline. From the table, WSM,
WOV and our HIH have a positive gain effect, while WOM
is negative. The improvement effect of HIH is significantly
higher than others, and the effect of WSM is slightly higher
than that of WOV. The Tab.5 shows the comparisons in
NME, AUC and FR on WFLW. From the table, these four
solutions have all achieved positive results, and our HIH
performs better than others again. WOV is very close to
WSM with a little gap. WOM has achieved the lowest im-
provement among these methods.

We have discussed in detail the effect of WOM in the
supplementary material. And for all solutions, we have an-
alyzed the differences among the heatmaps generated from
the network backbone. The detailed discussions are also
shown in the supplementary material.

The above results have proved that the accuracy decline
caused by quantization error is a serious problem, and meth-
ods about compensating the error is a fast and effective ap-
proach to improve performance.

4.4. Ablation Study

4.4.1 Comparison with different resolution

Our method involves the decimal heatmap resolution, we
further carry out ablation study on the resolution setting,
from 4x4, 8x8 to 16x16. The result on WFLW is shown in
Tab.8. Although 16x16 will make lower ideal erorr in its
high resolution, it regress accurate heatmap more difficult.
And 8x8 setting achieves higher performance in fullset and
most subsets, which is also set to other experiments.

4.4.2 Comparison between CNN and Transformer

In this subsection, we discuss it in two parts: the precision
of whole heatmaps, the precision of integer heatmap. From
the Tab.1 and Tab.2, we observe that CNN-based perfor-
mance is very close to the Transformer-based with a little
superiority. For simplicity, HIH2

T denotes the 2-stack HIH
with Transformer structure. Others, and so on. In NME
details, HIHT performs a little better than HIHC in occlu-
sion and blur situations. And the HIHC has achieved higher
performance in the make-up subset. For other subsets, they
have the same detection performance. The result on FR rep-
resents the number of the wrong prediction, which has re-
vealed a fact that HIHT is less likely to make mistakes at
high dimension. The result on AUC reflects the distance
between prediction and ground-truth, which has revealed a
fact that HIHc performs better in the coordinate accuracy.

Besides the whole heatmaps, we also testify the preci-
sion on the integer heatmap with above models, which is
showed in the Tab.7. On the only integer heatmap, the nor-
malized mean error and AUC remain the same conclusion
and distribution as whole heatmaps. While the failure rates
are different, the results on the integer-heatmap FR show
that HIHT ’s backbone is more likely to make mistakes at
high dimension. That is to say, with help of Transformer-
based structure, the number of points that are regressed cor-
rect will be more.

In summary, HIHC performs very close to HIHT with a
little superiority. HIHC is good at locating accurate points
with high precision degree and causing lower error in total.
HIHT is expert in finding more points that do not require so
high precision. The combination of the two networks may
yield greater benefits.

5. Conclusion

In this paper, we identified a serious issue about
that downsampling operations bring quantization error in
heatmap regression methods. To investigate the impact,
we were the first to quantitatively analyze the negative
gain. Based on the issue, we proposed a novel Heatmap in
Heatmap (HIH) method, which took advantage of two cate-
gories of heatmaps: the range of one heatmap represents the
range of a pixel on the other heatmap. We even gave two ar-
chitecture designs with CNN or transformer to verify the
effectiveness of our method. Moreover, we also combined
the face alignment with solutions of other fields to compare
with HIH. Extensive experiments show that our method is
feasible in face alignment and outperforms other solutions.
Furthermore, as evaluated on various benchmarks, HIH is
able to exceed SOTA performance a lot. In the future work,
we will extend our HIH design to more fields such as object
detection, pose estimation, etc.
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