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Abstract

Knowledge distillation is a representative technique for
model compression and acceleration, which is important for
deploying neural networks on resource limited devices. The
knowledge transferred from teacher to student is the map-
ping of teacher model, or represented by all the input-output
pairs. However, in practice the student model only learns
from data pairs of the dataset that may be biased, and we
think this limits the performance of knowledge distillation.
In this paper, we first quantitatively define the uniformity
of the sampled data for training, providing a unified view
for methods that learn from biased data. Then we evaluate
the uniformity on real world dataset and show that exist-
ing methods actually improve the uniformity of data. We
further introduce two uniformity-oriented methods for rec-
tifying the bias of data for knowledge distillation. Exten-
sive experiments conducted on Face Recognition and Per-
son Re-identification have shown the effectiveness of our
method. Moreover, we analyze the sampled data on Face
Recognition and show that better balance is achieved be-
tween races and between easy and hard samples. And this
effect can be also confirmed in training the student model
from scratch, resulting in a comparable performance with
standard knowledge distillation.

1. Introduction

Deep neural networks have achieved remarkable success
in many vision tasks, such as image classification [16, 24,
10], object detection [36, 26, 5, 41], and even under im-
perfect labels [11, 12]. However, the performance of light-
weight networks is limited compared with large ones. To
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Figure 1. An qualitative illustration for the influence of data bias
on knowledge distillation. The data points indicate training sam-
ples in dataset, and the points are in the same color if belonging
to one class. The radius of the data point indicates the number of
sampled times. With the proposed methods based on uniformity,
the student can benefit from bias-rectifying and approximate the
mapping of teacher better across the input space.

improve the performance of light networks, knowledge dis-
tillation is a simple yet effective way by transferring knowl-
edge from the big teacher network into the light student.
Since being first introduced in [18], knowledge distillation
itself has witnessed notable advances [52, 27]. Many exist-
ing works focus on making the student approximate differ-
ent aspects of the teacher’s behavior, such as classification

1477



logits, intermediate feature maps [21], or even optimization
trajectories [23]. Yet the essence of the transferred knowl-
edge still lies on the mapping of teacher from input space
into output space, as like the initial definition in [18].

To make it more concrete, we represent the knowledge
by all the pairs of input and its corresponding output of
the teacher model. We can not utilize all the pairs to train
the student, as it is impossible to directly sample data from
the domain of teacher model, i.e. the set of all meaning-
ful images in computer vision tasks. A common practice is
to evenly sample a list of images from a collected dataset.
Thus the actually transferred knowledge is limited by the
dataset. It is expected the dataset is evenly distributed in the
domain, so as to help the student approximate the teacher’s
output across different inputs.

However, this is often not the case. The datasets we have
access to are often biased, especially for large-scale auto-
matically generated ones [42, 57]. For example, the popu-
lar MS1MV3 [14, 9] dataset for face recognition is collected
by searching names of celebrities in the search engine and
gathering the retrieved images. As shown in Figure 1, the
number of images for each identity varies from 2 to more
than 200. Also, clear front face images dominate the dataset
while images with large pose are rare. This bias may re-
sult in that the student fits the teacher’s output well in the
subspace containing many input samples, but poorly in the
subspace where few samples appear.

Learning from biased data has been studied for a long
time in the deep learning area [15, 39, 4]. Some existing
works focus on imbalanced classification, and propose to
resample the input data [40, 3] or adjust the loss for different
samples [26, 48]. Some researchers pay attention to mining
hard yet informative samples among easy ones to acceler-
ate the convergence of neural network [26]. For either the
classes with few images or the hard samples, we can gener-
ally denote them by minorities, then the basic idea behind
the methods mentioned above is to over-sample or over-
weight the minorities. However, emphasizing the minorities
too much may bring the model a risk of overfitting [7]. So
these methods heavily rely on parameter tuning and could
introduce extra computation burden during training process.

In this paper, we focus on knowledge distillation and in-
troduce a unified view towards bias-resistant learning. We
find that the balance between classes or between easy and
hard samples can be seen as special cases of the unifor-
mity of data, which is important to ensure the knowledge
distillation performance. Moreover, to rectify the bias in
data equals to improve the uniformity. Motivated by this
observation, we propose a quantitative and intrinsic defini-
tion of the uniformity in this paper. With this definition,
we can identify the bias in data of various types and avoid
the overfitting risk, as both of them will bring about a lower
uniformity. Towards improving the uniformity of data di-

rectly, we further propose two novel methods, called Ex-
trinsic Sampling and Intrinsic Sampling, based on reusing
the data in existing biased dataset but changing the sample
strategy. Both of our methods are simple and robust, and
can be easily integrated in other methods.

We conduct extensive experiments on large-scale face
recognition and person re-identification. With the proposed
methods, the performance of student model is significantly
boosted compared with baselines and other bias-resistant
training methods. Notice that our methods are simple and
cost-free during training. By visualizing the sampled data,
we find that better balance between classes are achieved, as
well as between easy and hard samples. This helps the stu-
dent approximate the teacher better in the sparse subspace.

To sum up, the contribution of this paper are four folds:

1. We provide a unified view towards different types of
bias based on uniformity, and introduce a quantitative
and intrinsic definition. With this metric, we can eval-
uate the bias of data and avoid over-emphasizing the
minorities.

2. We propose two novel sampling methods, Extrinsic
Sampling and Intrinsic Sampling. Our methods are
simple yet effective, and can be easily integrated in
other methods.

3. Extensive experiments are conducted to show the ef-
fectiveness of proposed methods. By simply chang-
ing the sample strategy, the performance of the student
model is significantly boosted on several tasks.

4. We further analyze the sampled list and provide some
insight on how the proposed methods help to improve
the student’s performance. We also show that the ef-
fectiveness can generalize to training the student from-
scratch, approximating the performance of standard
knowledge distillation.

2. Related Work
2.1. Knowledge Distillation

Knowledge distillation was first introduced in [18] to
compress the knowledge of an ensemble of models into a
single model, which now denoted as the teacher model and
the student. Following researches mainly focus on the three
key components in knowledge distillation, distilled knowl-
edge [21, 1, 52, 27, 23], distillation algorithm [35, 17], and
teacher-student architecture [25, 51, 13]. Also, extensions
inspired by knowledge distillation have been proposed, such
as mutual learning [55], assistant teaching [32] and self-
learning [53]. The effectiveness of knowledge distillation
have been verified in many areas in deep learning, such as
image classification [18], object detection [22, 45, 46], face
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Figure 2. A demonstration of the skewed distribution of data in real-world dataset. The data points are images sampled from MS1MV3,
and we projecte them down to the plane by t-SNE, according to the teacher’s output.

recognition [54, 47], etc. However, how the data distribu-
tion affect the distillation process is under-explored. In this
paper, we propose to rectify the bias in training data and
demonstrate the benefit of improving uniformity of data.

2.2. Learning from Biased Data

Many real-world datasets exhibit biased distribution of
class labels and difficulty, especially large-scale ones [42].
A number of studies have aimed at alleviating the chal-
lenge of biased data [15, 39, 4, 44, 43, 33]. Most exist-
ing algorithms focus on two ways: re-sampling [2, 3] and
re-weighting [19, 48]. In re-sampling, the minor classes
or examples are repeated and the frequent ones are under-
sampled, which can lead to over-fitting [7]. Thus stronger
data augmentation is needed to improve the diversity of mi-
norities [58]. Another way is to re-weight the samples in a
cost-sensitive manner. Cui et al. [7] propose a novel method
to measure data overlap, and a re-weighting scheme is fur-
ther designed to re-balance the loss, called Class-Balanced
Loss. Cao et al. [4] regularize the minority classes more
strongly than the frequent classes through adjust the mar-
gin in loss, and introduce Label-Distribution-Aware Margin
loss. Re-weighting methods make the optimization process
more difficult and can result in poor performance on fre-
quent data [20]. To alleviate the issue of overfitting, we
provide a metric to evaluate the uniformity of data that can
ensure a balance between minor and frequent ones. Further,
two novel uniformity improving methods are introduced to

rectify the data bias, which improve the performance of stu-
dent in knowledge distillation.

3. The Uniformity of Data
3.1. Preliminaries

In knowledge distillation, we denote the teacher model
by a function f; : R — R™ that maps an input 2 into
some output y. The student model is denoted by f as like.
The knowledge transferred from teacher to student is de-
fined as the mapping f; itself, and the student is optimized
to mimic the teacher’s output across the domain of teacher
model Dy,. Then the optimization target of knowledge dis-
tillation can be written as

Lxp = EINth M(fe(z), fs(2))], e

where M denotes some metric evaluating the distance be-
tween the outputs of f; and f5.

In practice, we usually replace Dy, by a uniform distri-
bution on the dataset for training, and we denote this dis-
tribution by Xy,4in. The actually used loss function for
knowledge distillation is

Lgp = ]ExNXtmm [M(ft('r)7 fé(x))} @

We expect the distribution X4, to be uniformly dis-
tributed in Dy,. However, some datasets are collected with-
out considering this uniformity constraint and may be sig-
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nificantly biased, especially for large scale open-set learn-
ing. For example, the MS1MV3 [9] dataset used for train-
ing face recognition models is collected by searching the
names of celebrities in the search engine and gathering the
retrieved images. The images collected for a celebrity is
affected by the age, popularity and even occupation.

To show the bias in MS1MV3, we sort the identities ac-
cording to the number of images and present the result in
Figure 2. The distribution of numbers is obviously skewed.
Also, we project the embedding of images sampled from
several identities into 2-dimension plane in Figure 2 using
t-SNE [30]. It can be seen that easy and frontal faces gather
together and form the majority of the input data.

3.2. The Definition of Uniformity

Before the definition of uniformity, we first define the
distance of the input space of neural network. For vision
tasks, the input space is usually the RGB space. It is hard to
define a meaningful distance between two images based on
the RGB value of pixels. Thanks to the knowledge distil-
lation scheme, we can easily get the representation of each
image by the powerful teacher model. Then, the distance in
the teacher’s output space, i.e. the KL divergence between
two distributions or the angle between two normalized vec-
tors, can serve as a good metric.

Formally, we denote the distance of images x; and z; as
D(fi(x;), fi(x;)), in which f; indicates the teacher model
and D denotes specific distance metric in the output space.

Based on the distance between data, we need to estimate
the continue probability density for each image from dis-
crete training samples. We introduce a non-parametric es-
timation method in statistics called Kernel Density Estima-
tion [38, 34]. To be specific, the estimated probability den-
sity is given by

fn(z) = lZK(M)- 3)

In Eq 3, n is the size of the training set, F is the normaliza-
tion factor and K denotes a kernel function. In this paper,
we choose Gaussian basis function as the kernel function. A,
also called bandwidth, is a smoothing parameter to balance
between the bias of the estimator and its variance. With a
proper h, we can get an approximation of the density distri-
bution of the training set.

Finally, we define the uniformity as the entropy of esti-
mated density distribution of the training set, which is

UX) == fulx:)log fu(x;). )
z,€X

For clearity, we use a simple 1-dimension example to
show the effectiveness of the uniformity above. The first
row in Figure 3 shows the histogram of random samples
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Figure 3. The 1-dimensional example to show the effectiveness of
proposed uniformity.

from a truncated Gaussian distribution with increasing vari-
ance. As the distribution become more similar to uniform
distribution, the uniformity increases monotonously, which
shows the validity of the proposed definition. We also
demonstrate several Gaussian mixture distribution exam-
ples in the second row with their estimated uniformity for
comparison.

3.3. Bandwidth Selection

The hyper-parameter h in the definition of uniformity ex-
hibits a remarkable influence on the estimated result. In
traditional non-parametric estimation, a rule-of-thumb esti-
mator for A is

h=0.90n"1/%, 5)

if the underlying density is Gaussian. The ¢ in Eq 5 indi-
cates the standard deviation of the data.

For real world datasets, the data are high-dimensional
vectors and the distribution is sophisticated. We observe
that the output of the teacher is Gaussian-like for samples in
a single class. Thus we propose to estimate the bandwidth
for each class and use the average for the final selection.
The o; for class i is

1 ' _
o = EZD(x,a:i)% 6)

where m; indicates the number of samples and Z; indicates
the estimated center for class 7. The final h is computed as

1 « _
h=— Z 0.90;m; /% )
Notice that the estimated /& can only serve as a good start

point for parameter tuning instead of the optimal choice.

3.4. Evaluation on Real World Dataset

In this subsection, we apply the uniformity in real world
datasets. We use large-scale Face Recognition as example.
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Figure 4. The histogram of distance between an image and others
in the same class, and the corresponding images are shown at the
left.

Specifically, we choose MS1MV3 [9], a semi-automatic
refined version of the MS-Celeb-1M [14] dataset, as the
training set and the teacher model is ResNet50 [16] trained
on MS1MV3. The output of the teacher model is a 512-D
embedding feature normalized by its L2 norm. It is easy
to see that the output space of the teacher model is a high-
dimensional hyper-sphere. The distance in the output space
is set to the angle between two embeddings of images, as in

(fe(xi), fe(z;))
I fe(za)ll2] [ fe ()2

Then we put the definition of D into the Equation 3 to es-
timate the density of each training image and then compute
the uniformity according to Equation 4. h is set to 12°.

Firstly, we show the distribution of distance between sev-
eral probe images with all the others in Figure 4. The first
two probe images are sampled from an identity with about
100 images, while the third image from an identity with
only 46 images. It can be observed that the distance distri-
bution for images of different identities and different diffi-
culties varies significantly, and the corresponding estimated
density provides a way to discriminate between these im-
ages.

Then, we evaluate the uniformity of the dataset and its
variant in Table 1. The variant is constrained by uniform
sampling on identities. To be specific, we first random sam-
ple an identity, then sample an image form this identity. The
number of images for each identity in the resampled list is
about the same. Note that the computation of the unifor-
mity is a little different with Equation 3. For the resampled
list, we count the numbers of sampled times and normalize
them to be the weight w; for image x;. Then the distance is

D(x;,x;) = arccos(

®)

method USI ES IS
uniformity | +0.032 +0.089 +0.093

Table 1. Comparison of the uniformity for different methods.
“USI” indicates uniform sampling on identities, “ES” indicates
Extrinsic Sampling and “IS” indicates Intrinsic Sampling.

multiplied by the weight of data, which result in

N

fulw) = 5 Yk Ty )

In Table 1, we can see that uniformly sampling on iden-
tities actually lead to larger uniformity, and we believe this
is the essence behind its effectiveness. However, it only
considers one aspect of the bias in dataset, and is proposed
without considering the uniformity. This leads to an inferior
effect for improving uniformity. In this paper, we propose
two methods oriented to achieve uniform sampling, which
will be detailed in the next section.

4. Uniformity Improvement

For learning knowledge from the teacher better, the train-
ing data for the student should be uniformly distributed in
the support set. However, the datasets are usually collected
without considering the uniformity, especially in large scale
metric learning tasks. To improve the uniformity of the
dataset, we propose two sample-based methods, which we
called Extrinsic Sampling and Intrinsic Sampling.

4.1. Extrinsic Sampling

For special high-dimension space, i.e. hyper-sphere,
there exists an easy way to generate a list of vectors that
are ensured to be uniformly distributed in the space [50].
Formally, let a = [a1,as,...,a,], where a; ~ N and let
a* = ﬁ, then a* is uniformly distributed on the unit
hyper-sphere.

So, we propose to find the nearest embedding vector o’
to a*, and use the corresponding image I’ as the training
data, instead of I*. The resampled image I’ is an approxi-
mation of the original I*, and is more uniformly distributed
than the training set. By repeating this sample process, we
can generate a list of resampled images and replace evenly
choosing from the dataset.

4.2. Intrinsic Sampling

Extrinsic Sampling is a simple and parameter-free
method to generate more uniform training data. However, it
may be very hard to find a way to generate uniform vectors
in some output space. Also, the resampled X’ can be easily
affected by the distribution of the dataset. To alleviate these
issues, we propose a new Intrinsic Sampling method, which
only depends on the distance in the output space.
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Student Use Use Use 1JB-B 1JB-C

Model KD ES IS le-5 le-4 le-3 le-5 le-4 le-3

MobileFaceNet 88.30 93.02 95.59 | 92.19 94.75 96.74
MobileFaceNet | v 89.45 93.48(+0.46) 9574 | 9293 95.19(+0.44) 96.78
MobileFaceNet | v v 89.38 93.60(+0.58) 95.88 | 93.20 95.39(+0.64) 97.03
MobileFaceNet | v v | 89.35 93.76(+0.74) 96.04 | 93.25 95.49(+0.74) 97.05
R18 87.92 92.86 95.33 | 91.96 94.72 96.50
R18 v 88.62 93.07(+0.21) 95.53 | 92.54 94.90(+0.18) 96.67
R18 v v 88.08 93.40(+0.54) 95.76 | 92.61 95.08(+0.36) 96.81
R18 v v | 88.52 93.22(+0.36) 95.70 | 92.68 95.04(+0.32) 96.74

Table 2. Results on IJB-B and IJB-C datasets. “KD” indicates Knowledge Distillation, “ES” indicates Extrinsic Sampling and “IS” indicates
Intrinsic Sampling. The improvement compared with the baseline of training from scratch is shown in brackets.

To be formal, we first estimate the density { f; } of train-
ing set as in Eq 3. Notice that the bandwidth i here can
be different with that in evaluation of the uniformity. As the
training data with bigger density should be sampled less, we
get the sample probability of training data x; by

1 1
Pi= 7 (10)
E / h(Iz)
where =37 1/ fn(z;) is the normalization factor to
ensure p is a valid probability. Then we can generate the
resampled list according to the probability of each training
data.

5. Experiments

We evaluated our methods on the large-scale metric
learning tasks, including face recognition and person re-
identification. We first show the effectiveness of the pro-
posed methods, and examine the influence of parameter
h for Intrinsic Sampling. Then, comparison with existing
methods are provided. Finally, we show some visualization
examples of the resampled data and discuss the generaliza-
tion ability of our methods on training from scratch.

5.1. Implementation Details

Face Recognition The training dataset we use is a semi-
automatically refined version of MS-Celeb-1M dataset [14],
named MS1MV3 [9]. MS1IMV3 contains about 93K iden-
tities and 5.2M images. To evaluate the performance, we
employ 1JB-B [49] and IJB-C[31], and th Tar@QFar =
{le — 3,1e — 4, 1e — 5} is reported.

We follow the data pre-possessing method proposed in
ArcFace [8] to get the aligned face crops. A ResNet-
like [16] network R50 is used as the teacher model, and we
choose MobileFaceNet [6] and R18 as the student model.
The input size of the network is set to (112x112). The
learning rate is 0.1 at the begin of the training and multiplied
by 0.1 at 100K, 160K and 220K iterations. The training pro-
cess ends after 240K iterations. The weight decay is set to
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Figure 5. The results of student model on IJB-C with different h
for Intrinsic Sampling method. The dashed line indicates the base-
line of uniform sampling from dataset.

5e-4 and the momentum of SGD optimizer is 0.9. We train
the teacher model by using the popular ArcFace method.
For knowledge distillation method, we use a simple yet ef-
fective strategy, which uses the ArcFace loss along with
the L2 loss between the embedding feature of the teacher
and the student. It is worthy noting that our methods only
change the data sampling strategy and can be easily com-
bined with other distillation methods. The parameter / in
the proposed Intrinsic Sampling is set to 12°.

Person Re-identification We employ Market1501 [56]
and DukeMTMC [37] to evaluate the effectiveness of the
proposed methods. The topl accuracy and mean averaged
precision is used to evaluate the performance.

We employ the tricks proposed in [28] for our exper-
iments. The teacher model is ResNet 50, and we choose
ShuffleNet V2 [29] with scale 0.5x as the student model.
Both the teacher and student models are pretrained on Ima-
geNet. The learning rate is 3.5e-4 and multiplied by 0.1 at
70 epochs and 100 epochs. The training process ends after
120 epochs. The weight decay is set to Se-4 and the momen-
tum of SGD optimizer is 0.9. Following [28], we train the
teacher model with a combination of triplet loss, center loss
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Student Use Use Use | Topl MAP
Model KD ES IS | Acc

ShuffleNet 86.5 69.2
ShuffleNet | v 90.1 782
ShuffleNet | v v 90.6 784
ShuffleNet | v v | 909 785

Student Use Use Use | Topl MAP
Model KD ES IS | Acc
ShuffleNet 780 614
ShuffleNet | v 824 679
ShuffleNet | v v 81.7 68.1
ShuffleNet | v v | 825 683

Table 3. The results of person re-identification on Market1501
dataset. “ShuffleNet” indicates ShuffleNet V2 with scale 0.5x.

and softmax loss. For the knowledge distillation method,
we keep the softmax loss and introduce an additional 1.2
loss between the embedding features of the teacher and the
student. The parameter h in the proposed Intrinsic Sam-
pling is set to 12°.

5.2. Ablation Study

Effectiveness of Uniformity Improvement We report
the results on face recognition in Table 2, with Mobile-
FaceNet and R18 as the student model respectively. By
using R50 as teacher, the performance of student Mobile-
FaceNet for IJB-C at 1e-4 can be enhanced from 94.75% to
95.19%, with an improvement of 0.44%. By using the pro-
posed Extrinsic Sampling method, this improvement goes
up to 0.64%. The performance of using Intrinsic Sampling
is the best compared to naive knowledge distillation and
Extrinsic Sampling, improving the baseline by a margin of
0.74%. The results on IJB-B show a similar trend. As for
the student R18, Extrinsic Sampling outperforms Intrinsic
Sampling on both IJB-B and IJB-C.

The results on person re-identification are shown in Ta-
ble 3 and Table 4, for Market1501 and DukeMTMC respec-
tively. Notice that the Market1501 and DukeMTMC are
relatively small datasets, and the model trained on them is
easy to be overfitting. Thus knowledge distillation can help
the student model improve generalization by mimic the be-
havior of the teacher, and improve the performance of the
student by a large margin. By using our uniform improving
methods, the student can fit the mapping of teacher better
across the input space. As shown in Table 3, the Intrin-
sic Sampling method can boost the top-1 accuracy on Mar-
ket1501 from 90.1 to 90.9, narrowing the gap between the
student and the teacher significantly. Moreover, the results
on DukeMTMC also demonstrate the effectiveness of the
proposed methods through enhance the knowledge distilla-
tion performance by a remarkable margin.

Influence of Parameters As the proposed Extrinsic Sam-
pling method is parameter-free, we examine the influence
of the parameter A in the Intrinsic Sampling method. When
h goes down, the estimation of density will only consider
samples that are closer, and the density finally shrink to an
identical value for every sample. Also, the estimated den-

Table 4. The results of person re-identification on DukeMTMC
dataset. “ShuffleNet” indicates ShuffleNet V2 with scale 0.5x.

method type JB-B  1JB-C
KD 9348 95.19
USI sampling 93.30 95.18
Focal Loss | re-weighting | 93.48 95.21
CB Loss re-weighting | 7491 77.86
LDAM re-weighting | 93.42 95.24
ES sampling 93.60 95.39
IS sampling 93.76  95.49

Table 5. Results on Face Recognition for comparison with ex-
isting methods. “USI” indicates uniform sampling on identities,
“CB Loss” indicates Class-Balanced Loss and “LDAM?” indicates
Label-Distribution-Aware Margin loss.

sity will become greater as h increases and approach an
maximum value. Thus, the resampled list will degenerate
into uniform sampling when h is too small or too large.
With Eq 7, we find that h ~ 12° in Face Recognition and
Person Re-Identification tasks. To examine the influence on
performance, we choose different values for h and conduct
ablation experiments on Face Recognition. The results are
shown in Figure 5. We can see that the performance under
h = 12° achieves the top. Also, the performance of Intrin-
sic Sampling is insensitive to parameter i, and can always
surpass the naive distillation baseline.
Compare with Existing Methods We compare our meth-
ods with two existing methods, uniform sampling on iden-
tities, Focal Loss [26], Class-Balanced Loss [7] and Label-
Distribution-Aware Margin loss [4]. The results on Face
Recognition are shown in Table 5, with the MobileFaceNet
as the student. It can be observed that uniform sampling
on identities do not help to improve the performance of dis-
tillation, although it ensures the balance between identities.
This invalidity is related to over-emphasis on the minorities
and the resulted overfitting. The rest of the existing methods
are all based on loss re-weighting. Focal Loss and Label-
Distribution-Aware Margin loss can boost the performance
by a little, while the Class-Balanced Loss even leads to a
significantly inferior result. This phenomenon coincides
with the former discussion about the issues of re-weighting
methods. On the contrary, the two methods proposed in this
paper both improve the performance by a considerable mar-
gin. It is noteworthy that the Extrinsic Sampling method is
parameter-free and shows good generalization.
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Figure 6. Some images in the resampled data list by the proposed
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Figure 7. Demonstration for the number of images per identity
with different sampling method. “Baseline” indicates uniform
sampling from dataset.

5.3. Discussion

In this subsection, we show some of the resampled im-
ages by our methods and try to explain how the resampled
data help to improve the performance of the student.

Visualization of resampled data Firstly, we show the
most and least frequently sampled images in Figure 6. We
can see that faces with top occurrence are often in large pose
or blurry, yet the face with least frequency are often under
front-view and good illumination condition. This demon-
strates that our methods can mine hard examples and com-
press easy examples at the same time.

Also, we recount the number of images per identity in the
generated data list and compare the histogram with original
dataset in Figure 7. The issue of imbalanced class is allevi-
ated significantly. Moreover, the numbers of identities with
many images are not reduced drastically for that the infor-

model Use Use Use | IIB-B 1JB-C
KD ES IS le-4 le-4

MobileFaceNet 93.02 94.75
MobileFaceNet v 93.29 94.99
MobileFaceNet v | 9347 9515
MobileFaceNet | v 9348 95.19

Table 6. The demonstration of generalization to training from
scratch for the proposed methods.

mation contained in these images are still rich and should
be used to train the network.

Generalization to Training from scratch As the expla-
nation above has no clear relation with knowledge distil-
lation, we wonder whether our methods can generalize to
other optimization form, like training from scratch. Notice
that the analysis about the uniformity is indeed dependent
on knowledge distillation.

We show the result of training the student model from
scratch with the proposed methods on face recognition as
an example. Notice that the resampled list of data is still
based on the output of the teacher. From Table 6, we can
see that both our methods can improve the performance of
the student model, and, surprisingly, the performance with
Intrinsic Sampling is comparable with standard knowledge
distillation. We assume that the data distribution itself con-
tains latent knowledge that can be transferred to the student
even by training from scratch.

6. Conclusion

In this paper, we first examine the problem of bias in the
dataset and argue that this can harm the knowledge distil-
lation process. Then, we introduce uniformity as a unified
view toward the bias issue and provide a quantitative defini-
tion of uniformity. Uniformity check on realworld dataset is
also presented to show the rationality of the definition. Fur-
ther, we propose two uniformity-oriented sampling meth-
ods, Extrinsic Sampling and Intrinsic Sampling, to generate
more uniform training data. It is noteworthy that both our
methods are simple and easy to tune parameter. Extensive
experiments are conducted on large-scale face recognition
and person re-identification to verify the effectiveness of the
proposed methods. Finally, we qualitatively analyze how
the resampled data help to improve the performance and
check the generalization ability to training from scratch.
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