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Abstract

We present the improved network architecture, data aug-
mentation, and training strategies for the Webface track and
Insightface/Glint360K track of the masked face recognition
challenge of ICCV2021. One of the key goals is to have a
balanced performance of masked and standard face recog-
nition. In order to prevent the overfitting for the masked
face recognition, we control the total number of masked
faces by not more than 10% of the total face recognition
in the training dataset. We propose a few key changes to the
face recognition network including a new stem unit, drop
block, face detection and alignment using YOLOS5Face, fea-
ture concatenation, a cycle cosine learning rate etc. With
this strategy, we achieve good and balanced performance
for both masked and standard face recognition.

1. Introduction

Face recognition, as a method to identify or verify a per-
son’s identity using a face image, has made tremendous pro-
gresses in recent years, thanks to deep learning, particularly
deep CNN. However, there are still some challenges, one
of which is low quality of images. The factors that cause
low quality images include pose, blur, occlusion, illumina-
tion etc. As the outbreak of the disastrous COVID-19 and
inspired by the motivation to prevent virus spreading, face
recognition has become one way to trace COVID-19 pa-
tients and close contacts [25]. After a patient is confirmed
and his identity is recognized, safety measures can be taken
to control the virus spreading. Face mask, as an effective
way to prevent the virus spreading, poses a new challenge to
traditional face recognition. Since the mask covers a large
part of face where abundant features are present, traditional
face recognition algorithm may not work effectively. This
drives a need to understand how face recognition algorithm
deals with masked faces, as a special case of occlusion.

To cope with the challenge arising from wearing masks,
it is crucial to improve the existing face recognition al-

gorithms. Even though some commercial providers have
claimed the availability of face recognition algorithms ca-
pable of handling face masks, and an increasing number of
research publications have surfaced, there is still no pub-
licly available masked face recognition benchmark. The
ICCV2021-MFR Workshop organises Masked Face Recog-
nition (MFR) challenge [7, 17, 32, 33] and the goal is
to bench-marking face recognition algorithms for masked
faces.

In this paper we present our solution for this MFR chal-
lenge [17]. We notice that one challenge is how to balance
the performance of the masked and standard face recogni-
tion. At the beginning of the challenge, the MFR error rate
was used as the ranking metric. To achieve best MFR per-
formance, people tend to put a lot of masked face images
in their training dataset. This causes a overfitting problem
such that the performance of the MFR is very good, but that
of the standard face recognition is getting worse. Later the
organizer realized this problem and changed there ranking
metric to a mixture of the error rates of the MFR and stan-
dard face recognition. In our solution, we realize this prob-
lem from the beginning and keep the balance of the MFR
and standard face recognition. Our strategy is to control the
percentage of the masked face image, by no more than 10%
of the total number of face images in the training dataset.

Other than this key strategy, we propose a few changes to
the backbone network architecture. We use the ArcFace [8]
as our baseline with Resnet [14] as the backbone. We test
the ArcFace loss [8], cosFace loss [26], and other loss func-
tions. We design a new stem unit, and add the drop block
[12] in the last two layers of the Resnet network. We also
propose to use YOLOSFace [22] to do face alignment, and
to concatenate features from multiple models to improve the
recognition accuracy.

As of August 3 2021, we achieve the All-Masked MFR
metric 0.1056 in the Webface track and TAR@Mask
0.84327, TAR@Mask-All 0.92702 in the Insight-
face/Glint360k track.
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2. Related Work

Face recognition has been widely studied and deployed
in practical applications in recent years. For a latest review,
please refer to [27]. For face recognition in the wild, more
and more attentions are on poor quality face images by pose,
blur, occlusion, illumination etc. Some examples are [28,
24, 19].

MFR is a challenging task since a large part of the face is
occluded, so abundant features on mouth, nose, and lower
cheek are all lost. As a result, the face recognition algo-
rithm has to focus on the eyes, ears, upper cheek, forehead
to identity a person’s identity.

The work [2, 11] provide a tool to generate masked face
images as a data augmentation for MFR.

In [3], normal face detector is used to detect masked face,
and a pretrained VGGFace2 [6] is used to extract features
for face recognition. They treat the MFR as a normal face
recognition problem.

In [13], the author first removes the masked region, then
use pre-trained networks to extract the features of the eyes
and forehead, and finally use a bag of words and a MLP to
do the classification.

In [21] a Resnet50 [14] and ArcFace [8] are used. They
introduce an probability of mask usage, and add a mask us-
age classification loss to the ArcFace loss.

In [10], the authors collect some MFR dataset, and pro-
pose a latent part detection to locate the latent facial part
which is robust to mask wearing, and the latent part is fur-
ther used to extract discriminative features.

In [18] the authors explore the Convolutional Block At-
tention Module in a Resnet50 network. They also suggest
removing the masked region helps the MFR. They test their
algorithm on a variety of MFR datasets.

3. Methods

All major changes are described in this section. These
include the data augmentation for masked face images, a
new stem unit, a DropBlock, YOLOS5Face [22] detection
and alignment, and feature concatenation.

3.1. Data Augmentation for Masked Face Images

Generation of masked face images is one type of data
augmentation methods. However, for the importance of a
balanced masked and standard face recognition, we put it
here as a separate subsection. In our early study, we find
that in order to get the best performance of MFR, people is
temped to use as many as possible masked face images in
the training dataset. As a result, the face recognition model
is over-fitted for MFR, but does not work well on normal
face recognition.

Therefore, we control the balance of the MFR and
standard face recognition by controlling the percentage of

Figure 1. Example of synthetically generated masked face images.

masked face images in the training dataset. After some ex-
periment we find that 10% is a good trade-off.

In stead of using public available MFR dataset, we use
a synthetic tool to generate MFR dataset. The tool we use
is the FMA-3D [11]. This tool can generate masked face
images online or offline. We find that generating masked
face images online affects the throughout of the training
substantially, we so decide to generate masked face images
offline. Shown in Figure 1 are some examples of the gener-
ated masked face images.

3.2. Network Architecture

We use the ArcFace framework [8] with Resnet [14] as
backbone. The network architecture is shown in Figure 2.
All changed blocks are highlighted in green. Figure 2 (a)
is the overall architecture, where YOLOS5SFace [22] is used
only on the test data. The training data provided by Web-
face [33] or Glint360k [1] are used with data augmenta-
tion. The final feature map is flatten, then a 512-neuron
full-connection (FC) layer is used to generate the feature.
Lastly another FC layer is used for classification. Figure 2
(b) is the feature concatenation of two models, which will
be described later.

3.3. Stem Unit

In face recognition backbone likes ResNet [14] there is a
stem unit - a component whose goal is to quickly reduce
the input resolution. Typically, the input is transformed
from [b, c, h, w] to [b, ¢*2, h//2, w//2], where b,c,h,w
are batch,channel,height,and width of the input images.
ResNet50 [14] stem is comprised of a stride-2 conv7x7 fol-
lowed by a max pooling layer which reduces the input reso-
lution by a factor of 4. The ResNet50-D [15] stem design is
more elaborate - the conv7x7 is replaced by three conv3x3
layers. The new ResNet50-D stem design improves accu-
racy, but at a cost of lowering the training throughput. In
the TResNet [23], the stem unit is called a DepthToSpace
transformation layer, which aims to replace the traditional
convolution-based downscaling unit by a fast and seamless
layer, with little information loss as possible. In YOLOVS5
[29] the author wants to reduce the cost of Conv2d compu-
tation and use a tensor reshaping to reduce space resolution
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Figure 2. Network architecture. All key changes are highlighted in green.

and increase the depth. It has been shown that this focus
layer has a good impact on the YOLOVS5 performance.

Inspired by the stem unit in Resnet50 [14] and the focus
layer in the YOLOVS [29], we design a new stem unit of
down-sampling rate 2 similar to the focus layer in YOLOVS.
There are two parallel stem units C1 and C2, whose output
are added up. In the first unit C1, the input image is first
passed to an average-pooling layer with kernel size=2 and
stride=2 to reduce the space resolution. After that, a Conv
layer with kernel size=2, stride=2 is applied. In the second
unit C2, the input image is 2x down-sampled on the dimen-
sions h and w. The even and odd index on the dimension h
and w are mutually combined to form four images. These
four images are concatenated to form an image whose res-
olution is 2x reduced but the depth is 4x increased. This
image is sent to a Conv layer whose kernel=3x3, stride=2,
padding=1. In both stem units, a batchNorm layer and a
PReLU layer are used after the Conv layer. The architec-
ture of this stem unit is shown in Figure 3.

3.4. DropBlock

In deep learning, dropout is a widely used regularization
method. However, it is often less effective for convolutional
layers. This is perhaps due to the fact that activation units
in convolutional layers are spatially correlated so informa-
tion can still flow through convolutional networks despite
dropout. Thus a structured form of dropout is needed to
regularize convolutional networks. In [12], A DropBlock,
where units in a contiguous region of a feature map are
dropped, is proposed. It is found that applying the Drop-
Block increases the accuracy.

We add this DropBlock into our face recognition net-
work. This block is added after the Conv layer and the
skip connection in the last two layers of the Resnet [14],
as shown in Figure 1 (a).

3.5. Face Alignment using YOLOSFace

Face images are aligned using landmarks before they are
sent to face recognition. Before RetinaFace becomes avail-

| AvgPool2d(k=2,5=2,p=0) |

[ convad(k=1s=1,p=0)| [ Convad(i=3s=1,p=1)]

Output

Figure 3. Architecture of the stem unit. The parameters are kernel
(k), stride (s), and padding (p).

able, MTCNN [30] is widely used for face image alignment.
In Webface dataset, the RetinaFace [9] is used as the stan-
dard for face alignment. YOLOS5Face [22] is a delicate re-
designed face detector from the YOLOVS [29] object detec-
tor. In addition to the bounding box and confidence score,
it also outputs five-point landmark, similar to MTCNN and
RetinaFace. We use the YOLOS5Face for face image align-
ment in some of our studies.

Some qualitative examples are shown in Figure 4. The
landmarks from the YOLOSFace [22] and RetinaFace [9]
on a set of face images with large pose are shown. It is not
hard to see that the landmarks of YOLOS5Face are better.
Please note that the some of the detection scores are small
because these faces have large poses.
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Figure 4. Examples of landmark, first row is from RetinaFace [9],
and second row from the YOLO5Face [22].

3.6. Feature Concatenation

The left-right face flipping has been shown to improve
the face recognition performance. It is not allowed to use in
this MFR competition. We borrow this idea to use extracted
feature vectors from multiple models. We choose two best
models, extract their feature vectors, and concatenate them
as the feature vector for the face recognition, as shown in
Figure 2 (b). This is like an model ensemble concept. Our
experiment shows that the performance can be improved.

4. Experiments
4.1. Dataset

In early time of the first phase, the Glint360K dataset
[1] is used as the preliminary training dataset. After we
meet the required baseline performance, 30% of the Web-
Face260M [33] are released however are not used in our
training. Other than the masked face images already in-
cluded in the dataset, more masked face images are gen-
erated, as described in Section 3.5. The total number of
masked face images is not exceeding 10% of the total num-
ber of face images.

4.2. Implementation details

The ArcFace framework [8] in Pytorch is used in our
study. Input image size is set to 112x112. We use the
Resnet34 [14] as our backbone. We expect larger models
like Resnet50, Resnet101 [14] will give better performance.
But for faster training speed, we use Resnet34 in most of
our studies.

Other data augmentation methods we use include ran-
dom cropping, random flipping, and the more complex Al-
bumentations [5], which include Affine transforms (scaling,
translation, rotation, distortion), noise, blurring, brightness
and contrast adjustment.

Our model is trained on four Nvidia RTX GPUs. The
training runs 24 epochs with batch size 512. We use the
cyclic cosine decay [20, 4] for the learning rate strategy as
shown in Figure 5. The initial learning rate is 0.1, the mo-
mentum is 0.9, and the weight decay is SE-4. We use 0.1
epoch as warm-up, the learning rate is reduced to the mini-
mum decay learning rate in 16 epochs.
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Figure 5. Cycle cosine decay learning rate, where one epoch is
around 16100 steps.

Technique MFR-Mask | MFR-AIl | Time
Baseline 65.10 83.02 3.285

+ Cycle Cosine LR 67.38 83.08 3.285
+ Data Aug 77.20 82.65 3.285

+ Stem Unit 77.13 82.45 3.165
+SE 78.37 83.12 4.294

+ DropBlock 79.21 84.22 4.294

+ EMA 79.35 84.64 4.294

Table 1. Ablation study on the Insightface/Glint360k track with
backbone Resnet34 [14]. Time refers to the average inference time
of the model.

4.3. Ablation Study

In the Insightface/Glint360k track, we use Resnet34 [14]
backbone for its fast training speed. We use this track as our
ablation study tool in addition to submission to the compe-
tition leader board.

We test a variety of techniques in this study in an incre-
mental manner, and the results are listed in Table 1. In the
table, the cyclic cosine learning rate is described in Sec-
tion 4.2; data augmentation refers to random cropping plus
the Albumentations augmentation with random horizontal
flipping, blurring, Gaussian blurring, motion blurring, RGB
shift, and image compression, where the probability is 0.5
for the horizontal flipping, and 0.05 for all others. We also
test the Squeeze-and-Excitation (SE) network [16], and the
Exponential Moving Average (EMA) gradient update.

We see that the cycle cosine learning rate brings a 2.2%
performance improvement; the data augmentation brings
the biggest improvement of nearly 10%; all other tech-
niques brings 0.1-0.2% improvement except for the stem
unit. The stem unit does not improve the accuracy, but it
improves the inference time.

Face alignment with YOLOS5Face [22]. We do this ab-
lation study on the Webface track. We use the best configu-
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Model FaceDetect | All-Masked | Dim
R124_1 Retina 0.1132 512
R1242 Retina 0.1142 512
R124_1||R1242 Retina 0.1065 1024
R124_1||R124_2 | YOLO5-S 0.1061 1024
R124_1||R124_2 | YOLO5-M 0.1056 1024

Table 2. Ablation study on the Webface track with backbone
Resnet124 [14]. Retina refers to the RetinaFace [31]. Two
YOLO5Face models [22], a small model YOLOS5-S, and a medium
model YOLO5-M are used. The symbol || denotes feature concate-
nation.

Track Metric Time
Insightface/Glint260k | (84.327,92.702) | 17.835
Webface (0.1056, 0.0187) | 996.00

Table 3. Benchmark results. For the Insight/Glint360 track, the
metrics are (Mask, MR-All), and the time is the inference time in
millisecond. For the Webface track, the metrics are (All-Masked
MEFR, All SFR), and the time is total time in millisecond.

ration from the previous ablation study as baseline. Instead
of Resnet34, Resnet124 is used as backbone. The results
are listed in Table 2. First we train two models R124_1
and R124_2, then we concatenate the features from them
and form the third model. In these three models, we use
the RetinaFace [9] face detector and alignment. Then we
keep using the concatenation model, and replace the Reti-
naFace with the YOLOSFace [22]. We test two models, a
small-sized model YOLOS5-S, and a medium sized model
YOLOS5-M. Both models give better performance than the
third model. This demonstrates that the YOLOS5Face gives
better face detection and landmark prediction as we quali-
tatively show in Figure 3.

4.4. Benchmark Results

To avoid overfitting on masked/standard face recogni-
tion, the Webface track organizer decide to revise the for-
mula for calculating all three MFR metrics in the leader-
board. New MFR metrics are designed to show a weighted
sum to consider both masked and standard faces at the same
time. The new formulas are shown below,

e New All-Masked (MFR) = 0.25 * Old All-Masked
(MFR) + 0.75 * All (SFR).

* New Wild-Masked (MFR) = 0.25 * Old Wild-Masked
(MFR) + 0.75 * Wild (SFR).

e New Controlled-Masked (MFR) = 0.25 * Old
Controlled-Masked (MFR) + 0.75 * Controlled (SFR).

As of August 3, 2021, our best results on the two tracks
are listed in Table 3.

5. Conclusions

In this paper we present a solution for the ICCV2021
MEFR challenge [17]. Our solution has a good balance of
the masked MFR and the standard face recognition.
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