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Abstract

Given the coronavirus disease (COVID-19) pandemic,
people need to wear masks to protect themselves and re-
duce the spread of COVID, which brings new challenge to
the traditional face recognition task. Since features like the
nose and mouth, which are well distinguishable, are hid-
den under the mask, traditional methods are no longer sim-
ply applicable, even though they once achieved a high de-
gree of accuracy. In response to this problem, the Masked
Face Recognition Challenge & Workshop (MFR) was held
in conjunction with the International Conference on Com-
puter Vision (ICCV) 2021. This article details a method that
combining the classic ArcFace and pairwise loss to target
the new masked face recognition task. So far, our method
has achieved the second place in the competition.

1. Introduction

The COVID-19 pandemic has permanently changed the
original life and production habits of mankind. Now, in or-
der to protect themselves and others and prevent the wan-
ton spread of the virus, most governments require people
to wear masks in public places. This brings difficulties to
the common face recognition technology [1]. On the one
hand, the models of these algorithms are trained on unoc-
cluded face datasets. On the other hand, most algorithms
rely on features extracted from the entire face. For faces
with masks, the accuracy of these recognition algorithms
will significantly decrease. The lack of accurate masked
face recognition algorithms has forced people to compro-
mise by taking off their masks and exposing themselves to
the risk of infection in certain situations, such as at boarding
security checkpoints. Therefore, it is particularly urgent to
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Figure 1. The images of faces with and without mask and the re-
sults after training with pairwise loss.

develop robust face recognition technology for masked face
recognition.

The earliest face recognition can be traced back to
1990s [2]. In recent years, with the development of deep
learning technology, classical CNN and many of its vari-
ants [3, 4] are constantly being proposed. Researchers
have proposed many face recognition applications based on
deep learning technology and obtained high accuracy with
promising prospects. Facebook proposed DeepFace [5]
to perform face alignment before training for better fea-
ture learning, and this process is now widely used in face
recognition pipeline [6]. Some recent margin-based al-
gorithms, such as SphereFace [7], CosFace [8] and Arc-
Face [9], achieved high accuracy on different face related
tasks and face related competitions [10]. However, these al-
gorithms are vulnerable when facing occluded face targets,
because a lot of effective information cannot be extracted
by the network, resulting in significant accuracy decrease.

In real life, certain parts of the face cannot be obtained
for various reasons. Common causes of occlusion include
light occlusion due to uneven light distribution, object oc-
clusion due to sunglasses or hats, and self-occlusion due
to particular face angles. Thus, the more challenging face
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recognition in obscured conditions has attracted the in-
terest of researchers. Typical mainstream approaches in-
clude two categories. One is the reconstruction-based ap-
proach [11], and the other is attention mechanism-based ap-
proach [12, 13, 14].

Masked face recognition is a special case of occlusion
face recognition but has its own characteristics. As men-
tioned above, in previous studies, the occlusion objects usu-
ally covered only a small part of the face. In the case of
wearing a mask, half or even more than half of the area
is occupied by the mask, especially the mouth and nose
with important physiological characteristics. In addition,
the lack of masked face data makes large-scale model train-
ing prohibitive. As far as we know, there is little work re-
lated to face recognition with masks before. From last year,
some researchers[15, 16] paid attention to this field but their
studies are either based on a small dataset or only involve
the detection of masked faces.

Due to the sudden outbreak of the epidemic, there are
currently no publicly available masked face recognition
benchmarks, which encouraged the holding of the Masked
Face Recognition Challenge. Based on the WebFace260M
dataset [17], we propose a framework that combines Arc-
Face method and pairwise loss [18] in order to improve the
performance of masked face recognition task. ArcFace is a
successful method in face recognition related tasks, which
penalizes the angle between the deep features and their cor-
responding weight vectors in an additive manner, thereby si-
multaneously enhancing intra-class tightness and inter-class
differences. However, for the masked face recognition, such
penalty is not enough because the features of the human
face become inconspicuous due to the presence of the mask.
In this case, we apply pairwise loss into the network to get
a better decision boundary. And currently our algorithm
ranks second in the competition.

In next section, we will introduce the competition dataset
first, then introduce the whole network architecture we
used. In section 3, the results of our model are discussed.
Conclusions are presented in Section 4.

2. Methodology

2.1. Database

The dataset used in the competition is called Web-
Face260M, which is a new million-scale face benchmark.
The WebFace260M contains noisy 4M identities and 260M
faces. And after an automatic cleaning process, the cleaned
WebFace42M is obtained. The WebFace42M contains
2M identities and 42M faces, which is the biggest public
masked face recognition dataset to date. The WebFace42M
contains 7 face attribute annotations, especially the masked
faces. Because WebFace42M is relatively large, for more
efficient training, we conducted preliminary experiments on

Figure 2. Data samples in WebFace260M. The left and right
columns of each row are pictures of the same person without and
with a mask respectively. The WebFace260M contains noisy 4M
identities and 260M faces.

WebFace12M. Figure 2 shows some samples from the Web-
Face260M dataset that we used for training.

2.2. Algorithm and architecture

In this part, we provide a detailed introduction of the pro-
posed algorithm to improve the performance of the mask
face recognition task.

2.2.1 ArcFace loss

As mentioned above, due to the superiority in terms of ac-
curacy, complexity and efficiency, we used ArcFace as the
basic of our method.

The ArcFace loss is the extension of softmax function.
The softmax function can be presented as follows:

Lsoftmax = − 1

N
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However, softmax function mainly focuses on whether
the samples can be correctly classified, and lacks constrains
on intra-class and inter-class so that it cannot explicitly in-
crease the gap between different classes and reduce the
discrepancy of samples in the same classes. So some re-
searchers proposed an improved loss function, so called Ar-
cFace loss function:

LArcface = −
1
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Here ei is es(cos(θyi+m)). In the angle space, ArcFace
adds the angle θ between the feature and the weight Wyi .
In this case, the optimization of loss function will simulta-
neously enhance the intra-class compactness and inter-class
difference.

2.2.2 Pairwise loss

However, for masked face recognition, it is found that the
performance of most existing algorithms on this task will
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deteriorate. We assume the reasons are that, on the one
hand, half area of the face is occluded so many informa-
tion can not be extracted, which results in the extracted fea-
tures not sufficiently distinguishable. On the other hand,
these algorithms are designed based on the common dataset
like LFW (Labled Faces in the Wild), which contains im-
ages with different attributes. While for the masked face
recognition task, we are more concerned about the perfor-
mance on face with masks, and this is only a small part of
common tasks. In this particular task, the algorithm should
be designed to deliberately reduce the distance between the
features of the same face with and without a mask. At the
same time, the distance between images of faces belonging
to different identities should be expanded, thus improving
the performance. Motivated by this idea, our approach in-
troduces pairwise loss.

The pairwise loss is designed to reduce the intra-class
discrepancy and enlarge the difference of inter-class, which
has been widely applied in other fields [19]. Suppose that xi
and xj are the input training samples of dimension Rd. And
Yij represent the similarity between xi and xj , the value of
Yij can be obtained:

Yij =

{
1, xi, xj are belong to same identities;
−1, otherwise.

(3)
Then fk(xi|θ) and fk(xj |θ) are the corresponding fea-

tures extracted from the input data, the L2 distance is uti-
lized to measure the difference between features:

D2
k =

∥∥fk(xi|θ)− fk(xj |θ)∥∥22 ; (4)

Pairwise loss is a flexible loss function compared to oth-
ers, such as center loss, which try to minimize the distance
between samples and the corresponding class center. Mask
and mask free features can be maintained consistency in the
feature space by introducing pairwise loss. The explanation
of pairwise loss is presented in Figure 1. The pairwise loss
contains two hyper-parameters b and m, which generate the
margin between different classes, the loss function can be
formulated as:

Lpairwise = max(0, b− Yij(m−D2
k(xi, xj , θ))); (5)

Here, 0 < b < m. And after the training with pairwise
loss, the distance of samples from the same identity, with
and without masks, will be smaller than a margin m − b.
On the contrary, the samples from different identities will
be bigger than the margin m + b. So if the b is equal to m,
the L2 distance of two related samples will be limited to 0,
just like the center loss [20] or contrastive loss, which is too
strong for the real task.

Figure 3. Illustration of the network architecture. The ResNet101
is used as the backbone, then the ArcFace loss and pairwise loss
are obtained based on the extracted features. In each step, images
from the same and different identities are feeded into the network.

2.2.3 Architecture and training

The network structure we proposed in this competition is
shown in Figure 3. The ResNet101 [21] is used as backbone
to extract features. Then the features will be feed into the
ArcHead to obtain the ArcFace prediction. Comparing the
ArcFace prediction and ground truth, the cross-entropy loss
can be calculated. Meanwhile, considered that the pairwise
loss is applied in our framework, in each training batch,
three samples will be selected as a group, (xi, yi),(x̂j , yi)
and (xk, yk). A face image without mask is selected ran-
domly in first step, donated as (xi, yi). Correspondingly,
the same identity with mask is chosen, donated as (x̂j , yi).
In the last, an image from another class is added into the
group as (xk, yk). In each training step, the pairwise loss
contains the intra-class loss and inter-class loss. Our final
optimization function can be formulated as:

Ltotal = LArcFace + LPairwise; (6)

All of the code is completed by Pytorch and trained on
NVIDIA Tesla V100 32GB. And SGD [22] method is used
to update the parameters of the network.

3. Results and discussion

To evaluate the performance of our proposed method, all
of the experiments is conducted on the benchmark dataset
WebFace: WebFace12M and WebFace42M. We firstly train
our algorithm on WebFace12M for better efficiency.

3.1. Evaluation metric

Three main metrics in the competition are all-masked
score, wild-masked score and controlled masked score.
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These metrics can be calculated as:

AllMasked(MFR) = 0.25 ∗Old AllMasked(MFR)

+ 0.75 ∗All(SFR)

WildMasked(MFR) = 0.25 ∗Old WildMasked(MFR)

+ 0.75 ∗Wild(SFR)

ContMasked(MFR) = 0.25 ∗Old ContMasked(MFR)

+ 0.75 ∗ Cont(SFR);
(7)

These MFR metrics actually reflect a weighted average
of masked face recognition(MFR) and standard face recog-
nition(SFR). And so far, our method ranks second in the
all-masked score. Ranked second and fifth in wild-masked
score and controlled-masked score, respectively.

3.2. Results

Because WebFace42M is relatively bigger than Web-
Face12M, for a higher training efficiency, the experiments
are performed on WebFace12M firstly. The result is shown
in Table 1.

Method All-masked Wild-masked Cont-masked
ArcFace 0.2037 0.2128 0.1356
Arc+Pairwise 0.1438 0.1715 0.0997

Table 1. Score trained on WebFace12M with ArcFace and Arc-
Face+Pairwise loss.

Based on WebFace12M, we evaluate our proposed
method’s performance. Overall, training the network with
an effective combination of ArcFace loss and pairwise loss
showed significant improvements over training the network
with ArcFace loss alone in all three metrics, corresponding
to 29.4%, 19.4%, and 26.5% for New All-Masked (MFR),
New Wild-Masked (MFR), and New Controlled-Masked
(MFR), respectively. Concretely, if we only use ArcFace
loss as the optimization function, the score of All-masked
MFR is 0.2037. While if the ArcFace loss and pairwise loss
are united to optimize network parameters, the score is im-
proved to 0.1438. Besides, the model also perform better on
the other two metric. And it is believed that pairwise loss
can effectively shorten the distance between mask free face
features and masked face features in the latent feature space.
Meanwhile, two hyper-parameters b and m push away the
distance of samples from different classes larger than the
margin m+ b.

Naturally, the values of b and m will affect the perfor-
mance of the algorithm. If b is close to 0, the gap of intra-
class and inter-class will be too small for a robust classifier.
For another thing, if b is set to be close to m, the penalty
of intra-class will be too strong for training. Here, m is
fixed as 1 and we only adjust the value of b between 0 and
1 with 0.2 as the interval. Namely, b is set to 0.2, 0.4, 0.6

and 0.8 for evaluation. The scores of different values of
hyper-parameters are summarized in Table 2.

Value(m=1) b=0.2 b=0.4 b=0.6 b=0.8
All-masked 0.1455 0.1335 0.1332 0.1452

Table 2. Performance with different parameters trained on Web-
Face12M.

The best score, 0.1332, is achieved when b is equal to
0.6. As analyzed above, when the value of b is close to 0 or
1, it is observed that the performance will decrease.

We also conduct the experiments on WebFace42M
dataset and save the model as the final version. Web-
Face42M contain much more identities and images than
WebFace12M, which will undoubtedly improve the perfor-
mance of algorithm and its generality. In the WebFace42M,
the hyper-parameters b andm are set to be 0.6 and 1 respec-
tively.

Dataset All-masked Wild-masked Cont-masked
WebFace12M 0.1332 0.1586 0.0928
WebFace42M 0.1036 0.1246 0.0699

Table 3. Scores of model trained on WebFace12M and Web-
Face42M.

From the Table 3, we can find that the application of
WebFace42M improve the performance of model obvi-
ously, from 0.1332 to 0.1036. There is no doubt that richer
data can train a more robust network. And we speculate that
if the network is trained on Webface260M, the performance
of the network can be further improved.

4. Conclusion
In this paper, we proposed a framework which combines

the ArcFace and pairwise loss to improve the performance
of the masked face recognition. Although the masked area
causes difficulties for the traditional face recognition algo-
rithm, pairwise loss can effectively map the images of the
same identity with and without wearing a mask into a re-
stricted region in the feature space. At the same time, it
will improve the distinguishability of the features of images
from different identities. The values of hyper-parameters in
pairwise loss are also discussed. Finally, our algorithm is
performed on the currently biggest face recognition dataset,
WebFace42M and we got the second place in the competi-
tion. We believe that the publication of WebFace will pro-
mote the development of face recognition as a new bench-
mark.
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