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Abstract

Medical imaging such as computed tomography (CT)
plays a critical role in the global fight against COVID-
19. Computer-aided platforms have emerged to help ra-
diologists diagnose and track disease prognosis. In this
paper, we introduce an automated deep-learning segmen-
tation model, which builds upon the current U-net model,
however, leverages the strengths of long and short skip con-
nections. We complemented the long skip connections with
a cascaded dilated convolution module that learns multi-
scale context information, compensates the reduction in re-
ceptive fields, and reduces the disparity between encoded
and decoded features. The short connections are consid-
ered in utilizing residual blocks as the basic building blocks
for our model. They ease the training process, reduce the
degradation problem, and propagate the low fine details.
This enables the model to perform well in capturing smaller
regions of interest. Furthermore, each residual block is fol-
lowed by a squeeze and excitation unit, which stimulates
informative features and suppresses less important ones,
thus improving the overall feature representation. After ex-
tensive experimentation with a dataset of 1705 COVID-19
axial CT images, we demonstrate that performance gains
can be achieved when deep learning modules are integrated
with the basic U- net model. Experimental results show
that our model outperformed the basic U-net and ResDUnet
model by 8.1% and 1.9% in dice similarity, respectively.
Our model provided a dice similarity measure of 85.3%,
with a slight increase in trainable parameters, thus demon-
strating a huge potential for use in the clinical domain.

1. Introduction
Coronavirus Disease (COVID-19) infected more than

111 million people and it has caused the death of more than
2 million people worldwide, as of June 25th 2021 [1]. Typ-
ically, COVID-19 is diagnosed using the reverse transcrip-
tion polymerase chain reaction (RT-PCR). RT-PCR test is
available readily, nevertheless, it only shows the positive
nature of the disease, not the extent of the damage to the
lungs [4]. Therefore, to assess the severity of the disease
and monitor the infection stage, many hospitals have em-
ployed medical radiology imaging as a rapid option for dis-
covering the disease. Among them, X-rays and CT scans.
Both screening modalities confirm the presence of lung in-
fections [5]. However, a study presented in [26] confirms
that CT scans provide higher sensitivity to COVID-19 in-
fection than RT-PCR, where RT-PCR provides a sensitivity
of 71%, and CT scans provide a sensitivity of 98%. Also,
CT scans are way faster than RT-PCR, which is very useful
in patients’ follow-up assessment and evaluation of disease
progression [22].

Infected lesion segmentation from CT images is an es-
sential step for further diagnosis, evaluation, and quantifi-
cation of COVID-19. This procedure provides crucial in-
formation for doctors to diagnose and quantify lung dis-
eases [19]. Despite the increasing popularity of CT scans
in diagnosing COVID-19 patients, they still pose burden on
clinicians, where an experienced radiologist need more than
20 minutes to analyze each suspected patient [14]. Com-
mon symptoms of infection observed from CT slices in-
clude ground-glass opacity (GGO) in the initial stage, pul-
monary consolidation in the advanced stage. The lesions in
both infections are variable in size and shape. Also, GGO
boundaries are difficult to identify, due to their low contrast
and blurred boundaries. Figure 1 shows the challenging
fuzzy nature and irregular shape of the COVID-19 infected
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lesions.
These limitations make the manual delineation tedious,

time-consuming, and influenced by individual bias. There-
fore, in this work we provide an automated COVID-19 le-
sion segmentation model, for helping physicians in their di-
agnosis process, taking into consideration the challenging
nature of COVID-19 infected lesions.

The rest of the paper is organized as follows. In Sec-
tion 2, we review related segmentation models. In Section
3, we demonstrate the methodology of the proposed model
then describe the utilized modules in details. In Section 4,
we describe the experimental setup followed by description
of the dataset used. Section 5 demonstrates the evaluation
results followed by discussion and Section 6 concludes the
paper.

2. Related work
Machine learning algorithms have the potential to play

an important role in helping radiologists analyze chest CT
scans to find the epidemic patterns and reduce the time re-
quired to examine each patient. However, there is still a
shortage in the labelled COVID-19 dataset, due to the emer-
gency of the COVID-19 pandemic within a short period.
This has encouraged some researchers to integrate human
in-the-loop strategy. For instance, developing deep learn-
ing models that involve interactivity with radiologists in the
training process or to provide initial seeds given by the ra-
diologist to guide their segmentation model [21, 17, 23].

Keshani et. al [18] proposed a segmentation model based
on support vector machine classifier to detect lung lesions
from CT images. Moreover, Shen et.al [24] proposed an au-
tomated segmentation model based on bidirectional chain
code to improve lesion segmentation performance. How-
ever, those two models fail to significantly improve lesion
segmentation due to the intensity homogeneity between the
lung and infected lesion.

Owing to the profound significance of deep learning,
many models have emerged to provide more powerful fea-
ture representations to improve infection diagnosis effi-
ciency in CT images and facilitate subsequent quantification
For example, Wu et. al [25] developed a joint classification
and segmentation model using their collected dataset, pro-
viding a sensitivity of 96% and specificity of 91.5%. Af-
ter fine-tuning the model using vgg as the encoder part for
low-level feature extraction, they achieved a segmentation
accuracy of 76%. The authors claim that combining several
pieces of information from various tasks helped their model
improve and generalize. Following the same methodology,
Jin et. al [17] provided an integrated model for segmen-
tation and classification trained on a small dataset of 732
cases. The model was able to attain a segmentation accu-
racy of 75% on a dataset of 877 positive cases.

Finally, Elharrouss et al. [10] proposed an encoder-

decoder network that first extracts the lung region as a
region of interest and then input the extracted lung re-
gion concatenated with the original CT image to another
encoder-decoder model. The model was compared with U-
net model, achieving a dice similarity measure of 78%.

Whilst having several advantages, we observe that the
methods mentioned above have few limitations. First, they
either rely on hand-crafted features, which results in a less
generalized model, or shallow design networks that would
struggle to extract multi-context discriminative features.
Second, they use a joint model for both classification and
segmentation tasks, where they mainly focused on using
features learned from the segmentation model to enhance
the classification performance. Finally, they designed a
complicated model with a two-stage pipeline, one dedicated
to construct a region of interest and follow it with another
model for segmenting the infected region, which is compu-
tationally expensive compared to their achieved results.

Some of the challenges in segmentation of COVID-19
lesions, that we tackle in this paper are: 1) The intensity
homogeneity and low contrast of CT images with a fuzzy
boundary of the infected region. 2) The size and shape
variability of the infected lesions. 3) The imbalanced data
problem, where the infected region in some images would
occupy less than 5% of the image, and in another image, it
would occupy around 30% of the image. This imbalance
would bias the model toward detecting more of the back-
ground pixels, resulting in more false-negatives.

The above challenges have motivated us to build a deep
learning segmentation model efficient enough to overcome
the fuzzy nature of lesions and consider their shape and size
variability. In a nutshell, our contributions can be summa-
rized as follow:

1. We analyze the U-net segmentation model and build
upon it to provide an enhanced robust method that of-
fers better performance with a slight increase in train-
able parameter.

2. To ease the training process and help to propagate the
low fine details, we replace the basic U-net blocks with
residual blocks. The short skip connections in each
residual block converge the model faster and help to
capture small lesions that were mistakenly unidentified
by the basic U-net model.

3. We address the problem of shape and size variability in
lesions by integrating a cascaded dilated convolution
module. This module expands the receptive field to
capture multi-scale context information with rich spa-
tial information. Also, it overcomes the drawback of
successive sub-sampling operations, which degrades
the spatial information.

4. We integrate dilated convolution along the long skip
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Figure 1. A sample of CT images with COVID-19 infection segmented by experts (illustrated in white). Showing the blurred boundaries
and the variability in shape and size of the infection.

connections to reduce the semantic gap between fea-
tures learned at encoding path and those learned at de-
coding path, which improves the model prediction.

3. Methodology

In this section we describe the proposed segmentation
model, which carries the strengths of both residual and U-
net architecture as depicted in figure 2. Our model replaces
the building blocks utilized in the basic U-net model with
repetitive residual blocks along the encoding and decoding
path.

Each residual block is constituted of convolution, batch
normalization, rectified linear unit (ReLU) activation func-
tion. We use 16 feature maps in the first layer and incre-
ment it with a factor of 2 to reach 512 feature maps at
the bottom layer. A 3×3 filter size is used in all convo-
lution operations. Batch normalization is applied to reduce
the internal co-variant shift and regularize the model, and
ReLU is applied to introduce non-linearity into the model.
To avoid over-fitting, one dropout operation with a rate of
0.5 is used after the first ReLU activation function in each
residual block. The output is then concatenated with the in-
put (identity short-cut), then passed through a squeeze and
excitation (SE) unit to remove redundant features and excite
more informative ones. After that, a max-pooling 2×2 with
a stride of 2 is applied to downsample the spatial dimension
from one layer to another.

Prior to max-pooling operation, we pass the output of
the SE unit to what we call a dilated convolution module
DC module. In the DC module, the input is passed through
a series of dilated convolutions with a filter size the same
as the input filter size. For the first two layers, with the
large semantic gap between encoder and decoder features,
we perform dilated convolution with an increasing dilation
rates of (1,2,3). This incremented dilation rate captures the
large context information, and is followed by decremented
dilation rates of (3,2,1) to capture local features dissipated
by increasing the dilation rate. For the last two layers where
the semantic gap decreases between encoder and decoder

features, we perform less processing to the encoder features,
applying an increasing dilation rate of (1,2), followed by a
decremental rate of (2,1). The output of each DC module
is concatenated with the corresponding high-level feature at
the decoding path.

At the decoding path, feature maps are up-sampled with
bilinear interpolation, concatenated with the correspond-
ing output of the DC module, then passed through resid-
ual blocks followed by Squeeze and excitation unit. The fi-
nal layer is a 1×1 convolutional layer followed by sigmoid
function activation function to produce the final segmented
lesion. The details of each utilized module is further inves-
tigated in the succeeding subsections.

3.1. Residual blocks

It is confirmed that deeper networks provide better per-
formance. However, training a deep network is difficult,
especially for a limited number of training data, which can
be defeated by employing a pre-trained network with fine
tuning, or increasing the network depth [12]. However, in-
creasing the network depth causes the problem of vanishing
gradient when back propagating the signal across many lay-
ers [9].

Therefore, to avoid going deeper and solve the problem
of gradient explosion and network degradation, we chose
to replace the basic U-net blocks with residual blocks [12]
at the encoding and decoding path. Residual blocks fur-
ther contribute to feature propagation by sharing the same
idea of concatenating features as the skip connections in the
U-net. They implement ’identity short-cut mapping’ of in-
put and output, allowing the propagation of low fine details
throughout the network, which improves the network per-
formance without going deeper [12].

The utilized residual block is explained in figure 3(b) and
compared with the basic U-net blocks illustrated in figure
3(a). Each residual unit is defined as:

yi = h(xi) + F (xi,Wi) (1)

xi+1 = f(yi) (2)
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Figure 2. Overview of residual dilated U-net.

where xi and xi+1 are the input and output of the i-th resid-
ual unit, F (.) is the residual function, f(yi) is the activation
function and h(xi) is an identity mapping function.

3.2. Squeeze and excitation unit

According to [13], SE enhances feature representation
power by exciting more informative features and discarding
less informative ones. Therefore, we followed each resid-
ual block with a squeeze and excitation unit (illustrated in
figure 3(c)). The mechanism of SE unit allows the net-
work at earlier layers to excite informative features, and
strengthens the shared low-level representation. At deeper
layers, it responds differently to inputs in a highly class-
specific manner. Each unit performs two fundamental op-
erations on the input feature map; squeeze for global infor-
mation embedding and excitation for feature recalibration.
At first, feature maps are aggregated across their spatial di-
mension H×W, producing a channel descriptor. This op-
eration is done through global average pooling to generate
channel-wise statistics, which embed global distribution of
channel-wise feature responses (C). This information from
the global receptive field of the network is used by all its
layers. Afterwards, the aggregated channels go through an
excitation process which is a simple self-gating mechanism
using sigmoid activating function.

After global average pooling, there is a bottleneck with
two fully connected (FC) layers at a reduction ratio (r). This
reduction ratio was set to 8 in our experiments which pro-
vides the lowest overall error with Resnet [13]. The output
of the SE unit is obtained by rescaling the transformed fea-

ture maps with the activations, which act as weights adapted
to the input features.

Figure 3. Building blocks. (a) U-net basic building unit. (b) Resid-
ual unit. (c) Squeeze and excitation unit.
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3.3. Dilated convolution module

U-net skip connections help propagate the spatial infor-
mation from the low-level layers to high-level ones. Despite
maintaining the spatial details, the skip connections con-
catenate features learned at low level layers with minimal
processing, with more processed features at higher layers.
This process provides inconsistency throughout the model
learning, due to the semantic gap between concatenated fea-
tures [15]. Also, the sub-sampling process gradually loses
the resolution of features as we go deeper in the network.
Subsequently, this subsampling process misses the details
of small objects that are hard to recover even with skip con-
nections.

Therefore, we used a series of dilated convolution and
concatenated them with the corresponding high level fea-
tures along skip connections, to decrease the semantic
gap between encoder and decoder features, capture multi-
scale information and compensate the resolution degrada-
tion along the encoding path. Dilated convolution works
by expanding the field of view of the filters, which help
capture multi-scale information without losing the spatial
resolution. In dilated convolution, the alignment of kernel
weights is expanded by a dilation rate. Increasing this rate
places the weights away at a given interval and increases the
kernel size.

Dilated convolution is applied over a two-dimensional
feature map x, where for each location i on the output y, a
filter w is applied as defined in [7]:

y[i] =
∑
k

x[i+ d.k]w[k] (3)

where the dilation rate d, is equivalent to the stride with
which the input signal is sampled. This process resembles
convolving the input x with the up-sampled filters produced
by inserting (d-1) zeros between two consecutive filter val-
ues along each spatial dimension.

Thereby, using dilated convolution rates, we can ad-
just the filter’s field of view, to capture multi-context in-
formation. Figure 4 shows that a dilated 3×3 convolution
with rate = 2 resembles a 5×5 standard convolution, which
means that the receptive field of the output is the same for
both kernels. However, increasing this dilation rate is es-
sential for resolution and context, and is damaging to very
small objects [27]. Also, aggressively increasing the dila-
tion rate fails to capture small objects’ local features [11].

Therefore, we followed the approach presented in [11],
where we gradually increase the dilation rate and follow
that with a gradual decrease in dilation rate. We call this
operation ’DC module’, illustrated in figure 4. The grad-
ual increase in dilation rates helps capture large-scale con-
texts. Following it with a gradual decrease in the dilation
rate helps propagate local features scattered by increasing
the dilation rate. At the last two layers, the dilation rate is

reduced, since the inconsistency between the concatenated
features decreases gradually. This is due to the fact that, not
only the features from the encoding path are going through
more processing, but they are concatenated with processed
decoder features.

To provide multi-resolution analysis, we incorporate
consecutive 3×3 convolution along the DC module, since
this arrangement of convolution resembles a 7×7 convolu-
tion. According to [28], this convolution arrangement helps
the network mitigate the features learned from the image at
a different scale.

4. Experimental setup

We implemented the model in Python environment with
Keras and Tensorflow. For optimization, Adam optimizer
was used at 350 epochs. The learning rate is initially set to
10−3 and is reduced by a factor of 10 every 20 epochs. For
each training run, the model with the best validation loss
was stored and evaluated. Dice loss is used as the network
objective function. All computations were carried out using
Nvidia GeForce with RTX 2070 GPU.

4.1. Dataset

In this study we used a public available COVID-19 CT
segmentation dataset introduced in [2], which includes 1705
COVID-19 axial CT images. The images’ dimension varies
from 630×630 to 512×512. All images were intensity nor-
malized between 0 and 1 . Inspired by the basic U-net
model, we resized all images to 256×256 to reduce the
computational complexity. We first split the dataset into
training, validation and testing sets. Then augment each set
to provide robustness and reduce over-fitting of our model.
Data augmentation is applied by using the image augmen-
tation library ’Augmenter’ [6], where we applied different
variations such as random horizontal and vertical flip, and
random zoom. In total, the model was trained on 3410 im-
ages (after augmentation), with 20% used for validation and
20% for testing.

5. Evaluation results and discussion

To assess our proposed model’s performance, we com-
pare the lesion segmentation results with the experts’
ground truth delineation. Also, our results are compared
with the basic U-net and the results obtained from Res-
DUnet model, presented in [3]. ResDUnet model is also
based on U-net with residual blocks integrated with squeeze
and excitation unit, and utilizes dilated convolution with
decremental dilation rates along the encoding path. For
comparing the results, we used three quantification mea-
sures, the Dice similarity coefficient (DSC)[8], F-score
(F)[20], and Jaccard index (JC)[16]. The DSC measure is

466



Figure 4. Overview of the DC module used in skip connections. Each layer is convolved with a kernel size of 3×3. Filter kernel is depicted
in each layer as a square with grid pattern. The darker cells represent valid weights, while brighter ones represent invalid region. As shown,
kernels with a dilation factor of 2 and 3×3 convolution, resembles a 5×5 convolution, thus showing how dilated convolution increases the
receptive field.

the spatial overlap index and reproducibility validation in-
dex, defined as:

DSC =
2TP

2TP + FN + FP
(4)

F-score is the test’s accuracy, calculated from the precision
and recall, defined as:

F =
TP

TP + 1
2 (FN + FP )

(5)

JC is the intersection over union, and is defined as:

JC =
TP

TP + FN + FP
(6)

where, TP is true positive, TN is true negative, FP is false
positive and FN is false negative values. The higher the
value of the above indices the better the performance.

The proposed model’s segmentation performance in
comparison with U-net and ResDUnet is illustrated in Ta-
ble 1. It can be seen that our model outperforms U-net
and ResDUnet by 8.1% and 1.9% in the dice similarity
measure, respectively. We argue that the low performance
seen in U-net is due to the process of sub-sampling layers
throughout the network, where feature resolution is grad-
ually lost. Both ResDUnet and our model outperform U-
net due to the integration of residual blocks followed by
squeeze and excitation unit. The short skip connections in
residual blocks help propagate the low fine details through-
out the network. The squeeze and excitation unit’s addition
has further contributed to exciting informative features and
suppressing less informative ones. However, in ResDUnet,
cascaded dilated convolution usage in a decremental way
(along the encoding path) has focused on capturing small
context information, thus discarding larger ones, which ex-
plains the lower accuracy compared to our model.

Figure 5, shows a qualitative comparison between the
predicted contours from our model versus U-net and Res-
DUnet, where the expert manual segmentation is illustrated

Method DSC JC F-score
U-net 77.2 75.4 79.4
ResDUnet 83.4 81.8 87.6
Our model 85.3 83.9 90.6

Table 1. Statistical evaluation for our model in comparison with
other segmentation models.

Method Small lesions Large lesions
ResDUnet 84.9 83.9
our model 84.8 86.9

Table 2. Comparing the performance of both models in capturing
large and small lesions.

in white. There, we can see two different lesions with vari-
ability in shape and size. For large infected lesions, our
model outperformed ResDUnet, since we increased the di-
lation rate along skip connections to consider large scale
context, and further operated reversely to propagate small
features scattered by increasing the dilation rate. Both, our
model and ResDUnet provide similar results for small le-
sions, since both of them are highly efficient in capturing
small context information, through the integration of resid-
ual blocks which propagate the low fine details through the
utilization of short skip connections. To illustrate more, Ta-
ble 2 shows the dice similarity measure calculated for large
and small lesions in both our model and ResDUnet. large
lesions are those of an area more than 5mm and small le-
sions are those of an area less than or equal to 5mm. From
the table we can see that both models provide comparable
results in capturing the small lesions. However, our model
has outperformed in capturing large lesions. The two types
of lesions demonstrate our model’s robustness to segment
lesions with variable size and shape.

Table 3 shows the performance gains achieved when
each module is integrated into our model. It is observed that
adding residual units has increased the model performance.
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Figure 5. A visual comparison for the segmentation of COVID-19 infection from three models. The first row contains large infected
region. The second row contains small infected region. Predicted region is demonstrated in red and experts annotation in white. Our model
outperformed U-net and ResDUnet, in large and small infected regions.

Method DSC JC F-score
Basic U-net 77.2 75.4 79.4
with RD 79.3 77.1 83.5
with RD and SE 80.5 78.6 86.2
with DC module 85.3 83.9 90.6

Table 3. Statistical results achieved after adding each module; RD:
residual block; SE: squeeze and excitation; DC: dilated convolu-
tion)

This enhanced performance is due to the presence of iden-
tity short-cut mapping in each residual block which allows
the flow of information from initial layers to last layers and
reduces the problem of vanishing and exploding gradients.
When each residual block was integrated with SE unit, the
model performance was further enhanced by 1.2%. The SE
unit has contributed in increasing the feature representation
power through excitation operation and suppressing less im-
portant information through squeeze operation. The model
performance was further boosted by 4.8% when cascaded
dilation was added along the encoding path. This is due to
the large and variable receptive field integrated in the cas-
caded scheme to capture the multiscale features.

Worth mentioning, for the benefit of improving the seg-
mentation accuracy, our model has slightly increased the
number of trainable parameters with a reasonable aspect.
The trainable parameters in the basic U-net, ResDUnet and
our model are 4.1, 4.3, and 4.5 million, respectively.

6. Conclusion

In this paper we present a robust deep learning segmen-
tation model, that outperformed the basic U-net and Res-
DUnet models by 8.1% and 1.9%, respectively, with a slight
increase in the network parameters. Despite the challeng-
ing nature of COVID-19 infected lesions with low contrast
and variability in shape and size, our proposed model has
achieved a dice similarity measure of 85.3% in reference
to experts delineations. This outperformance is achieved
by integrating innovative deep learning modules such as
residual blocks, squeeze and excitation units, and dilated
convolution. Instead of using U-net basic building blocks,
we added residual blocks to contribute to feature propa-
gation, helping the flow of low fine details throughout the
network without the need for deep architecture. Also, af-
ter each residual block, squeeze and excitation unit con-
tributed in removing redundant information, exciting infor-
mative features, and strengthening the low-level presenta-
tion. Moreover, to alleviate the variation between encoder-
decoder features, we proposed the DC module that uses cas-
caded dilated convolution. This module maintained the spa-
tial resolution of the features and helped capture multi-scale
context information to tackle the problem of variability in
shape and size of infected lesions. Each module utilized
in our model had contributed in improving the model seg-
mentation accuracy and robustness. For future work, we in-
tend to overcome the problem of imbalanced data through
investigating and further modifying the loss objective func-
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tion utilized for segmentation. Moreover, we aim to build a
more generalizable segmentation model designed for multi-
ple imaging modalities with robust segmentation accuracy.
Finally, to practically contribute in clinical domain we will
focus on designing more simplified model with less train-
able parameters.
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