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Abstract

With the ever-increasing cases of the Covid-19 pan-
demic, it is important to leverage deep learning methods to
create tools that can aid in relieving the pressure that is put
on the limited resources in most developing countries. In
this work, we propose a hierarchical classification system
for the classification of Covid-19 from Chest X-Ray (CXR)
images following a recent proposal of massive use of this
modality instead of CT. The system composed of multiple bi-
nary classifiers outperforms a tailor-made multi-class clas-
sifier COVID-Net. We also show that using well-known es-
tablished deep learning frameworks combined with a global
attention mechanism outperforms the baseline COVID-Net
specifically designed for the classification of Covid-19 from
CXR images. Our method shows approximately a 4% im-
provement in the sensitivity to Covid-19 detection from 91%
of COVID-Net to 96%. Using popular networks with the
possibility of cross-domain transfer learning ensures that
the designing and training times are reduced. Furthermore,
well-established frameworks can be faster adapted into an
application in clinical practice.

1. Introduction

The novel COVID-19 or SARS-Cov-2 is an infectious
disease that has been declared as a pandemic by WHO in
March 2020 [36]. First reported in Wuhan, China at the end
of 2019 [12], it has had devastating effects on human life
and the economy. Many nations are still combating its pro-
liferation and are facing a shortage of resources. The cru-
cial step to control and stop Covid-19 is to detect infected
patients effectively and impose immediate isolation.

Currently, Reverse Transcription Polymerase Chain Re-
action (RT-PCR) or gene sequencing for respiratory or
blood specimens are the standard screening methods for
COVID-19 [30]. However, these methods have a long
turnaround time and are not sufficient when there are expo-

nential increases in daily cases. The effectiveness of chest
radiography imaging (X-Ray, Computed Tomography (CT)
imaging) for the detection of infection[34, 15, 23] makes it
a suitable alternative in the screening process and for the
design of adapted therapy.

A Chest X-Ray (CXR) image affected by COVID-
19, shows patchy or diffuse reticular-nodular opacities
and consolidation, with basal, peripheral and bilateral
predominance[8]. The major abnormalities observed in CT
images are ground-glass opacity, consolidation and inter-
lobular septal thickening in both lungs[32]. Fig.1 shows a
sample CXR image that has been annotated by an expert ra-
diologist to show the primary regions for diagnosis making.
Though CT is a more precise modality for decision mak-
ing by medical experts[25], CXR images are useful, specifi-
cally in low-income countries as they are cheaper and more
widely available, and XR examinations of patients can be
done with a portable equipment. Furthermore, patients with
acute respiratory syndrome are difficult to manipulate to be
placed into CT scanners and is easier with XR equipment.
Finally, CXR images enable rapid triaging as they can be
completed much faster than a CT scan. With a high vol-
ume of patients, this is essential to relive pressure on the
available resources.

In CXR, Covid-19 syndrome and atypical pneumonia ap-
pear similar and experts cannot always make distinction just
by observing the CXR image[25]. Hence the the automatic
classification on images with Deep Neural Networks (DNN)
is necessary not only for massive screening, but also for
highlighting specific patterns on this modality.

Recent medical studies [21, 22, 29] amongst others have
attempted to develop specific Deep Neural architectures for
the automatic detection of COVID-19 on CXR images and
some open datasets have become available for research pur-
poses [5, 17, 7]. The main contribution of our work are as
follows:

• We define a set of hierarchical rules to create a multi-
level classification pipeline for the three classes -
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Figure 1. Sample annotation of Chest X-Ray (CXR) image that
has been affected with the regions showing presence of pneumonia
that could be Covid-19 as annotated by a radiologist

Normal (Healthy), Pneumonia and COVID-19. The
pipeline is composed of binary classifiers which
proved to be more efficient than a multi-class classi-
fier on medical images [1].

• We propose using well-known networks with robust
open-source components and complementing them
with attention mechanisms instead of tailor-made net-
works for Covid-19 detection. We believe that such
an approach facilitates the deployment of AI tools in
clinical practice.

• We present detailed results of all the binary classi-
fiers that have been tested and compared them with the
baseline result of the tailor-made network COVID-Net
[29].

The rest of the paper is organized as follows. In section
2 we present recent studies on the classification of CXR im-
ages in COVID-19 studies. Our hierarchical classification
pipeline with an attention mechanism is presented in section
3. In section 4 results are presented and discussed. Finally,
section 5 concludes the work and presents its perspectives.

2. Related Work
Deep learning approaches have been widely used to

identify different thoracic diseases, including pneumonia
[33, 28, 31] due to the availability of large-scale an-
notated benchmarking datasets like CheXpert [13] and
ChestXray14 [31] to name a few. To design a specific ar-
chitecture tailored for Covid-19 detection, a large dataset is
required. Unlike other diseases, for a relatively new disease
like Covid-19, the availability of sufficiently large datasets
is scarce e.g. COVID-19 Image Data Collection [7] and Ac-
tualMed COVID-19 Chest X-Ray Dataset Initiative[5].

Many works like [20, 14, 22, 3] have tested various trans-
fer learning strategies to improve the effectiveness of the

approach in classifying the CXR images as either healthy,
pneumonia or COVID-19 cases. The different approaches
that have been adopted are bag of visual words[16], en-
hanced feature selection methods like Cuckoo Search Op-
timization algorithms (CS) [35] and self-organization maps
(SOM) [19] to name a few.

Recently, the COVIDx Chest X-Ray dataset [29] was
made available as an open-access benchmark dataset, which
contains one of the largest numbers of publicly avail-
able COVID-19 positive cases under the COVID-Net Open
Source Initiative [footnote cite]. COVID-Net [29] was also
proposed as the benchmark network on COVIDx achiev-
ing 91% sensitivity for the Covid-19 detection. In addition
to highly imbalanced classes of Normal(healthy), Pneumo-
nia and Covid-19, another challenge with the datasets are
that generally with CXR images atypical pneumonia is very
similar to Covid-19 making these two classes not easy to be
separated by classifiers. Next, the COVID-Net is a tailor-
made Deep CNN for multi-class classification on CXR.
There is no guarantee that this architecture is optimal for
the large amount of newly coming data. Hence our claim is
that one can build an efficient classification framework from
already available architectures that have been well-studied
in large scale tasks combined with popular attention mech-
anisms. Hence in the following, we propose our classifica-
tion framework and compare it on COVID-Net on the same
benchmark - COVIDX dataset.

3. Hierarchical Covid-19 classification pipeline
The proposed pipeline consists of multiple binary clas-

sifiers trained to distinguish between the different classes
present in the dataset. It combines a form of ensemble meth-
ods of majority voting and a set of defined hierarchical rules
to create a multi-level classifier instead of a single multi-
class classifier. For imbalanced datasets, a low-populated
class might not be well modelled by a multi-class classifier,
which is typically the Covid-19 class in this case. Conse-
quently, a multi-class hierarchical pipeline was designed as
shown in Fig 2. The pipeline consists of four trained binary
classifiers:

• Classifier 1: Normal v/s Positive. The Normal is the
healthy lung images and Positive are the images with
either Pneumonia or COVID-19.

• Classifier 2: Normal v/s COVID-19

• Classifier 3: Normal v/s Pneumonia

• Classifier 4: Pneumonia v/s COVID-19

Instead of learning to distinguish three classes, the binary
classifiers are fine-tuned to distinguish between two classes
at a time. The following rules have been used to make the
final prediction for a given image:
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Figure 2. The proposed Multi-level classification pipeline of bi-
nary classifiers for- Covid-19, Pneumonia and Normal classes

• If Classifier 1 predicts a normal class- then Classifiers
2 and 3 are tested. If the majority of these three classi-
fiers predicts normal then the result is given as normal.

• If Classifier 1 predicts a positive class or there is no
majority vote as Normal from the classifiers 1, 2 and 3
then, Classifier 4 is tested. Its answer is either Pneu-
monia or Covid-19. This decision is finally checked by
the majority vote between classifiers 2,3 and 4.

The impact of an undetected Covid-19 is much higher
due to the adverse effects of infection progression and the
risk of transmission. In a similar classification problem of
Alzheimer’s disease from sMRI images [2] observe that ma-
jority voting works better than other schemes and hence we
have chosen it to be a part of our rules. The first rule is
focused on ensuring that false-negative error i.e. the predic-
tion of a case as normal is greatly reduced. The second rule
is aimed at learning the distinction between the Pneumonia
and Covid-19 classes.

3.1. CNN architectures used for COVID-19 classifi-
cation

Nowadays there exists a variety of well established Deep
Neural Network frameworks that are used for classification
purposes. These networks have been tested across different
domains and on large-scale datasets[10, 26, 24].

[21] observe that pre-trained networks that have been
trained on ImageNet [9] show good performance when
adapted for CXR images. This strategy is called Cross-
domain transfer learning, as the target domain, X-Ray

images strongly differ from the source domain (ImageNet)
comprising general-purpose colour images. In the previous
work [1], it was shown that intra-domain transfer, when re-
alized between different modalities of the medical images
on the same subjects, outperforms the cross-domain knowl-
edge transfer. Unfortunately, different imaging modalities
are generally not available for Covid-19 screening. There-
fore, cross-domain transfer learning with pre-trained net-
works on a very large (ImageNet) database as stated in [21]
is used in the actual work.

A tailor-made network requires a large dataset to train
and the architecture needs to be validated thoroughly before
it can be adopted for a real-world application. Using well-
known network architectures makes their adoption easier
and can be trusted more as they have been widely assessed.
We aim to have easily fine-tuned and better-performing net-
works to ensure that the training process is faster than cre-
ating a network from scratch. ResNet50 [10] and Incep-
tionV3 have been chosen [26] over other popular networks.
The choice of the networks is based on their better perfor-
mance on the ImageNet dataset. These networks are ar-
chitecturally different to check which works better on CXR
images. They have lesser amount of parameters to train and
need lower computational power when compared to their
deeper variants or the VGG networks [24].

Further, CNN classifiers are designed by fixing several
hyperparameters. A part of these parameters constitutes
the number of filters for each convolutional layer. It is ex-
tremely difficult to perform a full search in this parameter
subspace to select an optimal number of filters to train for
each convolutional layer. Another way of network opti-
mization consists in the weighting of feature channels re-
sulting from convolutions thus giving different importance
to each filter. This mechanism is called ”global attention” as
the importance of a channel is assigned globally to all fea-
tures in it. We use Squeeze-Excitation (SE) [11] based at-
tention to make the pre-trained networks more robust to the
dataset. Furthermore, in the classification task with such an
importance as Covid diagnosis, the information support for
medical decision has to be endorsed on only well-studied
approaches. SE mechanism is a well studied mechanism
with available software to add to any CNN for channel- wise
weighting.

3.1.1 Global Attention based on Squeeze-
Excitation(SE) Block

In a CNN the tensor that is computed at a 2D-convolutional
(conv) layer is of a dimension of (H×W×C) where H×W
is the spatial dimension of the feature map at the layer and C
is the number of channels each of them resulting from a con-
volution of the input with one of the filters of the layer. The
Squeeze-Excitation (SE) [11] based attention module can be
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Figure 3. Squeeze-Excitation (SE) Block, H×W - the height and
width of the feature map and C - channels at the layer

used in tandem with any convolutional layer to weight each
channel in the conv layer to remove redundancy. Channels
with a low contribution to the output will have lower atten-
tion. The overall framework for the SE block is summarized
by Fig 3.

The SE-attention block consists of the following

• Squeeze Module: It squeezes the information of each
of the feature maps from the previous convolution
layer to a singular value per channel using Global Av-
erage Pooling (GAP) Eq 1 where ac(i, j) is the activa-
tion of that particular position (i, j) in a channel fea-
ture map. Here i, j range over the dimensions H and
W of the map respectively. Input feature maps of size
(H ×W ×C) are reduced to a tensor of (1× 1×C).

zc =
1

H ×W

i=1∑
H

j=1∑
W

ac(i, j) (1)

• Excitation Module: It learns the adaptive scaling
weights for the channels during training. The excita-
tion module is a Multi-Layer Perceptron (MLP) com-
prised of a single hidden layer with a reduction factor
r. Thus, the input layer to the MLP has C neurons,
the hidden layer with C

r neurons and the output with
C neurons. The output layer has a sigmoid (Eq 2) ac-
tivation in order to scale the weights between 0 to 1 to
get in the tensor of size (1× 1× C).

sig(x) =
1

1 + e−x
(2)

• Scale Module: The scaling weights are applied to the
feature maps obtained from the convolutional layer by
an element-wise multiplication scaling each (H ×W )
map with the corresponding scaling weight.

The SE based attention has a very low computation bur-
den and would not affect the training time. It is a simple
but effective attention mechanism and Fig 4 & 5 shows the
scheme of the placement of the SE blocks which were added
for the ResNet50 and InceptionV3 networks. In our case,
the SE block is added only with the last residual and incep-
tion blocks.

Figure 4. Schema of the original ResNet residual block (left), the
residual block after adding the SE Block (right)

Figure 5. Schema of the original Inception block (left), the incep-
tion block after adding the SE Block (right)

4. Results & Discussion
In this section we will briefly present the COVIDx

dataset, explain the training of our hierarchical classifiers
and present the results in detail.

4.1. Dataset Details

We have used the COVIDx dataset[29] that consists of
13,975 Chest X-Ray (CXR) images across 13,870 patient
cases. The dataset has been proposed as an open-access
benchmark dataset that was created by combining five other
publicly available data repositories namely, a) COVID-19
Image Data Collection [7], b) Figure 1 COVID-19 Chest X-
ray Dataset Initiative [6], c) ActualMed COVID-19 Chest
X-ray Dataset Initiative, established in collaboration with
ActualMed[5], d) RSNA Pneumonia Detection Challenge
dataset, which used publicly available CXR data from [18],
and e) COVID-19 radiography database [17]. Fig 6 illus-
trates different images taken from each of these datasets to
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Figure 6. Sample images from COVIDx dataset from multiple repositories, 1. COVID-19 Image Data Collection [7], 2. COVID-19
Chest X-Ray Dataset Initiative[6], 3. RSNA Pneumonia Detection challenge dataset[18], 4. ActualMed COVID-19 Chest X-Ray Dataset
Initiative[5], 5. COVID-19 radiography database[17]

create the final COVIDx dataset.
The COVIDx dataset contains three classes: Normal (X-

Rays that do not contain Pneumonia or Covid-19), Pneumo-
nia (X-Rays that have some form of bacterial or viral pneu-
monia, but no Covid-19) and Covid-19 (X-Rays that are
Covid-19 positive). The method for the creation of the offi-
cial dataset has been summarized in 1. The COVIDx dataset
has two versions a. Full COVIDx b. Official COVIDx that
differ only in the test set. The official COVIDx is used by
the authors to report the performance of their network. Dur-
ing the creation of the dataset, some images of the COVID-
19 radiography database [17] were unavailable. Conse-
quently, the final distribution of the dataset varies from the
official figures and is shown in Fig 7. In our case, the train-
ing set has approximately 1.11% lesser samples of Covid-19
images than the official COVIDx dataset. But, the test set of
official COVIDx and our case are the same. Further, a 90-
10% validation split has been made for network training.

4.2. Training Procedure

In this section we briefly present the data pre-processing
and the parameters that have been used for network training.

1https://github.com/lindawangg/COVID-
Net/blob/master/docs/COVIDx.md

4.2.1 Data pre-processing

The COVIDx dataset consists of 2D images in the png and
jpg formats. As the dataset is a collection of images from
multiple sources images do not have the same resolution.
Therefore we scaled them to fit the input resolution of the
network under consideration. Firstly a uniform scaling of
each image accordingly the smallest original dimension was
performed followed by central crop. The aspect ratio of
the original images was thus preserved. ResNet50 has an
input size of (224×224), InceptionV3 has (299×299) and
Covid-Net has (480 × 480). Furthermore, to mitigate the
imbalance in the dataset, standard augmentations have been
applied that would not change the nature of the image and
would be the most natural for CXR images like - translation
( ± 10%), rotation (± 10%) and zoom (± 15%).

4.2.2 Network Training details

For the ResNet50 [10] and InceptionV3 [27] pre-trained on
ImageNet the original classification layers were replaced by
an output layer of size 2 to build the binary classifiers. The
training was done with Stochastic Gradient Descent with
momentum (0.9 momentum coefficient) and after a grid
search on {1e-6, 1e-5, 1e-4, 1e-3} learning rate of 1e-4 was
chosen. The batch size of 16 was found to be the most ap-
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(a) Full COVIDx dataset distribution

(b) Official COVIDx dataset distribution

Figure 7. Class distribution of COVIDx dataset.

Normal Covid-19
Train 6383 1697
Val 1583 437
Test 885 288

Table 1. Dataset details for Normal/Covid-19 classification. Val -
Validation set

propriate with the grid search on {4, 8, 16, 32}. The loss
was chosen as binary cross-entropy. All the layers in the
networks were retrained on our dataset, here we used previ-
ous finding from [4] on better performances when not freez-
ing layers, and fine-tuned for the ResNet50 for 50 epochs
and InceptionV3 for 80 epochs.

Also, recently a binary version of Covid-Net called the
COVID-Net-CXR-2 (Covid-Net2)1 was made available as
an open-source release that performed the Covid-19 posi-
tive/negative (normal + pneumonia) classification. This net-
work has been fine-tuned for the task of Normal/Covid-19
classification to compare its performance to ResNet50 and
InceptionV3 networks. Covid-Net2 has been fine-tuned for
10 epochs on our dataset.

4.3. Performance Evaluation

To set up a baseline, all the networks were initially
trained for the binary classification of Normal vs Covid-19
classes. The best performing networks have been trained to
create the multiple binary classifiers. Finally, the hierarchi-
cal classifier was created and compared to baseline Covid-

Figure 8. ROC curves and AUC of networks for Normal/Covid-
19 classification. ROC: Receiver Operating Characteristics, AUC:
Area Under the Curve

Net [29]. The following sections present the results in de-
tail.

4.3.1 Covid-19 vs Normal Lung Classification

We have used the full COVIDx dataset to train the networks
as shown in Table 1. A 90-10% train-validation split was
used to tune training parameters. The results for the differ-
ent networks trained for the binary classification of Covid-
19 vs Normal are given in Table 2. Covid-Net performs
better than the baseline networks of ResNet50 and Incep-
tionV3 pre-trained on ImageNet achieving a better balanced
accuracy (BAcc). However, InceptionV3 has a better sen-
sitivity score of 88.5% when compared to the 84.4% of the
COVID-Net for the Covid-19 class. This is essential as mis-
classification of the Covid-19 would have more impact than
a misclassification of the normal class.

The performance of the pre-trained networks improves
by adding the global attention block. InceptionV3 + SE
achieves the best Balanced Accuracy (BAcc) of 93.4%
and also has the highest sensitivity score of 89.6% for the
Covid-19 class. Though ResNet50 + SE has the highest ac-
curacy and sensitivity for the Normal class, the sensitivity
for the Covid-19 class is lower and hence the BAcc score is
low.
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Architecture Class PPV Sensitivity Accuracy BAcc
Normal 0.931 0.945ResNet50 Covid-19 0.822 0.785 0.905 0.865

Normal 0.962 0.932InceptionV3 Covid-19 0.810 0.885 0.921 0.909

Normal 0.952 0.999Covid-Net Covid-19 0.996 0.844 0.961 0.921

Normal 0.955 0.999Resnet50 +
SE Block Covid-19 0.996 0.854 0.963 0.926

Normal 0.963 0.989InceptionV3 +
SE Block Covid-19 0.962 0.896 0.962 0.934

Table 2. Results for per class and dataset metrics for different networks for the binary classification of Normal and COVID-19 classes. PPV
- Positive Predicted Value, BAcc - Balanced Accuracy, SE - Squeeze-Excitation

The Receiver Operating Characteristic (ROC) curves and
the Area Under the Curve (AUC) values for each network
is shown in Fig 8. All the networks show a similar per-
formance. The ResNet50 + SE which achieves the highest
AUC score of 0.996. Both COVID-Net and InceptionV3 +
SE have a similar but slightly lower AUC of 0.992. The
simple InceptionV3 network has the lowest AUC and has
a lower discriminative ability when compared to the other
networks.

Comparing the models it is seen that the baseline Incep-
tionV3 has better Covid-19 sensitivity. By adding a simple
attention block the performance of both the pre-trained net-
works improves and is better than the tailor-made COVID-
Net.

4.3.2 Hierarchical Classification

Both the pre-trained networks with attention blocks show
a better performance on the binary classification of Covid-
19/ Normal. They have been trained to create the different
classifiers proposed in Section 3. The results for the three
classification tasks of 1) Normal vs Positive (Pneumonia +
Covid-19), 2) Normal vs Pneumonia and 3) Covid-19 vs
Pneumonia are presented in Table 3 for the two networks
on the full COVIDx dataset (Fig 7(a)). InceptionV3 + SE
has better BAcc of 94.3% and 91.9% for classifiers 1) and 3)
when compared to ResNet50+SE for the class with the pres-
ence of disease. ResNet50 + SE has a better BAcc score
for the classification of Normal/Pneumonia of 93% and a
higher sensitivity of 95% for the normal class. However,
the aim is to have a better prediction for the Pneumonia
class (disease), for which the InceptionV3 + SE classifier
has a higher sensitivity. Considering these factors, the In-
ceptionV3 + SE network was finally chosen to build the Hi-
erarchical classification.

The results for COVID-Net are referenced from [29] and
were reported on the official COVIDx dataset (Fig. 7(b)).
The results for the Inception + SE networks in Table 4 are
also reported on the official COVIDx dataset. The confu-

Figure 9. Confusion matrix for (a) Multi-class Inception + SE, (b)
COVID-Net, (c) Multi-level binary classifiers Inception + SE, on
the smaller COVIDx test set of 100 samples

sion matrix for each network is shown in Fig 9. Multi-
class Inception + SE has a performance lower than the base-
line COVID-Net that has been designed specifically for this
dataset. The network only has 84% sensitivity for Covid-
19. In comparison, the hierarchical classifier comprising
four Inception + SE binary classifiers shows an overall im-
provement over COVID-Net. Even with a lower amount of
training data, we obtain better results on the same test set.
From the matrix in Fig 9, the highest error Inception + SE
makes is the misclassification of Covid-19 as Pneumonia.
This is due to the similarity in the features of the two classes
and the presence of a large number of pneumonia samples
in the dataset.

5. Conclusion
In this work, we presented a hierarchical classification

pipeline for the detection of Covid-19 from Chest X-Ray
(CXR) images. CXR images are a low cost and easily
accessible modality when compared to CT imaging. The
pipeline consists of a combination of binary classifiers of
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Architecture Class PPV Sensitivity Accuracy BAcc
Normal 0.889 0.958
Positive 0.954 0.880 0.919 0.909

Normal 0.942 0.950
Pneumonia 0.925 0.912 0.935 0.930

Covid-19 0.959 0.892

ResNet50 +
SE Block

Pneumonia 0.950 0.981 0.949 0.937

Normal 0.935 0.933
Positive 0.901 0.904 0.923 0.919

Normal 0.915 0.901
Pneumonia 0.934 0.942 0.926 0.9215

Covid-19 0.963 0.903

InceptionV3 +
SE Block

Pneumonia 0.954 0.983 0.956 0.943

Table 3. Results of the metrics for the training of the ResNet50 and InceptionV3 networks with the added SE Block for the different binary
classifiers of the Multi-level classification pipeline. Positive - Pneumonia + COVID-19 classes, PPV - Positive Predictive Value, BAcc -
Balanced Accuracy

Architecture Sensitivity PPV
Norm Pneu COVID-19 Norm Pneu COVID-19

InceptionV3 + SE
(Multi-class) 0.910 0.880 0.840 0.875 0.822 0.944

COVID-Net 0.950 0.940 0.910 0.905 0.913 0.989
Multi-Level Classifier

InceptionV3 + SE
(Binary Classifiers)

0.980 0.950 0.960 0.951 0.950 0.990

Table 4. Classification metrics on the official COVIDx test set of 100 samples for the networks. Norm - Normal, Pneu - Pneumonia

popular CNN networks that have been trained using cross-
domain transfer learning. The networks have been modified
with a low computation global attention block and the final
results show an improvement from 91% to 96% for the sen-
sitivity of the Covid-19 class when compared to the tailor-
made baseline multi-class classifier network COVID-Net.
In the perspective of our work, we will focus on explana-
tions of the network decisions with methods we are devel-
oping now to make the networks trustworthy for medical
practitioners.
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