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Abstract

With the massive damage in the world caused by Coro-
navirus Disease 2019 SARS-CoV-2 (COVID-19), many re-
lated research topics have been proposed in the past two
years. The Chest Computed Tomography (CT) scan is the
most valuable materials to diagnose the COVID-19 symp-
toms. However, most schemes for COVID-19 classification
of Chest CT scan are based on single slice-level schemes,
implying that the most critical CT slice should be selected
from the original CT volume manually. In this paper, a sta-
tistical hypothesis test is adopted to the deep neural network
to learn the implicit representation of CT slices. Specifi-
cally, we propose an Adaptive Distribution Learning with
Statistical hypothesis Testing (ADLeaST) for COVID-19 CT
scan classification can be used to judge the importance of
each slice in CT scan and followed by adopting the non-
parametric statistics method, Wilcoxon signed-rank test, to
make predicted result explainable and stable. In this way,
the impact of out-of-distribution (OOD) samples can be sig-
nificantly reduced. Meanwhile, a self-attention mechanism
without statistical analysis is also introduced into the back-
bone network to learn the importance of the slices explic-
itly. The extensive experiments show that both the pro-
posed schemes are stable and superior. Our experiments
also demonstrated that the proposed ADLeaST significantly
outperforms the state-of-the-art methods.

1. Introduction

With the rapid growth of the deep learning approach re-
cently, the performance of many research fields has been
boosted with deep learning. One essential application
among them is medical image analysis based on deep learn-
ing. The chest Computed Tomography (CT) scan is an ef-
fective way to trace the symptoms of Coronavirus Disease
2019 SARS-CoV-2 (COVID-19). However, both the analy-
sis and diagnosis of CT scan series require an experienced

Figure 1: The visualized heatmaps based on Eigen-
CAM[20] of the proposed adaptive distribution learning
with statistical hypothesis test for a COVID-19 CT scan,
where (1) indicates the front slice, (2) the middle part of the
CT scan, and (3) the bottom slice.

doctor or expert in the related field. Unfortunately, it is
hard to meet this requirement in remote areas. An automatic
computer-aid diagnosis system for CT scan for COVID-19
is thus highly desired. In this paper, a explainable and ef-
fective model based on statistical test will be proposed for
COVID-19 CT scan classification, as an example in Fig.1.

The COVID-19 classification for CT scan is usually
treated as a particular case of the image/video recogni-
tion tasks. In the past decade, deep learning has achieved
state-of-the-art image recognition tasks compared to con-
ventional machine learning and computer vision tech-
niques. Similarly, deep learning-related schemes were
widely adopted in the medical image field. However, the CT
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(a)

(b)

Figure 2: Flowchart of the proposed (a) ADLeaST using implicitly statistical inference for deep learning and (b) the explicit
learning based on our CCAT for between- and within-slice-context context mining.

scan series is usually treated as a three-dimensional (3-D)
data volume, where the traditional convolutional neural net-
work (CNN) can only perform the two-dimensional (2-D)
convolutional operation on the image. 3-D convolution was
then adopted to tickle these issues [11][22][13][19]. How-
ever, the space and computational complexity of 3-D con-
volution is significantly higher than the 2-D one, and there-
fore high-end hardware is necessary. Another critical issue
is that the large-scale dataset is the power source of deep
neural networks. The insufficient training samples lead to
a fatal overfitting issue in training a deep neural network,
especially in 3-D convolutional neural networks.

Compared to the 2-D information-only approach (single-
slice-based), the symptoms of COVID-19 might present at
different depths (slice) for different patients, as suggested
in [14]. Fortunately, a large-scale 3-D-shaped CT scan se-
ries, termed COV19-CT-DB, has been released in [9], in-
cluding 5, 000 3-D CT scans with more than 1, 000 patients.
Compared to the well-known traditional 2-D CT dataset for

COVID-19 classification [26], the COV19-CT-DB contains
3-D information providing more semantic features to help
the diagnosis of COVID-19 symptoms. The conventional
COVID-19 classification approach is usually based on a sin-
gle slice-level approach [15][7][4][3][6][25][1]. It is hard
to extend those 2-D models to deal with the 3-D (i.e., CT
scan series) information without significant revision. The
classification of COVID-19 based on a single slice can be
treated as a conventional image recognition issue, as the
suggestion in [7]. However, the performance usually re-
lies on the large-scale training set, whereas medical data
such as CT scans are relatively hard to collect. Therefore,
several recent schemes are focused on dealing with small-
scale issues. In [4], for instance, self-supervised learning
was proposed to improve classification performance for a
small-scale COVID-19 CT scan dataset. Other than the is-
sue caused by the small-scale training set, the pixel-level
annotation is very tedious and time-consuming. Therefore,
recent research schemes were moved to focus on developing
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a weakly-supervised learning approach to predict the pixel
annotation (e.g., semantic segmentation) based on image-
level annotation. In [6], weakly-supervised learning was in-
troduced to tickle insufficient training samples and reduce
the annotation requirements. However, the performance of
those single slice-level models is restricted since the criti-
cal slice of a CT scan should be extracted by experienced
experts.

In [10][12], the proposed approach can alleviate the
catastrophic forgetting problem when another type of
dataset related to the target disease has been used as the
new training set. However, the 2-D and 3-D information are
significantly different, implying that the performance for 3-
D data with the model learned from 2-D data might not
be promising. The CT scan-level information provided in
COV19-CT-DB makes it hard to perform these existing sin-
gle slice-level schemes to 3-D CT scan-level directly with-
out significant revision. Recently, several schemes were
focused on CT scan-level (3-D information) directly. In
[22] adopted the multiple image-level CNNs to aggregate
the predicted result of each CT image in a 3-D CT scan,
while the 3D-CNN is directly adopted in [13] to extract the
cube-like feature from a whole 3-D CT scan.s Both meth-
ods need considerable computational and space complexity
to meet the model ensemble and 3-D convolution require-
ments. In [23], weakly-supervised learning was adopted,
as a suggestion in [6], to achieve lesion localization with
classification annotation only based on an improved 3-D U-
shape Network (U-Net). In [19] and [9], the recurrent neural
network (RNN) and long short-term memory (LSTM) net-
work were proposed to integrate the cross-slice information
to make the 3-D CT scan classification possible. However,
it is well-known that the RNN and LSTM are hard to paral-
lelize, leading to both training and inference time being hard
to accelerate. Furthermore, 3-D convolution is significantly
high computational complexity compared to 2-D convolu-
tion, leading to the fact that both training and inference costs
are expensive. In addition, the number of the slices of differ-
ent CT scan might be varied, implying that the input shape
might be changed in the data pipeline. However, the number
of the slices should be fixed in a 3-D convolutional neural
network, implying that dealing with the changing number
of the slices is impossible to tickle in a 3-D model.

Consider the computational complexity and effec-
tiveness of CT scan-level classification of COVID-19,
a maximum-likelihood estimation approach of Swin-
Transformer [17] with statistical analysis for single slice-
level classification is proposed to tickle this issue. A Convo-
lutional CT scan-Aware Transformer (CCAT) for CT scan-
level classification is also proposed to explore the slices’
importance in this paper in an explicit way. Finally, com-
prehensive experiments are conducted to verify the effec-
tiveness of the proposed two models.

The primary contribution of this paper is fourfold:

• To the best of our knowledge, the proposed Adap-
tive Distribution Learning with Statistic Test, termed
ADLeaST, is the first approach to integrate statistical
analysis and visual transformer. Our approach is sta-
ble, explainable, and effective for COVID-19 CT clas-
sification.

• Our ADLeaST is lightweight and without 3-D data
processing, making the computational and space com-
plexity relatively low.

• The proposed statistical hypothesis test can provide ex-
plainable prediction, beneficial for outlier removal and
important slices selection, as shown in Fig.1.

• We also propose an auxiliary model, CCAT, to fully
explore the context of slices and pixels by visual trans-
former, where the importance of each slice can be
learned without statistical analysis.

The rest of this paper is organized as follows. Sec-
tion II presents the proposed Adaptive Distribution Learn-
ing (ADL) and CCAT. In Section III, the superiority of the
proposed method over peer methods is demonstrated. Fi-
nally, conclusions are drawn in Section IV.

2. The Proposed Method
2.1. Overview

In this paper, two schemes are proposed based on the
2-D (i.e., single slice-level) and 3-D (i.e., CT scan-level) re-
spectively. In the first model, we propose to integrate CNNs
with adaptive distribution learning for COVID-19 CT scan
classification with a statistical test, termed ADLeaST, to ex-
plore the importance of each slice in implicitly statistical
analysis. To verify the effectiveness of our statistical anal-
ysis strategy, we also explore the full 3-D information of
a CT scan series based on context feature learning, termed
CCAT. In our experiments, we will discuss the stability of
the proposed ADLeaST and CCAT for the COVID-19 clas-
sification.

The flowchart of our ADLeaST model is illustrated in
Fig. 2 (a). During clinical diagnosis, radiologists determine
whether the chest CT image is positive (i.e., COVID-19) by
the ground-glass opacities symptoms [14]. Since COV19-
CT-DB [9] provides the raw slices for each CT scan, it is es-
sential to indicate which slice is beneficial for training and
testing phases. We proposed a novel adaptive distribution
learning for slices in CT scan to deal with this issue. Ini-
tially, the feature representation of the positive and negative
(i.e., COVID-19 and non-COVID-19) slices of the CT scan
extracted using deep neural networks are mapped to differ-
ent distributions. In this paper, Swin-Transformer [17] is
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adopted as our backbone network since it is one of the state-
of-the-art models for image recognition tasks. In this way,
the important slices can converge to the mean of the tar-
get distribution since these slices account for the majority
as well as their gradients show a similar direction. More-
over, the out-of-distribution (OOD) slices can be far from
the target distribution mean because the target loss function
is formed by randomly sampling from the target distribu-
tion. In this way, the impact of the performance of OOD
samples and outliers will be minimized. Finally, slice-wise
center crop and Wilcoxon signed-rank test [21] are adopted
to generate the samples for training and testing phases, in
which Wilcoxon signed-rank test can give meaning and ex-
plainable to the predicted results by statistical inference.

An auxiliary model is also proposed to learn the impor-
tance of slices from CT scans. The entire flowchart of our
CCAT is referred to Fig. 2 (b). The key components of the
proposed CCAT are the Within-Slice-Transformer (WST)
and Between-Slice-Transformer (BST). The details of the
proposed WST and BST will be described in the late sub-
section. In this WST, the training and testing CT scans Xt

and Xv will be resized to a fixed size in the spatial domain
as well as theLs slices will be sampled from the original CT
scan series Xct. Afterward, a conventional CNN (ResNet-
50 [5] is used in this paper) is adopted to extract the feature
maps f ∈ Rc×wf×hf , where wf and hf indicate the width
and height of c feature maps. The global averaging pooling
(GAP) is discarded to preserve the spatial information of
f . BST is adopted to explore how to aggregate the feature
maps to context-encoded feature vector fbst based on the
self-attention mechanism. While the Ls context-encoded
features are aggregated ft = [f0bst, f

1
bst, .., f

Ls
bst], the proposed

WST is then used to mine the context features between fea-
tures of slices fwst. Finally, a three-layer perceptron with
LeakyReLU activation is designed as the classifier.

2.2. Adaptive Distribution Learning

The proposed ADLeaST aims to tickle the slice impor-
tance selection using statistical analysis under the single-
slice-level framework. First, Swin-Transformer [17] is
adopted as the backbone network to have better feature rep-
resentational power. In Swin-Transformer, a hierarchical
feature representation was proposed starting from small-
sized patches and gradually merging neighboring patches in
deeper Transformer layers [17]. With these hierarchical fea-
ture maps, the Swin-Transformer model can conveniently
leverage advanced techniques for dense prediction. In this
paper, Swin-Transformer is adopted to generate the embed-
ding feature vector for positive and negative CT scan slices,
and followed by using a fully-connected layer to map their
discrete features to different distribution functions. Given
i−th input CT scan slice Xi ∈ Rc×w×h, Swin-Transformer
Block f , and fully-connected layer W, the generated ran-

dom variable Yi is:

Yi = W · f(Xi,Θ) (1)

where Yi ∼ N (µ, σ2) . The Swin-Transformer Block and
fully-connected layer will be trained jointly based on gra-
dient descent. Our ADLeaST aims to map the positive and
negative samples to different normal distributions to have
sufficient discriminant.

2.2.1 Normal Likelihood Function

Given a training set D = {(Xi, µi)}ni=1 and the corre-
sponding output samples y1, y2, ..., yn by (1). The proba-
bility density function of yi is defined as:

f(yi) =
1

σ
√

2π
e

(
− 1

2 ( yi−µiσ )
2
)

(2)

Then the likelihood function of the generated samples is as
follows:

L(y1, ..., yn;µi, σ
2) = (

1

σ
√

2π
)ne(−

1
2σ2

∑n
i=1(yi−µi)

2 )

(3)
Maximizing the log-likelihood function is equivalent to
minimize the distance between the generated samples yi
and the normal distribution for positive or negative settings.
This fashion can ensure that the target output sample yi can
converge to a normal distribution. To this end, we define the
log-likelihood function as follows:

Llog = −n
2
log2π − n

2
logσ2

−

(
1

2σ2

n∑
i=1

(yi − µi)2
)
∝ − 1

n

n∑
i=1

(yi − µi)2
(4)

The negative-side log-likelihood function Llog is propor-
tional to MSE (mean square error) loss in the normal dis-
tribution assumption. In order to map the feature represen-
tation of the input CT scan slices to be asymptotically nor-
mal, MSE loss is adopted in our ADLeaST. In this case, we
set the µ of negative sample is −1 while that of the positive
sample is +1, and the σ2 is empirically determined to be
0.2. Finally, the total loss of our ADLeaST will be given:

Lt =
1

nneg

nneg∑
i=1

(
yi − y(i)neg

)2
+

1

npos

npos∑
j=1

(
yj − y(j)pos

)2 (5)

where nneg and npos are the batch size sampled from nega-
tive and positive CT scan, y(i)neg and y(j)pos are sampled from
N (−1, 0.2) and N (1, 0.2) to prevent from overfitting the
distribution mean.
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2.2.2 Statistical Hypothesis Testing

In the inference phase, a slice-wise center cropping is pro-
posed to sample the middle part of the CT scan. With the
sampled slices, it is easy to generate the corresponding pre-
dicted values. The OOD (µ − 2σ, µ + 2σ) can be treated
as the outlier and will be removed. Afterward, Wilcoxon
signed-rank test [21] is used on the remaining samples to
determine whether the CT scan is COVID-19. The null hy-
pothesis and alternative hypothesis are denoted as follows:

H0 : Md ≤ 0 (Negative)

H1 : Md > 0 (Positive)
(6)

We reject the null hypothesis when p − value is less than
the significance level α, implying that there is significance
to verify the CT scan is with COVID-19 symptoms. The
best sample size is decided empirically, and α = 0.05 in
our experiments.

2.3. Convolutional CT-Aware Transformer

The critical slices and outlier removal are well-addressed
in our ADLeaST scheme. However, there might exist a slice
selection strategy without statistical analysis. That is, the
substantial slices can be determined from end-to-end archi-
tecture.

In this Section, a 3-D volume-based CNN is proposed,
termed CCAT, to tickle both the slice selection and COVID-
19 classification tasks. The slice importance can be learned
via the proposed Within-Slice-Transformer (WST) and
Between-Slice-Transformer (BST), as described in the fol-
lowing subsections.

2.3.1 Within-Slice-Transformer

Conventionally, the incoming of the Softmax classifier is
based on simply averaging the feature maps in spatial di-
mension (i.e., Global averaging pooling), in which the spa-
tial information is greatly reduced, leading to the fact that
the context information in spatial dimension is missing.

Assumed that the training sample Xij ∈ Rc×w×h is
sampled from the original CT scan series Xi. First, the sin-
gle slice-level feature map is extracted based on the CNN
backbone network (ResNet-50 [5] in this paper). Then, a vi-
sual transformer is adopted to fully discover the contextual
information of the extracted feature map, as the middle part
depicted in Fig. 2(b). Let the extracted feature map of j−th
slice of i − th CT scan be zij ∈ Rc×wz×hz , we re-arrange
the feature map to zTijk ∈ Rs×c, where s = wz/pz×hz/pz ,
pz is the size of k − th patch. As suggested in [2], the po-
sitional encoding matrix Pwk ∈ Rs×c is used to embed the
ordered information to the feature vector zTijk such that

zPEijk = zTijk + Pwk ∀k. (7)

Then, the within-slice-context features will be obtained via
the multi-head attention (MSA) with the residual connec-
tion.

zMSA
ijk = MSA(LN(zPEijk−1) + zPEijk−1),∀k, (8)

where LN stands for layer normalization. Since the key of
our CCAT is to explore the context of within and between
slices, spatial gated multi-layer perceptron (gMLP) [16] is
also adopted to capture the within-slice-context features, as
follows:

zgMLP
ijk = gMLP (CN(zPEijk−1),∀k, (9)

where CN is the channel-wise normalization.

2.3.2 Between-Slice-Transformer

Since the fixed length of the sampled slices of the CT scan
will significantly restrict the performance during the train-
ing phase, it is hard to know which slices are the most im-
portant. We randomly sample a set of slices from a CT scan
to learn their between-slice-context feature to solve this is-
sue. Let the extracted feature be zi of i−th slice of CT scan,
we collect a set of feature vectors as qi = [z0, z1, ..., zLs ],
where Ls denotes the number of sampled slices. The BST
will perform on the set of the extracted feature vectors as
follows:

qMSA
ik = MSA(LN(qPEik−1) + qPEik−1),∀k, (10)

where qPEik = qik + Pbk and k = 1, ..., Ls. The gMLP
variant will be given as follows:

qgMLP
ik = gMLP (CN(qPEik−1) + qPEik−1),∀k, (11)

Finally, the extracted between-slice-context feature qgMLP

will concatenate to a three-layer MLPs to classify the input
CT sub-volume (a set of slices). In this way, the importance
of each slice can be learned since our CCAT fully discover
the context features in both the within-slice and between-
slice dimensions.

3. Experimental Results
In this paper, the dataset used to evaluate the perfor-

mance of the proposed approach is COV19-CT-DB [9]. In
COV19-CT-DB, the training and validation set are parti-
tioned by [9], where the number of training and validation
CT scans are 1, 560 and 374, respectively. Since the annota-
tion of the test set provided in [9] is unavailable, the valida-
tion set provided in [9] is used to evaluate the performance
of the proposed methods.

In the training phase of our ADLeaST, the optimizer is
AdamW[18], the learning rate and weight decays are 1e−5
and 0.01, and the maximum epochs is 150. For training
CCAT, the optimizer used in this paper is Adam [8], the
initial learning rate is 1e − 4 and the learning decay is step
scheduler with step size 20. The total epochs is 100.
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3.1. Data pre-processing

3.1.1 ADLeaST

Due to some slices of CT scan might be useless for rec-
ognizing the COVID-19 (e.g., top/bottom slices might not
contain chest information), we treat this case as the OOD
samples. To reduce the influence of the outlier slices, se-
lecting the CT scan in the training phase is essential, as
well as in the evaluation phase. In the training phase, 40%
slices in the center of the CT scan are sampled, then aug-
mentation and normalization will be performed on these se-
lected slices. To empirically determine the best fraction of
the slices selection, we conduct a performance based on dif-
ferent sampling sizes, as illustrated in Fig. 3. As a result,
30% ∼ 60% sample sizes in the center of CT scan make the
best performance and therefore is suggested in our exper-
iments. Despite 20% sampling size achieves the best area
under the ROC curve (AUC), as shown in Fig. 4, a sufficient
number of the sampled slices is suggested in this paper to
ensure that the crucial slices can be preserved.

3.1.2 CCAT

Since the number of the slices in each CT scan is signif-
icantly different from each other, the number of the in-
put slices should be fixed to meet the requirements of our
CCAT. In this paper, the number of slice Ls = 16, and
the sampling interval Lfreq = 2. We randomly sample 16
slices in a CT scan to be input data of the proposed CCAT.
Meanwhile, the common data augmentation schemes, in-
cluding blurring, noise, random contrast and brightness, and
optical distortion, are adopted in the training phase. Note
that the random rotation and cropping are not performed on
each slice separately since it will lead to unstable of the con-
text of slices of a CT scan. Therefore, the random cropping
and rotation are performed on the sampled 3-D volume in-
stead of each slice. Each pixel value will be normalized to
be ranged [0, 1].

3.2. Performance evaluation

The evaluation metrics used in this paper are accu-
racy, sensitivity (SE), specificity (SP), macro-precision (P ),
macro-recall (R), and macro F1-score (F1). The perfor-
mance comparison between the proposed and other peer
methods is conducted in Table 1. It is clear that the pro-
posed ADLeaST and CCAT significantly outperform the
baseline model [9] and other state-of-the-art model [6].
Compare with the proposed ADLeaST and CCAT methods,
the CCAT slightly outperforms ADLeaST on the valida-
tion set because of the WS- and BS-transformer in CCAT
effectively extracting the context features from CT scan.
However, the performance of CCAT declines in testing data
since we did not carry out slices selected on CT scan. In

Figure 3: Performance comparison of the proposed
ADLeaST with different sampling sizes.

contrast, the proposed ADLeaST tackles the OOD issues
based on the proposed adaptive distribution learning, sub-
stantial slices selected, and Wilcoxon signed-rank test to
make the predicted result more stable and reliable. It is
noteworthy that the proposed ADLeaST has a very high
specificity on the validation set because the type-I error is
controlled in 0.05 (α), there is a lower probability of mis-
classifying the non-COVID-19 patient as COVID-19 since
it needs to be statistically significant in probability to reject
the null hypothesis in statistical hypothesis testing. In or-
der to explain the stability of the ADLeaST, we make some
examples of sequence samples generated by ADLeaST in
a CT scan. As shown in Fig. 1 and Fig. 5, the slices in
the center of a CT scan contains the precise structure of
the chest, making the model could capture the ground-glass
opacities or other symptoms of a COVID-19. Meanwhile,
the statistic test is beneficial to determine whether most CT
scan slices have this symptom by its probability, implying
the predicted result is more stable and reliable. Finally, a
model ensemble based on majority voting policy is adopted
to fuse the predicted results of ADLeaST and CCAT to fur-
ther improve the performance, as shown in the last row at
Table 1.

3.3. Visualization and Discussion

As we claimed that the proposed ADLeaST should be
able to robust to OOD cases, the visualization of the fea-
ture responses on slices is essential. Here, Eigen-CAM[20]
is utilized to visualize the feature response of COVID-19
CT scan for our ADLeaST, as shown in Fig. 6 in different
perspectives. The left and right sides of each sub-figure in-
dicate the feature responses of negative and positive slices,
respective. A higher response (more closer to the red one)
higher confidence the model will be. In Fig. 6(a), it can be
observed that the highest responses on the non-COVID-19
(left side) and COVID-19 with its corresponding symptoms
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Validation set Testing set3

Acc. SE SP P R F1 F1-C1 F1-NC2 F1

baseline [9] 0.724 0.388 0.952 0.731 0.688 0.700 0.5438 0.7962 0.6700
DenseNet201 [6] 0.732 0.455 0.947 0.714 0.703 0.708 – – –

Proposed ADLeaST 0.919 0.836 0.986 0.931 0.911 0.917 0.8057 0.9675 0.8865
Proposed CCAT 0.933 0.897 0.962 0.935 0.929 0.932 0.7080 0.9440 0.8260

Model Ensemble 0.941 0.885 0.986 0.947 0.935 0.939 0.8063 0.9684 0.8874
1 COVID; 2 NON-COVID; 3 Evaluated by the official benchmark in [9].

Table 1: Performance evaluation of validation and testing set of the proposed methods and other peer
methods in terms accuracy, sensitivity, specificity, macro-precision, macro-recall, macro-F1-score (results
in blue indicates the implemented ourselves).

Figure 4: ROC curve measured on the validation set of
the proposed ADLeaST with different testing sample sizes,
where the threshold is the significant level α.

(right side) are correctly located at the lung tissue, implying
that the proposed ADLeaST can learn the meaningful and
explainable feature representation from slices of CT scan.
Still, a few cases might be failures, as an example in Fig.
6(c), since the serious data OOD issue. When the number
of OOD samples is increased, The predicted results could be
disturbed, as shown in Fig. 6(b). However, the outlier could
be removed based on the proposed statistical hypothesis test
in the inference phase, as an example in Fig. 1. Further-
more, we compare the ordinary and failure cases in different
anatomical plane of chest CT scan based on 3-D volumetric
reconstruction in [24], as shown in Fig. 6(d)(e)(f). As the
result, our ADLeaST model could successfully capture the
meticulous ground-glass opacities symptoms of a COVID-
19 in both the Coronal and Sagittal planes.

3.4. Ablation study

In this subsection, the ablation study is conducted to ex-
plore the influence of each part of the proposed ADLeaST

ADL Train-S Test-S WSR-test F1
0.885

X 0.889
X 0.901

X X 0.896
X 0.875
X X 0.882
X X 0.889
X X 0.893
X X X 0.893
X X X 0.891
X X X 0.912
X X X X 0.917

Table 2: Ablation study of the proposed ADLeaST.

model. The key components in the ADLeaST are listed as
follows:

• The proposed adaptive distribution learning (ADL), or
linear classifier with cross-entropy loss [17].

• Sampling 40% slices in the center of CT scan during
the training phase.

• Sampling 40% slices in the center of CT scan during
the testing phase.

• With/Without Wilcoxon signed-rank test for inference.
The simple averaging strategy is adopted for the model
without Wilcoxon signed-rank test to obtain the pre-
dicted result.

The result is shown in Table 2, our proposed adaptive dis-
tribution learning with Wilcoxon signed-rank test for infer-
ence achieves the best result. The testing sampling is also
beneficial for all cases, showing that the inconsistent prob-
lem of the data distribution still remains. When the out-of-
distribution data is included in the training phase, the perfor-
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Figure 5: Time series charts of generated samples by the proposed ADLeaST and visualized feature response for the last
layer of Swin-Transformer based on Eigen-CAM[20] for negative CT scan.

(a) Ordinary (b) Out-of-distribution (c) Failure

(d) Horizontal plane (e) Coronal plane (f) Sagittal plane

Figure 6: Visualized feature response for the proposed ADLeaST based on Eigen-CAM [20] for COVID-19 CT slices in
(a) ordinary case, (b) OOD slices (no lung tissue presented), and (c) failure cases, where the left and right sides represent
non-COVID and COVID-19 CT scan slices. (d) to (f) are examples of different anatomical plane CT scans, where the left
and the right sides are ordinary and failure cases, respectively.

mance of the vanilla linear classifier with cross-entropy loss
and our adaptive distribution learning is similar because it
might not be appropriate to map the positive and negative
samples to the target distributions due to higher variants
in the training samples. However, it has an improvement
for Macro-F1 with adaptive distribution learning when both
training and testing sampling are taken. We can even use the
Wilcoxon signed-rank test to give meaning and explainable
to the predicted results.

4. Conclusion

This paper has proposed two deep neural networks for
two-dimensional (2-D) and three-dimensional (3-D) CT
scans for COVID-19 classification tasks. First, Adaptive
distribution learning with statistical hypothesis testing for
COVID-19 has been proposed to tickle the learning issue
for out-of-distribution slices carefully. A nonparametric

statistics with deep learning to make the predicted result
more stable and explainable, finding a series of slices with
the most significant symptoms in CT scan. Second, the
auxiliary 3-D visual transformer has also been proposed in
this paper based on the between- and within-slice-contexts,
termed as CCAT (Convolutional CT scan-Aware Trans-
former), to automatically explore the intrinsic features in
both slice and spatial dimensions. The visualization of the
CT scan of the proposed models also verified that the crit-
ical insights of the symptoms caused by COVID-19 should
be able to localize, as only CT scan-level annotation has
been given. The extensive experiments have demonstrated
that the proposed ADLeaST and CCAT significantly out-
perform the state-of-the-art methods for COVID-19 classi-
fication of CT scan. Our experiments also verified that the
model with a statistical hypothesis test could significantly
improve the stability and performance.
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