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Abstract

Coronavirus disease 2019 (COVID-19) pneumonia is as-
sociated with a high rate of pulmonary embolism (PE). In
patients with contraindications for CT pulmonary angiog-
raphy (CTPA) or non-diagnostic on CTPA, perfusion single
photon emission computed tomography/computed tomogra-

phy (Q-SPECT/CT) is a diagnosis option. The goal of this
work is to develop an Intelligent Radiomic system for the
detection of PE in COVID-19 patients from the analysis of
Q-SPECT/CT scans.

Our Intelligent Radiomic System for identification of pa-
tients with PE (with/without pneumonia) is based on a local
analysis of SPECT-CT volumes that considers both CT and
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SPECT values for each volume point. We present an hybrid
approach that uses radiomic features extracted from each
scan as input to a siamese classification network trained
to discriminate among 4 different types of tissue: no pneu-
monia without PE (control group), no pneumonia with PE,
pneumonia without PE and pneumonia with PE.

The proposed radiomic system has been tested on 133
patients, 63 with COVID-19 (26 with PE, 22 without
PE, 15 indeterminate-PE) and 70 without COVID-19 (31
healthy/control, 39 with PE). The per-patient recall for the
detection of COVID-19 pneumonia and COVID-19 pneumo-
nia with PE was, respectively, 91% and 81% with an area
under the receiver operating characteristic curves equal to
0.99 and 0.87.

1. Introduction

Coronavirus disease 2019 (COVID-19) pneumonia is as-
sociated with hyperinflammatory syndrome [8, 18] as well
as coagulation abnormalities and thrombosis [13, 10, 1],
highlighting a higher incidence of pulmonary embolism
(PE) [12, 21, 24, 11, 7] whose diagnosis can be challeng-
ing.

CT pulmonary angiography (CTPA) is the most widely
used imaging test for PE diagnosis [20, 27] but in patients
with contraindications (allergy to iodinated contrast, kidney
failure) or nondiagnostic on CTPA, another test is neces-
sary. The role of ventilation/perfusion SPECT/CT has de-
creased because in patients with COVID-19 the use of venti-
lation is discouraged due to the high risk of aerosol produc-
tion [27, 28]. Due to the need to adapt this test based on se-
curity standards required by the pandemic, perfusion single
photon emission computed tomography/computed tomog-
raphy (Q-SPECT/CT) is a diagnosis option in patients with
COVID-19 disease [3, 2, 106].

Q-SPECT/CT can be difficult to interpret, especially in
the presence of associated pulmonary infiltrates. Also a
main challenge in COVID-19 pathology diagnosis is the ac-
curate localization of the injured tissue inside the lung. As
a consequence, radiological diagnosis often need to be vali-
dated by two senior nuclear physicians. An artificial intelli-
gence system to support radiologists in the diagnosis of PE
through Q-SPECT/CT would improve the sensitivity of PE
diagnosis in cases of associated pneumonia, and reduce the
reading time of the test.

Early detection of COVID-19 from medical imaging has
risen great interest within the artificial intelligence com-
munity. However, to the best of our knowledge, currently
there are no published studies that use artificial intelli-
gence to improve the diagnosis of COVID-19 PE through
Q-SPECT/CT.

Existing methods addressing diagnosis of COVID-19
pathologies mainly focus on the detection of COVID-19

pneumonia from the analysis of a single modality (ei-
ther X-ray or CT scans). The majority of methods are
deep learning approaches based on well-known architec-
tures successful in other fields (like ResNet [14], U-net [17]
or EfficientNet [9], among others) that are adapted and fine
tuned for managing COVID-19 diagnosis.

Regardless of the imaging modality and architecture, the
usual approach is to use a classification scheme that pro-
vides a single diagnosis for each image/scan [19, 5]. Pa-
tients with severe COVID-19 have several lung pathologies
at the same time and a main challenge is its accurate local-
ization inside lungs. It follows that a classification scheme
yielding a single diagnosis from the analysis of the whole
image/scan might have some limitations for a successful
clinical use.

A single diagnosis based on analysis of whole im-
ages/scans might only detect the main pathology and ig-
nore the secondary ones which are also clinically relevant.
Another issue is the clinical interpretability of results. Al-
though it can be improved with the use of a heatmap (like
the gradient-weighted class activation mapping [23]), deep
learning approaches are still difficult to interpret and lack of
the ability to accurately locate the injured tissue.

Another concern recently identified [4] is the sensitiv-
ity of models to the quality and quantity of the cases used
for training and testing, which can lead to overestimating
results. Deep learning methods require a large number of
annotated images for training. While this is not a major is-
sue in most fields of application, in the case of COVID-19,
there is a limited availability of images and it is suspected
that its origin and protocol of acquisition can introduce bias
in models [26]. In particular, it is reported [6] that the high-
performance could be mainly attributed to the presence of
image patterns (like corner labels or instrumentation), de-
vice acquisition parameters or population factors (like sex
or age). In case such characteristics are specific for some of
the classes (groups of patients), models could learn to rec-
ognizing these biases in the data set, rather than focusing
on the pathologies they are trying to detect. This bias, of
course, limits the generalization and reproducibility of re-
sults when tested on data sets with a different origin from
the ones used in training and tested.

We consider that adopting a local approach analyzing tis-
sue regions instead of the whole scan could alleviate the
need for a large number of annotated cases, as well as, min-
imize the impact of biases in the images. This work presents
an artificial intelligence (AI) model based on Q-SPECT/CT
images of patients for the identification of local lung lesions
associated to COVID-19 pathologies. Our system bases on
a local analysis of SPECT-CT volumes to identify four clin-
ically relevant types of tissue defined by nuclear medicine:
healthy, pulmonary embolism, pneumonia and pneumonia
with pulmonary embolism.
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We present an hybrid approach that uses radiomic fea-
tures extracted from each scan as input to a siamese classifi-
cation network trained from scratch. The radiomic features
are a selection of PyRadiomics Ist order and texture de-
scriptors that are reproducible under variations in the acqui-
sition protocol and medical scan parameters. Experiments
on 133 cases (including 63 prospective COVID-19 patients)
of an own data set show a per-patient recall for the detection
of COVID-19 pneumonia and COVID-19 pneumonia with
PE was, respectively, 91% and 81% with an area under the
receiver operating characteristic curves equal to 0.99 and
0.87.

2. COVID-19 DataSet

This is a single center study with a prospective ob-
servational branch with patients who tested positive for
COVID-19 and a retrospective branch with patients in pre-
pandemic period. Patients from both branches underwent
a Q-SPECT/CT study for diagnosis of PE. The prospec-
tive observational branch was collected from April 2020 to
September 2020, while the retrospective branch was from
patients without COVID-19 infection who underwent per-
fusion SPECT-CT studies for the diagnosis of PE between
January 2018 and December 2018. The only exclusion cri-
terions were the patient’s refusal to participate in the study
and the detection of severe alterations in the patients’ lungs
caused by other pathologies non related to COVID-19 in-
fection.

The total number of patients from which imaging data
was acquired was 148. From these, a total of 15 cases
were discarded due to technical failures of the image ac-
quisition process or to the presence of severe alterations
in the patients’ lungs caused by other pathologies non re-
lated to COVID-19 infection. This way, the resulting
database contained data a total of 133 patients were col-
lected, 63 in prospective branch (26 with PE, 22 without
PE, 15 indeterminate-PE) and 70 in retrospective branch (31
healthy/control, 39 PE).

Patients data was collected and classified in the fol-
lowing five groups: 1) Patients without COVID-19 nor
PE (control). 2) Patients without COVID-19 and with
PE (PE-noCOVID). 3) Patients with COVID-19 and with-
out PE (noPE-COVID). 4) Patients with COVID-19 and
with PE (PE-COVID). 5) Patients with COVID-19, sus-
pected of having PE but without imaging-confirmed diag-
nosis (suspectedPE-COVID).

The classification of the different cases and different tis-
sue type segments was performed by a team of pneumol-
ogists and nuclear medicine physicians of Germans Trias i
Pujol University Hospital. A total number of 8233 tissue
samples from 20 subjects were manually annotated using
an own-developed software.

For each patient, a perfusion single photon emis-

sion computed tomography/computed tomography
(Q-SPECT/CT) based on intravenous administration
of 6 mCi (222 MBq) of 99mCt-macroaggregates of human
albumin (99mCt-MAA) was acquired, with the subsequent
acquisition of a tomo-scintigraphy (SPECT) and a CT in
two hybrid equipments indistinctly: a Symbia T2 Gamma
camera (brand Siemens, based in Munich, Germany)
and a Discovery NM/CT 670 ES Gamma camera (brand
General Electric, based in Boston, Massachusetts, US). The
acquisition parameters were the following.

The SPECT was obtained with a circular orbit with
360°arc, 128x128 matrix, zoom 1, 140 KeV photopeak, ob-
taining 90 images of 8 seconds per image. The acquired
CTs used 120 KV, 50-350 mA, with slice thickness and in-
terval of 1.25 mm (General Electric) and 3 mm (Siemens).
With reconstructions of B41S, B80S, B0O8 and 1 soft, recon
2 lung respectively for CT and three-dimensional recon-
struction, without attenuation correction for scintigraphy,
512x512 matrix. Ventilation lung scintigraphy was not con-
templated due to the risk of cross-contamination of COVID,
so ventilation alterations were determined by CT scans.

3. Intelligent Radiomics for Detection of PE in
COVID-19 Patients

The proposed radiomic system analyzes the intensity
values of CT and SPECT volumes for each voxel in order to
discriminate four clinically relevant types of tissue defined
by nuclear medicine experts:

1. Control: healthy tissue (normal CT and SPECT).

2. NoNeumo PE: classic PE (normal CT with a localized
perfusion defect in the SPECT).

3. Neumo NoPE: pneumonia with normal perfusion (af-
fected CT but normal per-fusion in the area).

4. Neumo PE: pneumonia with affected perfusion (area
with affectations in both the CT and SPECT scans).

In order to avoid over fitting, two extra categories were
added:

5. Black Background: areas with no tissue uptake.

6. Body Tissue: areas of the body not belonging to the
lungs.

Our intelligent radiomic system has three main steps.
Since the final diagnostic requires the combination of infor-
mation from the SPECT and CT scans, the first step consists
in the registration of the two volumes in order to fuse both
image modalities. Second, radiomic features selected ac-
cording to its reproducibility are extracted from the regis-
tered volumes to define a radiomic feature space. Finally, a
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machine learning method is used to disseminate each value
of the feature space between the four types of tissue.

In order to register volumes, first SPECT volumes were
resized to match the same number of CT slices using
HOROS, an open source medical image viewer REF. Then,
we used an affine monomodal transformation REF to regis-
ter a seg-mentation of the lungs in CT and SPECT resized
volumes. By registering binary masks instead of intensity
volumes, we can account for multimodal differences using
the Mean Squared Error as cost function and, thus, min-
imize the risk of premature convergence that multimodal
approaches using mutual information have. The computed
transformation was applied to intensity SPECT volumes to
register them to CT scans.

The segmentation of lungs was computed using thresh-
olding and morphological operations. CT lungs were se-
lected as the larger connected component of the voxels with
intensity between 950 to -300 Hounsfield Units, followed
by a closing with a structuring element of size 5. For the
lung segmentation of the perfusion volumes, a threshold of
intensity 20 was selected.

The radiomic features are a subset of PyRadiomics [25],
an open-source python package for the extraction of
Radiomics features from medical imaging volumes.
PyRadiomics features include shape features, first order fea-
tures, and textural features (Gray Level Co-ocurrence Ma-
trix (GLCM), Gray Level Size Zone (GLSZM), Gray Level
Run Length Matrix (GLRLM) and Gray Level Dependency
Matrix (GLDM)) describing several aspects of the lesion.
The subset was selected according to the reproducibility
against different image acquisition conditions and inter-
observer variability in lesion identification. Reproducibil-
ity bases on the correlation of feature values obtained from
data collected using different conditions and settings [15].
The selected set of (17) features are given in Table 1.

For each pixel and scan, the reproducible radiomic fea-
tures were computed in windows of size sze X sze. These
features are the input to a fully connected simaese network
that combines them in a multi-classification approach. Each
siamese network has two fully connected layers with 128
neurons linked with one relu layer and an output classifica-
tion layer with sigmoid activation. The output of the clas-
sification layers for the two networks is concatenated to de-
fine a 12 (2 x 6 classes) dimensional vector that it is the
input to a fully connected layer with sigmoid activation. To
account for unbalancing in training data, the loss function
is a weighted cross entropy given by:

Zilil weight|class[i]]loss(i, class]i])
Zivzl weight|classli]]

loss =

D

where loss(i, class|i]) is the cross-entropy loss for the i-th
class computed from the classifier prediction x and the true

class as:

loss(x, class) = — lo exp(:v[class])) 2
ovclee) g(zj»v_lexwm ()

and the weight weight|class[i]] is given by the inverse of
the class frequency.

4. Experiments

In order to statistically validate the system, we used a
leave-one-out patient validation. To assess performance, for
each of the 4 types of pulmonary tissues, receiver operating
characteristic (ROC) curves were plotted and the area un-
der the curve (AUC), precision and recall were computed.
If TP;, FP;, FN,, denote, respectively, the true and false
positives and the false negatives for the i-th tissue type, then
its precision, PREC;, and recall, REC} are given by:

TP,
EC; =100 ——————
REC; ooTPﬁFNi 3)
TP,
PREC; = 100 ———"—— 4
REC; OOTPZ-—kFPi 4)

In order to assess the impact of the size of the window
used to compute radiomic features, we trained two differ-
ent models with features extracted using windows of size:
sze X sze = 3 x 3 and sze X sze =5 X 5.

Tables 2 and 3 report the ranges (given by the average
+/- the standard deviation) for Recall and Precision of each
tissue type and models using 3 x 3 and 5 x 5 windows, re-
spectively. The average recall and precision for COVID-19
pneumonia tissue are 91% and 100% for 3 x 3 windows and
96% and 100% for 5 x 5 windows. The average recall and
precision for tissue affected of COVID-19 pneumonia with
PE are 81% and 77% for 3 x 3 windows and 74% and 77%
for 5 x 5 windows.

Figures 1 and 2 show receiver operating characteristic
curves with their areas (AUC) for each lung tissue for mod-
els using 3 x 3 and 5 x 5 windows, respectively. The areas
for COVID-19 pneumonia are 0.99 for both models, while
the areas for COVID-19 pneumonia with PE are 0.86 for
3 x 3 windows and 0.89 for 5 x 5 windows.

5. Discussion and Conclusions

This study represents a first step towards a complete in-
telligent radiomic system to optimize the diagnosis of PE
by Q-SPECT/CT. Diagnosis of complications associated to
COVID-19 is challenging for two main issues. First, pa-
tients usually present several pathologies at different lung
regions simultaneously, which complicates their radiolog-
ical visual identification. Second, there is a limited avail-
ability of annotated data, which hinders the performance of
machine and deep learning methods. In order to minimize
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Table 1. Features selected according to reproducibility
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Table 2. Ranges (mean +/- SD) for Recall and Precision of each
tissue type. Model computed using 3x3 windows

False Positive Rate

False Positive Rate

Figure 1. ROC curves of the model with features computed in 3x3 windows.

Table 3. Ranges (mean +/- SD) for Recall and Precision of each
tissue type. Model computed using 5x5 windows

No Pneumonia Pneumonia No Pneumonia Pneumonia
No PE PE No PE PE No PE PE No PE PE
Recall | 924+14 | 954+4 | 9147 | 8142 Recall | 924+14 | 75+34 | 96+ 7 74+5
Precision | 100+0 | 82+£24 | 1000 | 77 £23 Precision | 100+0 | 96+5 | 100+0 | 77 £ 23

the impact of both issues, we have proposed an hybrid
approach that uses traditional radiomic local features as
input to a siamese fully connected network that combines
extracted data from CT and Q-SPECT scans.
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Our method achieves average detections of 91%
(0.99 AUC) for tissue with COVID-19 pneumonia and 82%
(0.86 AUC) for tissue with COVID-19 pneumonia and PE.
The sensitivity for the detection of COVID-19 pneumonia
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Figure 2. ROC curves of the model

is comparable to deep learning approaches using a higher
number of training cases, like COVNet [14] (90% recall
and 0.96 AUC) or the early work of [22] (88% recall and
0.92 AUC). The drop in the detection of COVID-19 pneu-
monia with PE is mainly due to the fact that tissue affected
by COVID-19 PE has a non-uniform pneumonia mixed
with other alterations and still functional tissue. It follows
that regions labelled as COVID-19 pneumonia with PE are
prone to have some parts without pneumonia.

Figure 3 shows an example of a patient affected by
COVID-19 pneumonia with PE. The top image shows the
CT scan and the bottom one the SPECT perfusion scan.
White lung areas in CT scan show low functional tissue
with either pneumonia or infiltrations. The triangular dark
area in SPECT perfusion scan is a lung segment poorly
irrigated due to a PE. The white square highlights the re-
gion that has been diagnosed as COVID-19 pneumonia with
PE. The middle image close-up clearly shows that tissue
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with features computed in 5x5 windows.

with COVID-19 pneumonia with PE has an heterogeneous
affectation and still has dark functional areas.

This study has some limitations. First, the local identi-
fication of tissue types should be aggregated for each case
(similarly to [14]) to produce a multiple clinical diagnosis
of all the pathologies that the patient has. Second, mod-
els should be tested in the whole set of patients and in
cases coming from other hospitals in order to fully vali-
date the generalization capability and clinical applicability
of models. Finally, performance in detection of COVID-19
pneumonia and PE could improve with an architecture com-
bining the outcomes of models trained using windows of
different sizes.

In conclusion, a hybrid approach can detect COVID-19
pneumonia and COVID-19 pneumonia with PE using a lim-
ited number of annotated data. The capability to detect al-
terations in perfusion for COVID-19 pneumonia encourages
developing a tool in the cloud for clinical use.
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Figure 3. Example of COVID-19 pneumonia with PE. The top im-
age shows the CT scan and the bottom one the SPECT perfusion
scan with the region with COVID-19 pneumonia and PE inside the
white square. A close-up in the CT scan of such region is shown
in the middle image.
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