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Abstract

Deep neural networks have been dominating the field of
computer vision, achieving exceptional performance on ob-
ject detection and pattern recognition. However, despite the
highly accurate predictions of these models, the continuous
increase in depth and complexity comes at the cost of in-
terpretability, making the task of explaining the reasoning
behind these predictions very challenging. In this paper, an
analysis of state-of-the-art approaches towards the direc-
tion of interpreting the networks’ representations, is carried
out over two Diabetic Retinopathy image datasets, IDRiD
and DDR. Furthermore, these techniques are compared in
the task of image segmentation of the same datasets. This
is to discover which method can produce the better atten-
tion maps that can solve the problem of segmentation with-
out actually training the network for the specific task. To
accomplish that we propose an adaptive threshold method
that transforms the attention masks in a more suitable rep-
resentation for segmentation. Experiments over multiple ar-
chitectures were conducted to ensure the robustness of the
results.

1. Introduction
Diabetic Retinopathy (DR) is an eye condition that af-

fects the retina, the light sensitive layer of the eye which
converts the light into electric signals, causing vision is-
sues such as blurring, eye pain and blindness. Depending on
the grade of the damage in the blood vessels there are four
stages of DR, namely the mild, moderate, severe and pro-
liferative. As there are no apparent symptoms in the early
stages of the disease, automated diagnosis techniques are of
high importance in order to detect it and prevent its devel-

oping as soon as possible.
A wide variety of deep neural network architectures have

been tested in diabetic retinopathy screening as well as in
medical image analysis in general, most of which rely on
Convolutional Neural Networks (CNNs) [8] with additional
modifications. On top of that, several algorithms and dif-
ferent approaches have been proposed for visualization and
interpretation of such classifiers. The aim of this work is
to investigate the ability of state-of-the-art interpretability
methods to focus on the parts that have a major impact on
the model’s final prediction over CNN-based network archi-
tectures in the task of classifying diabetic retinopathy im-
ages. Additionally, the attention maps produced by these
methods are compared with segmentation masks denoting
the regions of the image which are significantly affected
by the disease. For this purpose an adaptive thresholding
method is employed, attempting to make the maps more ob-
jectively comparable.

The remainder of this paper is structured as follows; Sec-
tion 2 overviews related approaches on the DR image classi-
fication task as well as on models’ interpretability. Section
3 describes the different datasets, architectures and inter-
pretation techniques that were implemented in the exper-
imental phase. Section 4 introduces the proposed thresh-
olding method and presents the results. Finally, the paper
concludes in Section 5 and discusses potential future work.

2. Related Work
Several attempts have been made in the direction of au-

tomated recognition for diabetic retinopathy over the last
years, most of which are based on deep learning. In 2016,
Gulshan et al. trained a deep neural network based on the
Inception-v3 architecture for DR detection in retinal fun-
dus images [4]. The model was evaluated on two DR im-
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age datasets, namely the EyePACS [6] and Messidor [2].
In terms of performance, the specificity and sensitivity of
the algorithm at the high-sensitivity operating point were
93.4% and 97.5% respectively in the EyePACS dataset [6]
and 93.9%, 96.1% in the Messidor [2].

Ensemble methods have also been proposed, combining
deep learning as well as classical machine learning algo-
rithms in order to improve the individual models’ predic-
tive ability. In [12], a set of CNN-based models includ-
ing ResNet, DenseNet, Inception and Xception were trained
on the Kaggle dataset, effectively classifying retina images
among all different stages of DR. Another ensemble model
relying on Logistic Regression, k-NN, Decision Trees and
Random Forest variations has been developed in [13]. Both
approaches proved the superiority of the ensemble models
over the individual algorithms and achieved high perfor-
mance.

More recently, an architecture combining ResNet and
Random Forest has been introduced for the task of DR de-
gree classification [18]. In this method, the ResNet’s aver-
aged pooling layer has been used for the extraction of high
level features from diabetic retinopathy images. Eventually,
these feature maps were passed to a Random Forest clas-
sifier for the final class prediction. This approach outper-
formed state-of-the-art algorithms, achieving an accuracy
of 96.0% and 75.09% on the Messidor[2] and EyePACS
datasets [6] respectively.

Apart from the disease grade classification task, a wide
variety of techniques have been developed under the scope
of visualization and interpretation of the models’ results. In
[14], Gradient-weighted Class Activation Mapping (Grad-
CAM) was introduced, an approach relying on the gradi-
ents of the last convolutional layer of a CNN-based model
for producing an interpretable, localization map. This tech-
nique, which is compatible with any network architecture,
makes use of the last layer’s activation maps’ gradients in
order to create a heatmap, mapping each neuron to its corre-
sponding importance weight for each class prediction. Sub-
sequently, the map is upscaled to the dimensions of the orig-
inal image, underlining the features that have the greatest
impact on the classification process.

An enhanced version of the aforementioned method,
Grad-CAM++, was presented in [1]. The authors used a
weighted combination of the gradients to tackle the issue
of small areas and multiple occurrences of a specific class
fading away in the final saliency map. The results indicated
that Grad-CAM++ outperformed the initial formulation of
the algorithm in terms of object recognition explainability
metrics as well as in human evaluation tests, and is consid-
ered to be among the state-of-the-art techniques concerning
visual interpretability.

Sundararajan et al. proposed another gradient-based
method to correlate the model’s prediction with its inputs,
called Integrated Gradients (IG) [15]. In this approach, a
baseline is used in order to desaturate a well trained net-
work and overcome the noisy-like gradients issue. This is
achieved by scaling down the image’s brightness and cal-
culating the gradients on the new interpolated images. Fi-
nally, importance scores are attributed to the input features
depending on their impact to the prediction, by averaging
over these gradients.

In [10], Lundberg and Lee presented the concept of us-
ing Shapley values from cooperative game theory in order
to measure the impact of each feature to a model’s predic-
tion. Shapley Additive Explanation values (SHAP) describe
the features’ average marginal contribution over all possible
combinations and can therefore be considered as features’
importance. Several approaches for estimating the Shapley
values were also proposed, in order to overcome the com-
putational expense due to the high complexity and make it
possible to apply this technique in practice. In this paper,
the above four methods are analyzed, however, there are
many techniques that try to interpret the predictions of a
model [19].

3. Experimental Framework

In this section, the experimental framework of this pa-
per is presented. We use two DR datasets for training the
neural networks and, then, we compare the interpretability
methods in different setups. The next subsections present
the whole process in more detail.

Grades of DR IDRiD DDR
Training Test Training Test

No DR 134 34 3133 1880
Mild 20 5 315 189

Moderate 136 32 2238 1344
Severe 74 19 118 71

Proliferative (PDR) 49 13 456 275
Ungradable - - 575 346

Total 413 103 6835 4105
Table 1. Distribution of the DR grading labels of the images for IDRiD and DDR
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Types of masks IDRiD DDR
MA 81 570
HE 80 601
EX 81 486
SE 40 239
OD 81 -

Total 81 757
Table 2. Distribution of different types of segmentation masks for
IDRiD and DDR

3.1. Diabetic Retinopathy Datasets

The first dataset that this study will use is the Indian Di-
abetic Retinopathy Image Dataset (IDRiD) [11]. IDRiD is
a fundus image dataset of the Indian population and it con-
tains three tasks: DR grading, segmentation and localiza-
tion. In this paper, we are going to focus on the DR grading
and segmentation tasks. The DR grading set consists of 516
images stored in JPEG format. The images have a reso-
lution of 4288 × 2848 pixels which is considered to be of
very high quality. The purpose of the task is to predict the
grade of severity of the retinopathy dividing the dataset into
5 classes. The severity ranges from grade 0 (which indicates
no apparent DR) to grade 1 (mild DR), grade 2 (moderate
DR), grade 3 (severe DR) and, lastly, grade 4 (proliferative
DR). The dataset is split to a training set, consisting of 413
images, and a test set of 103. Table 1 shows the distribu-
tion of classes in both sets. The segmentation task consists
of 81 images, divided in 54 for training and 27 for testing.
There are 5 different kind of segmentation masks: Microa-
neurysms (MA), Haemorrhages (HE), Hard Exudates (EX),
Soft Exudates (SE) and Optic Disk (OD). The distribution
of the above can be found on Table 2.

The second dataset to be considered is DDR [9]. Similar
to IDRiD, there exist the same 3 tasks for this dataset, as
well. The DR grading task consists of 1.3673 color fundus
images taken from 147 hospitals. Images are categorized
to 6 classes, with the first 5 being the same as in IDRiD
and the 6th class containing images with poor quality that
cannot be categorized anywhere else. This class is called
Ungradable. The distribution of the classes in the training
and the test sets can be seen in Table 1. Unlike IDRiD, im-
age resolutions vary. For example, there exists images of
1.137 × 1.470 pixels along with images of 3456 × 5184
pixels. On the other hand, the segmentation task consists of
757 images, provided with the same kind of segmentation

masks, like IDRiD, except for the Optic Disc. The distribu-
tion of the masks is shown on Table 2.

3.2. Network architectures and Interpretability

In the current work, three different CNN-based network
architectures were examined in order to verify the exper-
iments’ objectivity. More specifically the DenseNet [5],
InceptionV3 [16] and EfficientNetB0 [17] models were
trained for DR grading classification on IDRiD and DDR
datasets separately, resulting in 6 models. All models were
initialized with pretrained weights from ImageNet [3]. Im-
age augmentation was performed using random zooms, ro-
tations and flips. All images, from both datasets, were re-
sized in 300× 300 pixels, in order to make it easier to train
the networks. The networks were trained for 20 epochs us-
ing the Adam optimizer [7]. The 6 networks achieved the
test accuracies shown in Tables 3 and 4 for both datasets, re-
spectively. It is highlighted that EfficientNetB0 is the most
suitable architecture for this task with an overall accuracy of
60.19% on IDRiD and 73.56% on DDR. A common short-
coming of all three networks seems to be their difficulty
in detecting the first stage (mild) of the disease, like most
state-of-the-art approaches, while they perform quite satis-
factorily in the moderate and no-DR classes.

Concerning interpretability, we focus on four state-of-
the-art techniques to describe the functionality of the mod-
els and explain the logic behind the images’ classification.
More specifically, four gradient-based algorithms are ex-
amined in this study, GradCAM, GradCAM++, Integrated
Gradients and SHAP with the expected gradients’ approxi-
mation method. Each method is applied on every network
with respect to the original image in order to produce an
attention map, denoting the areas of the image that con-
tributed the most to the network’s prediction. Layers of
different depth were used for the maps’ construction, de-
pending on the networks’ architecture. Particularly, Grad-
CAM and GradCAM++ were applied on the 79th, 15th and
15th layer of DenseNet, Inception and EfficientNet respec-
tively. The Integrated Gradients method is independent of
selecting a specific layer as the gradients are calculated with
respect to the interpolated images in contrast to GradCAM
and GradCAM++ which make use of the selected layers’
outputs. Finally, the SHAP algorithm has been applied to
network input.

Figure 1 shows the attribution masks produced by the
aforesaid techniques after being applied on the Efficient-

Architecture No DR Mild Moderate Severe PDR Total Accuracy
DenseNet 0.7647 0.0 0.7812 0.1578 0.1538 0.5436

InceptionV3 0.8235 0.2 0.6250 0.5789 0.0 0.5825
EfficientNetB0 1.0 0.0 0.5937 0.3684 0.1538 0.6019

Table 3. Test Accuracies of each class and Total Accuracy among the 3 architectures for the IDRiD dataset
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Architecture No DR Mild Moderate Severe Proliferative Ungradable Total Accuracy
DenseNet 0.8202 0.0 0.6279 0.0 0.2145 0.8063 0.6635

InceptionV3 0.9904 0.0 0.4211 0.1267 0.5636 0.9682 0.7130
EfficientNetB0 0.9574 0.0 0.5610 0.014 0.4727 0.9682 0.7356

Table 4. Test Accuracies of each class and Total Accuracy among the 3 architectures for the DDR dataset

Net model (trained on IDRiD), for a sample DR image of
the IDRiD dataset, as well as their overlays on the orig-
inal image. Concerning the GradCAM and GradCAM++
algorithms, the latter highlights a larger region of the im-
age, as expected, making it difficult to extract useful in-
formation. Regarding the Integrated Gradients, it tends to
produce smaller areas of attention, although the main high-
lighted regions are common with the ones indicated by the
above-stated methods in most cases. SHAP mask values are
of low order of magnitude and thus, are not easily compa-
rable with the rest of the approaches. Also, from Figure 1,
we can see that there are barely any highlighted areas of
attention in the SHAP masks.

All four techniques have their merits, however, from a
medical perspective they fail to capture the important areas
of the eye that can be beneficial in specific disease diagno-
sis. Due to this drawback, this study will focus on trans-
forming the attribution masks of each method, in order to
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Figure 1. Attribution masks on DR image (EfficientNet model)

achieve a better interpretation performance regarding a le-
sion segmentation task.

4. Adaptive Threshold and Segmentation
As demonstrated above, it is difficult to evaluate the at-

tention masks in their current form since they are not com-
parable with each other. This is mainly due to the signif-
icantly different sizes of the areas being indicated as cru-
cial for the classification by each method. On top of that,
same values on different attribution masks might indicate
different order of importance. For example, a high value in
a SHAP mask can be considered low in comparison with
the values of a GradCAM mask. Subsequently, these algo-
rithms are compared under the scope of segmentation with
respect to the different types of observed lesions.

Even though the tasks of DR grading and lesion segmen-
tation are different, there is an overlap in the grade of the
retinopathy with the lesions found in areas of the eye. Any
overlapping between these areas of the lesions and the atten-
tion masks can accurately show which interpretability tech-
nique (and which model in consequence) can spot the most
significant parts of the eye that can classify the grade of the
retinopathy. In order to evaluate the attribution masks, we
combined the segmentation masks of all five lesions to a fi-
nal unified mask for each image in the dataset. This can be
seen in Figure 2, where an original image is shown along
with the total segmentation mask (including all types: MA,
HE, EX, SE and OD) and the overlay of the two.

Original Image Segmentation Mask Overlay

Figure 2. Unified segmentation mask applied on an original image

In order to overcome the above stated peculiarities of the
different masks we performed a thresholding scheme on the
attention masks to round the values of each pixel to {0, 1}.
This is also required for the comparison with the segmenta-
tion groundtruths since the values of the attention masks are
continuous in the range [0, 1] while the segmentation masks
consist of discrete binary values, as can be seen in Figures 1
and 2. For this task, we propose a method based on statisti-
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cal properties of the images in order to produce an adaptive
threshold, individually for each mask. More specifically,
the threshold value is defined according to Equation 1:

threshold = median+ k ∗ std (1)

where the median and standard deviation are calculated over
the pixels of the mask. Parameter k adjusts the threshold
depending on the median and the percentage of pixels orig-
inally highlighted as significant for the model’s prediction
(i.e. non-zero pixels) according to the following formula:

k = [a+ ln (1 + pct)] ∗ (1−median) (2)

In Equation 2, pct stands for the percentage of non-zero
values over the total size of the image while a is a constant.
The intuition behind pct is that the threshold value should
be larger as the percentage of important pixels in the mask
increases in order to balance the amount of selected pixels
and make it comparable among the different masks. The
purpose of the logarithm function is to prevent the thresh-
old from being too high for large values of percentage as this
would lead to non informative masks, consisting of very few
descriptive points. Concerning the contribution of the me-
dian, high values indicate left skewed distributions, mean-
ing a smaller increase is needed in order to avoid cutting off
a very large percentage of points. On the contrary, low me-
dian values demand a higher increase so as to not produce
an excessive mask. Finally, the constant defining the lower
bound of the parameter was set to 1.2 after experimentation.

Figure 3 shows the segmentation masks produced by the
interpretability methods on the trained models after apply-
ing the adaptive threshold. The original image and its seg-
mentation mask are the ones depicted in Figure 2. It is clear
that the new masks are of the same order of magnitude and
can be easily compared, as opposed to the original masks,
similar to the ones in Figure 1. Additionally, there seem
to be many similarities among the masks produced by the
same interpretability technique across the different archi-
tectures. Among the methods, GradCAM and GradCAM++
visibly underline similar patterns as the points with the ma-
jor impact on the models’ decision. On the other hand, the
SHAP masks appear to be more scattered but seem quite
similar to the IG masks in the majority of images.

The fact that all four techniques focus on quite similar
parts of the images and share some regions of interest with
the segmentation mask boosts the likelihood of detecting
the most important areas. Thereafter, the Intersection over
Union (IoU) score is calculated for the four interpretability
methods separately, in order to evaluate the performance of
each technique after the application of the proposed thresh-
old. For this task, 81 segmentation-labeled images of the
IDRiD dataset were used. The segmentation masks of the
DDR dataset’s images consisted of very few and sparse

Interpretability Method Training Dataset OverallIDRiD DDR
GradCAM 0.0563 0.0634 0.060

GradCAM++ 0.0547 0.0560 0.055
Integrated Gradients 0.0544 0.0880 0.071

SHAP 0.0763 0.0985 0.087
Table 5. Intersection over Union score for interpretability masks

points and thus they were not considered suitable for the
purpose of this study.

Table 5 presents the IoU scores for the masks produced
by the models trained on the IDRiD and DDR datasets sep-
arately as well as the total IoU scores for each interpretabil-
ity method over all different architectures. Among the
examined approaches, SHAP clearly achieved higher IoU
scores in both setups, around 0.087. Concerning the other
techniques, Integrated Gradients performance was close to
SHAP with an overall IoU of 0.071 while GradCAM and
GradCAM++ reached 0.06 and 0.055 IoU scores, respec-
tively. Naturally, the above performances are affected by the
thresholds applied on the original masks. Different thresh-
olding methods might produce modified attention maps,
leading to different results. It is observed that, even though
the evaluation set consists of images of the IDRiD dataset,
models trained on DDR reach higher scores. This can be
attributed to the fact that DDR is a bigger dataset, leading
to more complete trained models. Because our models are
trained on the classification task, the IoU scores of the inter-
pretability methods are much lower than any state-of-the-art
approach on segmentation. Thus, the previously mentioned
scores are not comparable to models trained explicitly in the
segmentation task.

5. Conclusion
The present work sets out to study and analyze the

performance of state-of-the-art algorithms for visual inter-
pretability of neural networks. Specifically, GradCAM,
GradCAM++, Integrated Gradients and SHAP methods are
examined on the task of Diabetic Retinopathy grading clas-
sification. Multiple architectures were trained along two
datasets, IDRiD and DDR, to setup a complete framework
for comparing the above methods. Additionally, a statisti-
cal based adaptive thresholding method has been proposed
in order to transform the attention maps, aiming to make
them comparable to the groundtruth segmentation masks.
This can result in a more robust and objective way of eval-
uating attention masks and interpretability methods, in gen-
eral. The interpretability masks produced after applying the
thresholding technique are qualitatively comparable with
each other as well as with the label segmentation mask. Ob-
viously, in terms of quantitative metrics, such as IoU, they
still lack the ability to perform in a competitive scenario
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with other state-of-the-art segmentation techniques.
It would be quite an interesting path of work to examine

if these interpretability methods can be modified in a way
to compete in a segmentation task. Naturally, in order for
this to be feasible, there is a need of datasets with aligned
tasks of classification and segmentation. This way, a model
trained for classification could, at the same time, be able
to solve the segmentation problem, as well. A promising
idea is to incorporate the segmentation masks in the classi-
fication task, leading to models that learn to focus on more
significant areas of the image.
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Lay, Béatrice Cochener, Caroline Trone, Philippe Gain,
Richard Ordonez, Pascale Massin, Ali Erginay, Béatrice
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