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Abstract

Early and reliable COVID-19 diagnosis based on chest
3-D CT scans can assist medical specialists in vital circum-
stances. Deep learning methodologies constitute a main
approach for chest CT scan analysis and disease predic-
tion. However, large annotated databases are necessary for
developing deep learning models that are able to provide
COVID-19 diagnosis across various medical environments
in different countries. Due to privacy issues, publicly avail-
able COVID-19 CT datasets are highly difficult to obtain,
which hinders the research and development of Al-enabled
diagnosis methods of COVID-19 based on CT scans.

In this paper we present the COVI19-CT-DB database
which is annotated for COVID-19, consisting of about 5,000
3-D CT scans, We have split the database in training, val-
idation and test datasets. The former two datasets can be
used for training and validation of machine learning mod-
els, while the latter will be used for evaluation of the devel-
oped models. We present a deep learning approach, based
on a CNN-RNN network and report its performance on the
COVID19-CT-DB database. Moreover, we present the re-
sults of all main techniques that were developed and used
in the ICCV COVI19D Competition.

1. Introduction

The Coronavirus Disease 2019 SARS-CoV-2 (COVID-
19) has become a global pandemic with an exponential
growth and mortality rate. The virus is harbored most com-
monly with little or no symptoms, but can also lead to a
rapidly progressive and often fatal pneumonia [14, 12, 3].

It has become important to detect affected people as early
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as possible and isolate them to stop further spreading of the
virus. Various methods have been proposed to diagnose
COVID-19, containing a variety of medical imaging tech-
niques, blood tests and PCR.

COVID-19 pandemic has a very severe impact on the
respiratory as well as other systems of the human body.
Thus, medical imaging features of chest radiography is
found to be useful for rapid COVID-19 detection. The
imaging features of the chest can be obtained through med-
ical imaging modalities like CT (Computed Tomography)
scans. CT images can be used for precise COVID-19 detec-
tion [1].

They provide: a) 3-D view formation of organs; CT
scans provide a more detailed overview of the internal struc-
ture of lung parenchyma due to lack of overlapping tis-
sues, b) convenient examination of disease and its loca-
tion; CTs provide a window into pathophysiology that could
shed light on several stages of disease detection and evolu-
tion. Radiologists report COVID-19 patterns of infection
with typical features including ground glass opacities in the
lung periphery, rounded opacities, enlarged intra-infiltrate
vessels, and later more consolidations that are a sign of pro-
gressing critical illness.

At the time of CT scan recording, several slices are cap-
tured from each person suspected of COVID-19. The large
volume of CT scan images calls for a high workload on
physicians and radiologists to diagnose COVID-19. Taking
this into account and also the rapid increase in number of
new and suspected COVID-19 cases, it is evident that there
is a need for using machine and deep learning for detecting
COVID-19 in CT scans.

Such approaches require data to be trained on. There-
fore, a few databases have been developed consisting of CT
scans. However, new data sets with large numbers of 3-D
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CT scans are needed, so that researchers can train and de-
velop COVID-19 diagnosis systems and trustfully evaluate
their performance.

The current paper presents a baseline approach for the
Competition part of the Workshop “Al-enabled Medical Im-
age Analysis Workshop and Covid-19 Diagnosis Competi-
tion (MIA-COV19D)” which occured in conjunction with
the International Conference on Computer Vision (ICCV)
2021 in Montreal, Canada, October 11- 17, 2021.

The MIA-COV19D Al-enabled Medical Image Analy-
sis (MIA) Workshop emphasizes on radiological quanti-
tative image analysis for diagnosis of diseases. The fo-
cus is placed on Artificial Intelligence (AI), Machine and
Deep Learning (ML, DL) approaches that target effective
and adaptive diagnosis, as well as on approaches that en-
force trustworthiness and create justifications of the deci-
sion making process.

The COV19D Competition was based on a new large
database of chest CT scan series that was manually anno-
tated for Covid-19/non-Covid-19 diagnosis. The training
and validation partitions along with their annotations were
provided to the participating teams to develop AI/ML/DL
models for Covid-19/non-Covid-19 prediction. Perfor-
mance of approaches was next evaluated on the test set. The
main developed methods and their results on the COV19D
test set are described and compared in this paper.

The COV19-CT-DB is a new large database with about
5,000 3-D CT scans, annotated for COVID-19 infection.

The rest of the paper is as follows. Section 2 presents for-
mer work on which the presented baseline has been based.
Section 3 presents the database created and used in the
Competition. The ML approach and the pre-processing
steps are described in Section 4. The obtained results, are
presented in Section 5. A short description of all main meth-
ods that were applied to the COV19D database, as well as
their results, is provided in Section 6. Conclusions and fu-
ture work are described in Section 7.

2. Related Work

In [4] a CNN plus RNN network was used, taking as
input CT scan images and discriminating between COVID-
19 and non-COVID-19 cases.

In [13], the authors employed a variety of 3-D ResNet
models for detecting COVID-19 and distinguishing it from
other common pneumonia (CP) and normal cases, using
volumetric 3-D CT scans.

In [19], a weakly supervised deep learning framework
was suggested using 3-D CT volumes for COVID-19 classi-
fication and lesion localization. A pre-trained UNet was uti-
lized for segmenting the lung region of each CT scan slice;
the latter was fed into a 3-D DNN that provided the classi-
fication outputs.

The presented approach is based on a CNN-RNN archi-
tecture that performs 3-D CT scan analysis. The method
follows our previous work [7, 9, 8, 15] on developing deep
neural architectures for predicting COVID-19, as well as
neurodegenerative and other [11, 8, 6, 17, 20] diseases and
medical situations, or for analyzing sequences of images
[16, 18, 10].

These architectures have been applied for: a) prediction
of Parkinson’s, based on datasets of MRI and DaTScans, ei-
ther created in collaboration with the Georgios Gennimatas
Hospital (GGH) in Athens [8], or provided by the PPMI
study sponsored by M. J. Fox for Parkinson’s Research [1 1],
b) prediction of COVID-19, based on CT chest scans, scan
series, or x-rays, either collected from the public domain, or
aggregated from various hospitals [7].

3. The COV19-CT-DB Database

The COVID19-CT-Database (COV19-CT-DB) consists
of chest CT scans that are annotated for the existence of
COVID-19. Data collection was conducted in the period
from September 1, 2020 to March 31, 2021. Data were ag-
gregated from many hospitals, containing anonymized hu-
man lung CT scans with signs of COVID-19 and without
signs of COVID-19. Figure 1 shows some CT slices from
a non-COVID-19 case and Figure 2 some CT slices from a
COVID-19 case.

The COV19-CT-DB database consist of about 5000
chest CT scan series, which correspond to a high number of
patients (>1000) and subjects (>2000). Annotation of each
CT slice has been performed by 4 very experienced (each
with over 20 years of experience) medical experts; two ra-
diologists and two pulmonologists. Labels provided by the
4 experts showed a high degree of agreement (around 98%).

One difference of COV19-CT-DB from other existing
datasets is its annotation by medical experts (labels have not
been created as a result of just positive RT-PCR testing).

Each of the 3-D scans includes different number of
slices, ranging from 50 to 700. The database has been split
in training, validation and testing sets.

The training set contains, in total, 1560 3-D CT scans.
These include 690 COVID-19 cases and 8§70 Non-COVID-
19 cases. The validation set consists of 374 3-D CT scans.
165 of them represent COVID-19 cases and 209 of them
represent Non-COVID-19 cases. Both include different
numbers of CT slices per CT scan, ranging from 50 to 700.

4. The Deep Learning Approach
4.1. 3-D Analysis and COVID-19 Diagnosis

The input sequence is a 3-D signal, consisting of a series
of chest CT slices, i.e., 2-D images, the number of which
is varying, depending on the context of CT scanning. The
context is defined in terms of various requirements, such as
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the accuracy asked by the doctor who ordered the scan, the
characteristics of the CT scanner that is used, or the specific
subject’s features, e.g., weight and age.

The baseline approach is a CNN-RNN architecture, as
shown in Figure 3. At first all input CT scans are padded
to have length ¢ (i.e., consist of ¢ slices). The whole (un-
segmented) sequence of 2-D slices of a CT-scan are fed as
input to the CNN part. Thus the CNN part performs lo-
cal, per 2-D slice, analysis, extracting features mainly from
the lung regions. The target is to make diagnosis using the
whole 3-D CT scan series, similarly to the annotations pro-
vided by the medical experts. The RNN part provides this
decision, analyzing the CNN features of the whole 3-D CT
scan, sequentially moving from slice O to slice ¢ — 1. The
outputs of the RNN part feed the output layer -with 2 units-
that uses a softmax activation function and provides the fi-
nal COVID-19 diagnosis.

In this way, the CNN-RNN network outputs a probability

Figure 1. Slices from a non COVID-19 CT scan.

for each CT scan slice; the CNN-RNN is followed by a vot-
ing scheme that makes the final decision; the voting scheme
can be either a majority voting or an at-least one voting (i.e.,
if at least one slice in the scan is predicted as COVID-19,
then the whole CT scan is diagnosed as COVID-19, and if
all slices in the scan are predicted as non-COVID-19, then
the whole CT scan is diagnosed as non-COVID-19).

4.2. Pre-Processing & Implementation Details

At first, CT images were extracted from DICOM files.
Then, the voxel intensity values were clipped using a win-
dow/level of 350 Hounsfield units (HU)/—1150 HU and
normalized to the range of [0, 1].

Regarding implementation of the proposed methodol-
ogy: i) we utilized ResNet50 as CNN model, stacking on
top of it a global average pooling layer, a batch normaliza-
tion layer and dropout (with keep probability 0.8); ii) we
used a single one-directional GRU layer consisting of 128
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Figure 2. Slices from a COVID-19 CT scan.

units as RNN model. The model was fed with 3-D CT scans
composed of the CT slices; each slice was resized from its
original size of 512 x 512 x 3 to 224 x 224 x 3. As a voting
scheme, we used the at-least one.

Batch size was equal to 5 (i.e, at each iteration our model

processed 5 CT scans) and the input length ’t” was 700
(the maximum number of slices found across all CT scans).
Softmax cross entropy was the utilized loss function for
training the model. Adam optimizer was used with learn-
ing rate 10~*. Training was performed on a Tesla V100




Feature
Extraction

Sequence Learning

Figure 3. The CNN-RNN model

Table 1. Performance of the baseline CNN-RNN network

Method \ ’macro’ F1 Score ‘
| Validation Set | 0.70 \
[ TestSet | 0.67 \

32GB GPU.

5. Baseline Experimental Results

This section describes a set of experiments evaluating the
performance of the baseline approach.

Table 1 shows the performance of the network over the
validation and the test datasets, after training with the train-
ing dataset, in terms of macro F1 score. The macro F1 score
is defined as the unweighted average of the class-wise/label-
wise Fl-scores, i.e., the unweighted average of the COVID-
19 class F1 score and of the non-COVID-19 class F1 score.

The main downside of the model is that there exists only
one label for the whole CT scan and there are no labels for
each CT scan slice. Thus, the presented model analyzes the
whole CT scan, based on information extracted from each
slice.

6. The COV19D Competition Results

Thirty five teams participated in the COV19D Competi-
tion. Eighteen teams submitted their results. Twelve teams
scored higher than the baseline and made valid submissions.

The winner of the Competition was FDVTS-COVID
from Fudan University, China. The runner-up (with a slight
difference from the winning team) was SenticLab.UAIC
from SenticLab and “Alexandru Ioan Cuza” University of
Iasi, Romania. The team that ranked third was ACVLab
from National Cheng Kung University, Taiwan. All results
of the 12 teams are shown in Table 2; links are also provided
to either, or both, of the related Github codes and arXiv pa-
pers.

In the following we provide a short description of the
best methods that each one of the 12 teams implemented
and used. The index on the right of each team represents
their official rank in the classification task.

Team FDVTS-COVID 1 achieved the top performance
in this task. They relied on a periphery-aware deep learn-
ing network with contrastive representation enhancement
(CRE) mechanism. This network consisted of: a Periphery-
aware Spatial Prediction network, a projection network
along with a subsequent CRE module and a classification
network. The Periphery-aware Spatial Prediction network’s
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Table 2. Competition Results: F1 Score in %; the best performing submission is in bold

Teams [ Submission # Macro F1 [ F1 (COVID) | F1 (NON-COVID) | Github [ arXiv |
1 84.8 74.27 95.33
2 87.47 78.56 96.38
FDVTS_COVID 3 86.42 77.07 95.77 link
4 88.37 80.04 96.70
5 90.43 83.60 97.27
1 - volumetric 90.06 82.96 97.17
. 2 -slice 76.73 58.54 94.92 . .
SenticLab.UAIC 3 MLP 64.35 47 46 36.25 link link
4 -logistic regression 81.85 69.21 94.49
1 82.6 70.8 94.4
2 80.66 68.1 93.22 link1
ACVLab 3 88.74 80.63 96.84 link? link
4 87.00 77.86 96.04
5 88.65 80.57 96.75
083..MLP-0.5 87.4 78.44 96.34
177.MLP-0.5 85.54 75.5 95.58
DeepCam Emb-0.5 88.22 79.79 96.64 link link
Emb-0.3 86.15 76.44 95.85
Bert-0.5 80.94 68.37 93.51
thresh 10 61.8 44.85 78.75
thresh 20 74.4 59.25 89.54
TAC thresh 30 80.88 68.3 93.45 link link
all 79.36 66.07 92.64
max 87.77 78.78 96.75
LoVE 1 84.2 73.65 94.76 link
. 1 78.86 63.65 94.06 . .
Heal it 2 74.74 57.56 91.92 link | link
HCMUS-HGV 1 78.13 63.08 93.18 link link
1 74 56.53 91.26
2 75.67 58.95 92.4
Blessing 3 73.41 56.02 90.8 link
4 71 52.66 89.28
5 74.5 57.25 91.75
1 71.83 51.63 92.04
2 61.59 43.14 80.04
AvengerQ 3 57.17 40.25 74.08 link link
4 53.19 38 8.4
5 70.08 50.09 90.07
Terps 1 70.86 48.96 92.75 link link
1 68.65 51.37 85.94
2 62.16 46.41 77.9
xVision 3 70.5 53.67 87.33 link link
4 63.25 47.75 78.74
5 66.11 50 82.27
baseline 1 67 54.38 79.62 link
aim was to capture the important information of the CT- as well as the distance to the region boundary. This net-
Scan by predicting the boundary distance map. This map work was a UNet-style prediction network with an encoder-
was generated to represent the location information about decoder architecture; ResNet was adopted as the encoder;
whether a pixel belonged to the interior of the lung region the decoder was a mirrored version of the encoder by re-
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placing the pooling layers with bilinear upsampling layers.
This network was at first pre-trained; then the decoder was
discarded and only the encoder was kept. Each CT image
was at first augmented and was then fed into this pre-trained
periphery-aware encoder, generating vector representations.
A classifier was trained on top of these representations for
COVID-19 classification. Meanwhile, these representations
were mapped by a projection network to new representa-
tions which were further enhanced in a contrastive learning
manner.

Team SenticLab.UAIC 2 developed a volumetric and
slice-level approach; the former provided the best results.
They used an inflated 3D ResNet50 model with non local
operations on the second and third layers. Inflated convo-
lutions were obtained by expanding filters and pooling ker-
nels of 2D ConvNets into 3D, resulting in learning spatio-
temporal feature extractors from 3D images while using
successful ImageNet architectures. In order to overcome the
problem of over-fitting they used label smoothing. In order
to handle the variable length of the CT-Scans they used a
sub-sampling technique, or padding, for lengths above, or
under 128 respectively. During inference, parts of a single
CT-Scan volume will be inputted several times in the model;
then a threshold procedure is followed for eliminating some
of these results; the final prediction is based on a majority
voting scheme of the remaining results.

Team ACVLab 3 proposed two different approaches,
one based on the slice-level and the other based on the
3D volume. The first model was named DWCC (Deep
Wilcoxon single-rank test for COVID-19 Classification)
and its main component was a vision transformer (Swin-
Transformer) used for single-slice level classification fol-
lowed by Wilcoxon signed-rank test. They aimed at making
the predicted result more stable and explainable. The sec-
ond model termed as CCAT (Convolutional CT scan-Aware
Transformer) used the Within-Slice-Transformer (WST)
and Between-Slice-Transformer (BST) which were based
on ResNet50 for feature extraction and self-attention for
context-encoded features.

Team DeepCam 4 used a 3D CNN with BERT to clas-
sify the CT-scan volumes. In particular, they segmented the
initial CT-scans through morphological transformation and
a pre-trained UNET network. Following that, they used a
re-sampling method to select a set of fixed number of slice
images for training and validation. This selection depended
on the use of a threshold for the percentage of lung masks
in the whole image. The fixed size volume was then fed to
the classification model which consisted of a 3D CNN with
BERT. This part of the network extracted an embedding fea-
ture vector for each CT-scan and then this vector was passed
to an auxiliary classification layer which included an MLP
classifier.

Team TAC 5 used an AutoML automated pipeline, aim-

ing at fewer resources and time to develop their approach.
Their pipeline used different 2D CNN pre-trained models
such as VGG, ResNet, DenseNet. 2D CNNs were trained
on slice level instead of 3D volume level. Evaluation was
made on slice level. For 3D volume level, predictions were
made on 2D slices, and then most occurred predictions were
taken and assigned as 3D image labels.

Team LoVe 6 expanded a vision transformer as a robust
feature learner of the 3D CT-scans so as to diagnose the
COVID-19. Their network consisted of two main stages.
At first, lung segmentation was applied using pre-trained
UNET followed by the classification model in which the
features were extracted from each slice using Swin trans-
former and then aggregated into a 3D volume level feature
by a max pooling layer.

Team Heal it 7 presented a hybrid deep learning model
named CTNet. This network consisted of three compo-
nents, the input module with a data resampling strategy,
the CNN feature extractor module with SE attention mod-
ule and the information aggregation module with the trans-
former and fully connected (FC) layer.

Team HCMUS-HGYV 8 proposed a method based on
ResNet and DenseNet networks. More specifically, they
combined these two networks in an ensemble that classi-
fied each slice of the CT-scan and then the most frequent
result was assigned as the volume’s prediction.

Team Blessing 9 used 3D convolutional neural networks
based on large-scale pre-trained parameters for extract-
ing and classifying the rich spatial information of the 3-
dimensional CT images. In addition, they utilized a resam-
pling technique, in order to unify the size and number of
channels of all CT images.

Team AvengerQ 10 modified the RegNet (2D) neural
network into a 3D convolution neural network. For infer-
ence, they tested a variety of thresholds in order to achieve
the best performance in the classification of covid and non-
covid CT-scans.

Team Terps 11 used a shallow Convolutional neural net-
work named TeliNet. It consisted of 2D convolutions, batch
normalization, LeakyReLU activations and max pooling
layers. In this approach the classification was done at slice
level.

Team xVision 12 used two deep learning methods, vision
transformer (ViT) based on attention models and DenseNet
built upon a convolutional neural network. Comparing these
two different architectures they concluded that the vision
transformer outperformed the CNN based approach.

7. Conclusions and Future Work

In this paper we have introduced a new large database of
chest 3-D CT scans, obtained in various contexts and con-
sisting of different numbers of CT slices. We have also de-
veloped a deep neural network, based on a CNN-RNN ar-
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chitecture and used it, as baseline, for COVID-19 diagnosis
on this database.

The paper presented the results of a large number of
methodologies applied to the database of chest 3-D CT
scans , in the context of the ICCV 2021 COV19D Competi-
tion; these methods provided performances that were supe-
rior to that of the baseline method.

The database and the models presented in the paper will
form the basis for expansion towards more transparent mod-
elling of COVID-19 diagnosis. In particular, the baseline
method is extended with attention modules so as to provide
higher prediction performance; it has been also enriched
with transparent visualization capabilities, inspired by the
techniques in [7, 9]. Future work includes blending of the
deep learning methodology with knowledge based encod-
ing, extending former work in [2, 5].
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