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Abstract

Detecting COVID-19 in early stages is crucial in order
to initiate timely treatment of disease. COVID-19 screen-
ing with chest CT scans has been utilized due to the rapid-
ity of results and robustness. Computer vision aided med-
ical diagnosis with deep learning models can improve ac-
curacy and efficiency of screening. When developing mod-
els for high-risk medical classification tasks, it is important
to aim to reach radiologist level interpretation in terms of
cognition. When the human brain analyzes visual informa-
tion, cognitive visual attention is applied in order to apply
more focus onto higher frequency regions of interest. Us-
ing attention mechanisms in order to infer channel and spa-
tial attention maps within convolutional neural networks
can improve the performance in classification of COVID-
19 changes. Through performing a compact study with a
quantitative accuracy measure along with a qualitative vi-
sualization of activation heat-maps, we study the benefits of
visual self-attention for the classification of COVID-19.

1. Introduction
The novel coronavirus disease 2019 or SARS-CoV-2

(COVID-19) has caused a severe rising global pandemic
with its highly contagious and drastic effects on the human
body [8,20,23]. The early detection of this disease can pre-
vent the progression into severe stages of respiratory illness
and help mitigate the spread of the disease through early
isolation [12, 16]. One of the common and effective ways
to screen for COVID-19 is through the analysis and inter-
pretation of chest CT scan images of the lung region [1,14].
Images are commonly derived through CT or computed to-
mography of the chest which produces a scan that visu-
alizes the heart, lung and airways for diagnostic evalua-
tion [5,19]. Commonly reported visual features identify the
coronavirus infection in effects through ground-glass opac-
ities, vascular enlargement, bilateral abnormalities, lower
lobe involvement, and posterior predilection in CT scan im-
ages [14]. The open-source crowd-sourced UCSD COVID-

CT dataset [26] consists of single slice CT scan images with
both COVID positive and negative lesions (Fig. 1). Changes
consistent with the coronavirus disease can be identified
through a single slice CT scan image [4, 26].

Figure 1: COVID-19 CT dataset example images [26].
Classes: COVID Positive, COVID Negative.

The radiologist’s workload is increasing year over year.
The ability to aid radiologists in COVID-19 diagnosis by
triaging images can not only reduce the burden but poten-
tially increase the efficiency of disease screening [3].

Thus, the ability to leverage deep learning based ap-
proaches for the automated and accurate diagnosis of
COVID-19 is being widely studied in the computer vision
community. Current approaches are achieving significantly
high accuracy at the classification task [2, 9, 18]. However,
when using a standard neural network based classifier to
identify infection, it is crucial for the end prediction to rep-
resent a clinically relevant focal-point of the image to ap-
proach radiologist-level diagnosis. When the human brain
assesses visual information, cognitive attention is utilized
in order to apply higher amounts of focus onto more im-
portant regions [7, 24]. The trained radiologist can likely
subconsciously apply attention onto important regions of a
CT scan and judge the clinical importance of features. How-
ever, a standard neural network is potentially unable to do so
and will simply extract features, clinically relevant or not.

433



The ability to mimic the cognitive capability of visual
attention has been a popular research topic in the com-
puter vision community. In the computer vision commu-
nity, the attention mechanism has been an important re-
search topic [6, 10, 11, 21, 22, 25]. The simplest operation
of this mechanism is to generate attention masks for inter-
mediate convolutional feature maps and multiply them to-
gether. Attention mechanisms implicitly learn to keep im-
portant values in the feature maps and scale down less im-
portant values. A notable implementation of this is Convo-
lutional Block Attention Module (CBAM) [25]. To reduce
the heavy computational overhead of 3D (channel, height,
and width) attention map generation, CBAM decomposes
3D attention maps into 2D spatial attention maps and 1D
channel attention maps. CBAM can be easily integrated into
any CNN architecture with minimal overhead to achieve
significant performance improvements. CBAM is explained
in detail in Section 3. In the high-risk medical domain, es-
pecially the COVID-19 classification problem, it can be im-
portant for deep learning models to employ such capabili-
ties. With the aim of improving COVID-19 classification
performance and starting to approach radiologist-level in-
terpretation of CT scan images, we study the application of
integrated visual attention mechanisms within COVID-19
detection pipelines and observe changes in both quantitative
(statistical F1 score analysis) and qualitative results (atten-
tion heat-map visualization). Our final goal is to understand
and analyze the effects of attention for this medical task.

2. Related Work

COVID-19 Classification. Classification of the coron-
avirus infection in chest CT scans using deep learning meth-
ods has been widely studied. The ability to accurately
do so can prove to be highly useful within a clinical set-
ting to reduce screening time and act as a quality assur-
ance (QA) tool. Methods vary between both 2D (single
slice) and 3D (volume slices) convolutional neural network
(CNN) approaches. The 3D CNN approach can prove to
be computationally expensive and 2D approaches may be
more feasible. 2D CNN approaches study the use of dif-
ferent state-of-the-art CNN architectures (ResNet, Incep-
tion, EfficientNet, etc.) for classification of single slice
images. The COVID-CT dataset [26] is an open-source
crowd-sourced repository collected by a team at the UCSD.
The dataset contains COVID-19 positive and negative im-
ages collected from coronavirus related research papers via
medRxiv, bioRxiv, NEJM, JAMA, Lancet, etc. Using this
dataset, multiple studies have been carried out around the
use of different state-of-the-art neural networks and transfer
learning approaches with the goal of identifying the high-
est performing system [9]. As previously discussed in Sec-
tion 1, the ability to use attention can prove to bring signif-

icant value to these systems. With state-of-the-art attention
mechanisms, deep learning models are able to infer the im-
portance of visual features in a data driven manner. With
this capability, we can enable the ability for COVID-19
classifiers to focus on features of higher clinical importance
and reduce computation across all features present with the
goal of enabling radiologist-level interpretation. The goal of
our paper is to understand the value of attention within the
standard CNN for the COVID-19 classification task through
a compact quantitative and qualitative analysis study.

Attention Mechanism. One of the pioneering approaches
using attention mechanisms is the Residual Attention Net-
work (RAN) [21]. The RAN uses a separate network to
generate the attention mask, using the same size of the inter-
mediate feature. This direct computation is simple and intu-
itive and improves baseline performance, yet the computa-
tional cost is quite high. Squeeze-and-Excitation (SE) [10]
is also a prominent approach that focuses on channel at-
tention. For each given intermediate feature map, an SE
module generates a per-channel attention value from the
global-average-pooled features. SE has been shown to im-
prove performance with minimal overhead [10]. The Style-
based Recalibration Module (SRM) [15] is a simple yet
powerful channel attention module that accounts for chan-
nel statistics (mean and standard deviation) when scaling
the channel values. The Convolutional Block Attention
Module (CBAM) [25] is a computationally efficient method
that decomposes the heavy attention generation into sepa-
rate dimensions. Specifically, while RAN directly gener-
ates full-sized attention maps, CBAM generates 2D spatial
attention maps and 1D channel attention maps. CBAM has
been shown to improve performance in various tasks con-
sistently [25]. Due to the simplicity of the method and ac-
curacy received, we choose CBAM as a proxy for attention
mechanisms and analyze the effect of it in the COVID-19
CT classification task with standard 2D CNN architectures.

3. Convolutional Block Attention Module
The basic idea of the attention mechanism is to focus

on important values in the intermediate features or tensors.
While there can be various interpretations on what attention
is, in this paper, we will define attention as scaling the val-
ues according to their importance. If we use 2D image in-
puts with a 2D CNN architecture, the shape of the interme-
diate feature (or tensor) is 3D (channel, height, and width).
So, for the given 3D tensor, the attention mechanism com-
putes a 3D mask to increase important values, and decrease
less important values. When the attention tensor is com-
puted with the 3D feature itself, it is called ‘self-attention’.

The Convolutional Block Attention Module (CBAM) is a
self-attention mechanism designed for standard CNN archi-
tectures. The direct computation of a 3D attention tensor is
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Figure 2: A conceptual diagram for CBAM. Image taken
from original CBAM paper [25].

quite heavy [21], roughly doubling the overall computation.
CBAM decomposes the 3D attention tensor into 2D spatial
attention and 1D channel attention and applies them sequen-
tially into the input feature to reduce the overhead of the at-
tention mechanism. The design is illustrated in Fig. 2. To
further reduce the overhead, CBAM extracts mean and max
statistics into both channel and spatial dimensions to com-
pute the attention tensors for each dimension. The channel
and spatial attentions are sequentially applied to the input
feature map F . The mathematical notation of CBAM is:

F ′ = Mc(F ) ∗ F (1)

F ′′ = Ms(F
′) ∗ F ′ (2)

Eq. 1 denotes the channel attention sub-module and Eq. 2
denotes the spatial attention sub-module which follows after
the channel attention sub-module. F represents the original
3D input feature and F ′′ represents the output from CBAM.
F and F ′′ ∈ RC×H×W , where C is the channel size, H is
the height and W is the width of the feature. Also, Mc is the
1D channel attention tensor Mc ∈ RC×1×1, and Ms is the
2D spatial attention tensor Ms ∈ R1×H×W .

Channel attention module The structure of the channel
attention module is illustrated in Fig. 3 (top). The atten-
tion tensor for the channel dimension is a 1D tensor. To
efficiently calculate the 1D tensor, the global average and
the global maximum values along each channel are pooled.
Then, the 1D features are fed into a 2-layer MLP with a
sigmoid normalization layer at the end. The mathematical
notation of the channel attention computation is:

Mc(F ) = σ(MLP (Favg ch) +MLP (Fmax ch)) (3)

where σ denotes the Sigmoid function, MLP is the 2-layer
multi-layered perceptron, Favg ch and Fmax ch are global
average pooled / global max pooled features along the chan-
nel dimension, where Favg ch and Fmax ch∈ RC×1×1. The
final output of the channel attention module is the original
3D CNN feature multiplied by the 1D attention tensor with
broadcasting along the spatial dimension.

Spatial attention module The structure of the spatial at-
tention module is illustrated in Fig. 3 (bottom). The archi-
tecture follows the same structure as the channel attention
module the only difference being the fact that the spatial at-
tention module focuses on the spatial dimension. The math-
ematical notation for the spatial attention computation is:

Ms(F ) = σ(Conv7x7(Favg sp) + Conv7x7(Fmax sp))
(4)

As written in Eq. 4, the spatially max/avg pooled fea-
ture Fmax sp Favg sp∈ R1×H×W are fed into a convolu-
tional layer to compute the spatial attention tensor Ms∈
R1×H×W .

MaxPool

AvgPool
Channel Attention

MC

Channel Attention Module

[MaxPool, AvgPool] Spatial Attention
MS

Spatial Attention Module

Input feature F

Channel-refined 
feature F’

Shared MLP

conv
layer

Figure 3: Spatial and Channel Attention Sub-modules.
Image taken from original CBAM [25].

4. Methods
4.1. Experiment Details

The aim of our experiment was to compare the perfor-
mance of the baseline CNN with an attention augmented
CNN for the COVID-19 classification task and understand
the benefits of attention. As previously discussed in Section
1, the ability to use artificial visual attention mechanisms in
neural networks can simulate cognitive attention which the
trained radiologist uses naturally in order to determine the
importance of clinical features in CT scans. With the addi-
tion of attention, we notice major changes in a qualitative
heat-map visualization over more clinically relevant fea-
tures along with significant increases in quantitative accu-
racy metrics. As also previously mentioned, we use CBAM
as our attention method for experimentation purposes. We
used the COVID-CT dataset [26] for training and validation
which consists of 349 COVID-19 positive CT scans and 463
COVID-19 negative CT scans (total 812 CT scan images).

4.2. Model Architectures

Baseline CNN The baseline standard CNN architecture,
illustrated in Fig. 4 (left), was taken from the default Tensor-
flow CNN documentation. The model is a very simple form
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Figure 4: The baseline CNN (8 layers) and the CBAM-
augmented CNN (11 layers) architectures.

of the standard CNN and consists of convolution (ReLU)
paired with max pooling (2x) followed by a final convolu-
tion and a flatten with dense layer for class label prediction.

Attention CNN CBAM is a self-contained module where
the input is a 3D tensor, and the output is an attention-
augmented 3D tensor. Because of the self-contained char-
acteristic, CBAM can be easily integrated in any part of the
CNN architectures and augment output feature maps with
attention. Placement of CBAM blocks followed standard
procedure discussed in the original paper [25]. In the origi-
nal paper [25], the authors suggest adding CBAM after ev-
ery convolutional block. In the baseline CNN, there are 3
convolutional layers as illustrated in the left part of Fig. 4.
The architecture is very simple and CBAM is placed sub-
sequently after the convolutional layers with ReLU. As a
result of this modification, the CBAM-augmented CNN is
illustrated in the right side of Fig. 4 (right) varied only by
the addition of attention in comparison to the baseline CNN.

Training specifics Model training was done in the Google
Colab high-ram IDE with the NVIDIA Tesla V100 GPU
(tensor core). Both models were trained across 30 epochs
using cross-entropy loss with the Adam optimizer (LR
0.001) in Tensorflow with Keras. Batch size was 34. Image
input size was 180x180 pixels. For this preliminary study,
we randomly split the dataset into training set (80%) and
validation set (20%) without cross-validation. The baseline
and CBAM-augmented CNN follow the same experimen-
tal settings. Starting from the randomly initialized weights,
CBAM is trained jointly end-to-end with other CNN layers.

5. Results

Quantitative To measure the performance of both mod-
els in a quantitative statistical manner, we calculate the F1
score metric. The F1 score is used to evaluate the balance
between precision and recall and is arguably a more robust
metric in comparison to accuracy for evaluating an image
classification based CNN model. Table 1 depicts the F1
score calculated at each 10 epoch iteration (total 30 epochs).

Epoch No Attention Attention
10 62.58% 73.58%
20 61.36% 74.62%
30 57.36% 73.89%

Table 1: F1 score comparison at epoch iterations.

The model with integrated visual attention (CBAM) re-
ceived a 16% higher F1 score at the end of training com-
pared to the model without attention (standard CNN). At-
tention added significant value to the predictive capabilities
of the standard CNN model in our sample. Through this sta-
tistical model validation, we demonstrate the potential value
of visual attention within COVID-19 classifiers for increas-
ing statistical performance of the standard 2D CNN model.

Qualitative Radiologists are trained over many years to
filter and focus on clinically relevant visual information.
This enables them to spend more time on evaluating per-
tinent visual features. When presenting deep learning based
techniques for the automated classification of CT scans, it
would seem beneficial to follow a similar attention-based
principle in order to start to approach radiologist level in-
terpretation. To identify the value of visual attention within
a COVID-19 detection pipeline visually, we use both mod-
els to visualize and compare qualitative heat-map activation
results from the final convolutional feature extraction layer.

The Grad-CAM (gradient-weighted class activation
mapping) algorithm [17] was used in order to visualize ac-
tivation heat-maps from both models in order to compare
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points of focus. Fig. 5 shows six images used for testing, the
COVID-19 diagnosis class and heat-map for each model.
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Figure 5: Grad-CAM visualization results. Comparison
of the standard CNN and CBAM-augmented CNN activa-
tion heat-maps on CT scan images. Red border: incorrect
prediction, Green border: correct prediction.

We observed major differences in activation heat-maps
through this comparison. As seen, the standard model fails
to cover visually important (lung) regions and is potentially
extracting features from unimportant areas (border etc.).
The attention augmented model infers spatial and channel
feature maps and covers more significant and potentially
higher frequency regions closer to the center of the CT scan.

In terms of interpretability, the ability to allow practition-
ers to understand how a deployed deep learning model is
making decisions or where it is focusing is vital in making
clinical decisions. With attention, we can aim to enhance
interpretability by enabling neural networks to employ the
ability to filter features similar to the trained radiologists.

6. Conclusion
We have presented a compact study which aims to em-

pirically demonstrate the efficacy of visual attention within
COVID-19 classification models. A high performing and
fast deep learning model can aid radiologists with high work
loads and in low resourced areas to interpret CT scans of

the lung during the COVID-19 pandemic. This technol-
ogy could be implemented to help in triaging of work lists
and also run in the background to support quality assur-
ance (QA). Attention shows promise as an efficient way to
improve the performance of standard CNNs with minimal
overhead [25]. In this comparison between a standard CNN
and an attention-augmented CNN, the attention mechanism
demonstrates higher performance through both enhanced
qualitative visualization of activation heat-maps and higher
F1 measures, in the COVID-19 single-slice CT classifica-
tion task. This compact informational study was performed
and submitted to the ICCV MIA-COV19D workshop [13].
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