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Abstract
COVID-19 diagnosis using chest x-ray (CXR) imaging

has a greater sensitivity and faster acquisition procedures
than the Real-Time Polimerase Chain Reaction (RT-PCR)
test, also requiring radiology machinery that is cheap and
widely available. To process the CXR images, methods
based on Deep Learning (DL) are being increasingly used,
often in combination with data augmentation techniques.
However, no method in the literature performs data aug-
mentation in which the augmented training samples are pro-
cessed collectively as a multi-channel image. Furthermore,
no approach has yet considered a combination of attention-
based networks with Convolutional Neural Networks (CNN)
for COVID-19 detection. In this paper, we propose the first
method for COVID-19 detection from CXR images that uses
an innovative self-augmentation scheme based on reinforce-
ment learning, which combines all the augmented images
in a 3D deep volume and processes them together using a
novel non-local deep CNN, which integrates convolutional
and attention layers based on non-local blocks. Results
on publicly-available databases exhibit a greater accuracy
than the state of the art, also showing that the regions of
CXR images influencing the decision are consistent with ra-
diologists’ observations.

1. Introduction
The standard procedure for COVID-19 detection uses

the Real-Time Polimerase Chain Reaction (RT-PCR), a bi-
ological test that is time-consuming, expensive, and suffers
from false negatives [28]. To overcome such drawbacks,
recent studies have shown the potential of computed to-
mography (CT) and chest x-ray (CXR) imaging in discrim-
inating between healthy and sick individuals [28]. In fact,
with respect to RT-PCR, CT scans and CXR exhibit a higher
sensitivity, faster acquisition times, and do not need costly
and expendable testing kits. Especially, CXR uses imaging
technologies that are cheap and currently available even in

less developed countries [3, 28].

To process the samples obtained with CXR imaging,
techniques based on Deep Learning (DL) are being increas-
ingly used, with the purpose of obtaining an accurate and
automatic classification that can help physicians in perform-
ing the diagnosis. In fact, DL-based methods have a high
accuracy and the capability of automatically learning data
representations, without the need for a handcrafted fea-
ture extraction step [10]. The main issue with DL-based
methods is that they suffer from reduced accuracy when
datasets have a limited dimensionality, which is often the
case of the datasets of CXR images of individuals affected
by COVID-19, due to the limited time frame in which it was
possible to capture data (≈ 1.5 years). To overcome this is-
sue, most methods in the literature adopt transfer learning or
data augmentation procedures [3, 13]. However, traditional
data augmentation procedures consist in randomly applying
a transformation to each input training image (e.g., rotation,
flipping), which is then processed individually. No method
in the literature has yet considered a data augmentation pro-
cedure in which the augmented images are collectively pro-
cessed as a multi-channel image. Moreover, there are no
approaches in the literature for COVID-19 detection that
consider attention-based networks [33], which have shown
state-of-the-art accuracy in several fields related to object
detection and classification [7].

In this paper, we propose a novel method based on DL
for the classification of CXR images individuals as healthy,
COVID-19, or viral-induced pneumonia. Our method intro-
duces the Spatio-Temporal Feature Generation, an original
approach based on reinforcement learning for inline self-
augmentation of training images. The augmented images
are concatenated to form a 3D deep volume, consisting in
a multiple-channel image, in which each channel represents
a self-augmented image. The 3D deep volume is then pro-
cessed by the 3D Non-Local DenseNet, a novel Convolu-
tional Neural Network (CNN), which combines dense con-
volutional layers with attention layers based on non-local
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blocks. In addition, the proposed approach consists in an
embedded system [9] with an end-to-end pipeline that first
segments the lung region from the CXR image, then aug-
ments the training images, and lastly performs the classifi-
cation.

We validated our methodology on a public dataset
of CXR images containing both healthy, viral induced
pneumonia and COVID-19-affected individuals, obtaining
greater accuracy than the methods in the literature.

2. Related Works
Based on the type of architecture and the kind of trans-

fer learning used, it is possible to divide DL-based ap-
proaches for COVID-19 detection using CXR images into
four categories (similarly to the classification proposed in
[3]): i) CNNs pretrained on ImageNet and shallow ML
classifiers; ii) CNNs pretrained on ImageNet and fine tun-
ing; iii) CNNs pretrained on CXR images and fine tun-
ing; iv) CNNs trained from scratch. In addition, we review
CNN-based methods for the segmentation of the lung re-
gion in CXR images.

CNNs Pretrained on ImageNet and Shallow ML
The works proposed in [13, 20] introduce an accuracy

baseline using different kinds of transfer learning available
in the literature, obtained by combining CNNs pretrained
on ImageNet and a shallow classifier. The method pro-
posed in [15] addresses the problem of limited availabil-
ity of training images by adopting a CNN combining the
ResNet architecture with an in-line data augmentation mod-
ule. A shallow classifier is then used to process the features
extracted by the CNN. The approach proposed in [27] also
considers the combination of pretrained CNNs in combina-
tion with shallow ML classifiers, then introduces an ensem-
ble of models to perform the classification and analyzes the
variability in the prediction.

CNNs Pretrained on ImageNet and Fine Tuning
The method proposed in [4] introduces an activation

function that improves on the sigmoid function in the cases
of unbalanced datasets, such as the situations in which
there are large quantities of CXR images but only a few
COVID-19 samples.

Rather than modifying an existing architecture, the
methods proposed in [32, 35] introduce the COVID-Net,
a lightweight custom architecture for the detection of
COVID-19 that is pretrained on the ImageNet database and
then fine tuned on CXR images. A custom architecture is
also described in [1, 31], based on regularizing the latent
space and improving the generalization capability, by re-
spectively using k-means clustering and a generative adver-
sarial network.

Lastly, the work described in [39] proposes a two-stage
methodology, in which one CNN segments the lung region
using the U-Net architecture [22] while the second CNN

includes a spatial attention map to predict the class of the
image. A similar approach is introduced in [19], with the
difference that the method splits each image into patches
for the purpose of data augmentation, then aggregates the
predictions from all the patches to provide a final decision.
CNNs Pretrained on CXR and Fine Tuning

The method introduced in [2] applies the capsule net-
work architecture, pretrained on CXR images, for the clas-
sification of COVID-19 samples. Capsule networks often
generalize well even in the case of small datasets [11].
A different architecture is used in the works described in
[16, 29], which consider a siamese network pretrained on
general-purpose CXR images and fine tuned with metric
learning, with the purpose of maximizing the inter-class dis-
tance in the latent space.

Lastly, the approach presented in [41] addresses the
problem of domain shift between different datasets, such
as between general-purpose CXR images and COVID-19
samples, by using a semi-supervised method to regularize
the latent space.
CNNs Trained From Scratch

The work described in [38] considers a two-level CNN
architecture that is trained from scratch using CXR images
and that can be based on existing CNNs, with one CNN
used to classify the CXR image as healthy or COVID-19
and one CNN determining which of the two lungs the dis-
ease has affected. Differently than [38], the approach pre-
sented in [18] aims at obtaining completely new CNN ar-
chitectures, by proposing an evolutionary algorithm that
searches the best neural architecture.
CNN-based Lung Region Segmentation

The methods described in [31,34] perform the segmenta-
tion using a U-Net and transfer learning, while the approach
proposed in [39] combines the U-Net with a data augmen-
tation scheme. Similarly, the method described in [40] in-
troduces a variation of the U-Net for segmenting the lung
region from CXR images.

Differently, the approach introduced in [19] uses a fully-
convolutional version of the DenseNet, while the work pro-
posed in [38] considers an attention-based mechanism to
locate the lung region in the image.

3. COVID-19 Assessment through Medical
Imaging

As introduced, one of the most widely employed meth-
ods to early diagnose pulmonary progression of the Sars-
Cov-2 infection is based on chest imaging analysis. It is
reiterated that the target of this proposal is the design of a
pipeline allowing CXR-based mass screening of the popula-
tion subject to COVID-19. We remark that CXR methodol-
ogy is effective and sustainable in the medical-health field.
In the next paragraphs the method herein proposed will be
exploited and analyzed.
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Figure 1: The proposed overall full pipeline scheme

3.1. The proposed pipeline
The overall scheme of the proposed pipeline is reported

in Fig. 1. Basically, the input of the designed pipeline is the
CXR image of the subject. This will be pre-processed and
fed as input to the first block of the pipeline that is the “Fea-
tures Extraction Block”. This sub-system is able to gen-
erate the features subsequently processed by the recurrent
self-attention block based on the use of the Criss-Cross al-
gorithm [12]. The output of this block contains the lung
lobes segmentation mask which will be applied to segment
the source input CXR image using the “Mask Application
Block”. The so segmented portion of CXR containing the
lobes of the lungs will then be further processed by the “RL
Spatio Temporal Features Generator Block” which will per-
form a 2D to 3D translation using a model configured by
a genetic-driven reinforcement learning algorithm. Out of
this block the so generated 3D feature maps will be classi-
fied by the “3D Non-Local DenseNet” architecture which,
through a densely connected architecture embedding Self-
Attention mechanisms, will classify these features by asso-
ciating the diagnosis of possible infection from COVID-19
or less. Each of the introduced blocks will be described in
the next sections.

3.2. The Features Extraction Block
The target of this block is the extraction of the discrim-

inating features from the patient’s CXR image to be pro-
cessed by the Recurrent Criss-Cross block. More in detail,
the input CXR image I(x, y) is passed through the designed
Deep Fully Convolutional Network [17] based on ResNet-

50 backbone which will produce the feature map Ψ with
the spatial size of Hs ×Ws. In order to provide more de-
tailed feature maps, the last two downsampling operations
have been removed and dilation convolutions in the subse-
quent convolutional layers [12] were employed, leading to
enlarge the dimension of the modified feature map Ψ to 1/8
of the input image I(x, y). Therefore, from Ψ, we obtain a
dimension reduced feature map Ψr. Then, Ψr is fed into the
Recurrent Criss-Cross Attention module to generate a new
feature map Φ which aggregates contextual information for
each pixel in its criss-cross path [17].

3.3. The Recurrent Criss-Cross Attention Block
To improve full inside-image dependencies over local

feature representations leveraging the well known atten-
tion mechanism [33], the authors enhanced the proposed
pipeline embedding a Criss-Cross attention module [12].
As introduced in [12] the Criss-Cross attention module is
able to collect contextual information in horizontal and ver-
tical directions to enhance pixel-wise representative capa-
bility of the whole deep pipeline. More in detail, for each
source feature map Ψr, an innovative Criss-Cross attention
module computes the contextual information of all the cor-
related pixels on its Criss-Cross path [12]. This attention
algorithm combined with further recurrent operations al-
lows the Criss-Cross method to leverage the embedded im-
age dependencies during the learning session of the deep
network [12]. Let us formalize the attention processing
embedded in the Criss-Cross module: given a local fea-
ture map Ψr ∈ RC×W×H , where C is the original num-
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ber of channels while W × H represents the spatial size
of the feature map Ψr, the Criss-Cross layer applies two
preliminary 1 × 1 convolutional layers on H in order to
generate two feature maps F1 and F2, which belong to
RC′×W×H and in which C’ represents the reduced number
of channels with respect to source C. Let define an Affin-
ity function able to generate the so called Attention Map
AM ∈ R(H+W−1)×(W×H). The corresponding affinity op-
eration is detailed. For each position u in the spatial di-
mension of F1, we extract a vector F1,u ∈ RC . Similarly,
we define the set Ωu ∈ R(H+W−1)×C by extracting feature
vectors from F2 at the same position u, so that, Ωi,u ∈ RC′

is the i-th element of Ωu. Taking into account the above
operations, we can define the introduced Affinity operation
as follows:

δAi,u = F1,uΩ
T
i,u (1)

where δAi,u ∈ D is the affinity potential i.e. the corre-
lation intensity between features F1,u and Ωi,u, for each
i = [1, ...,H +W − 1], and D ∈ R(H+W−1)×(W×H). At
this stage, we further apply a softmax layer on D over the
previously computed channel dimension to calculate the at-
tention map AM . Finally, another convolutional layer with
a 1 × 1 kernel will be applied on the feature map H to
generate the re-mapped feature ϑ ∈ RC×W×H to be used
for spatial adaptation. At each position u in the spatial di-
mension of ϑ, we can define a vector ϑu ∈ RC and a set
Φu ∈ R(H+W−1)×C . The set Φu is a collection of fea-
ture vectors in ϑ having the same row or column at the pro-
cessed position u. At the end, the so processed contextual
information will be obtained by a further function i.e. the
Aggregation operation defined as follows:

H ′
u =

H+W−1∑
i=0

Ai,u
M Φi,u +Hu (2)

where H ′
u is a feature vector in H ′ ∈ RC×W×H at po-

sition u while Ai,u
M is a scalar value at channel i and posi-

tion u in AM . The so defined contextual information H ′
u is

then added to the given input feature map Ψr to augment
the pixel-wise representation and aggregating context infor-
mation. The result of this pixel-wise augmentation algo-
rithm is the enhanced feature map Φ. More details about
Criss-Cross features processing are presented in [12]. The
so introduced Criss-Cross attention module is able to cap-
ture contextual information in horizontal and vertical direc-
tions but the connections between one pixel and its around
(pixel neighborhood) are not covered. To overcome this is-
sue, a Recurrent Criss-Cross processing has been proposed
in [12]. The Recurrent Criss-Cross approach allows the sin-
gle Criss-Cross operations to be unrolled into R loops. For
our purpose, we configured R = 2. At the end, the so
processed feature map Φ will be fed into the segmentation
layer as implemented in [12] to predict the final segmenta-
tion mask M(x, y).

Figure 2: Chest X-Ray (CXR) Image Segmentation Pro-
cess: a) Source CXR image; b) Segmentation Mask Ground
Truth (GT); c) Overlay with GT; d) Predicted Segmentation
Mask; e) Overlay with Predicted Mask

The “Mask Application block” will be employed to ap-
ply the so generated segmentation mask M(x, y) to the in-
put CXR image I(x, y) in order to extract the lung lobes
from the planar radiographic image. The resulting seg-
mented CXR image IM (x, y) will be reduced to 256× 256
through bi-cubic resizing. In Fig. 2d we report an instance
of the so generated CXR lungs mask M(x, y) compared
with the Ground Truth mask reported in Fig. 2b. The corre-
sponding segmented lung lobes are reported in Fig. 2c and
Fig. 2e respectively.

3.4. The RL Spatio-Temporal Features Generator
Block

The target of this block is the data augmentation by using
a 2D-to-3D intelligent generation of the discriminating fea-
tures retrieved from the input segmented CXR lung lobes.
As previously described, the radiographic image contains
few discriminating features, the more the COVID-19 dis-
ease is at the beginning. Certainly CT-scan based imag-
ing would be more discriminating but significantly more in-
vasive than CXR therefore not applicable as mass screen-
ing methodology. For this reason it was needed to apply
an intelligent features augmentation method. To this end
we have implemented a features generation/augmentation
mechanism based on the use of Cellular Non-Linear net-
works [23] combined with a reinforcement learning ap-
proach driven by a genetic-like optimization routine. Ba-
sically, we have designed ad-hoc generative model in order
to enhance the discriminating features of the input CXR im-
age. This block is now detailed.

The proposed generative model embeds ad-hoc config-
ured transient-response 2D Cellular Non-linear Networks
(2D-CNN) [23]. The paradigm of the transient-response
2D-CNN allows such spatio-temporal processing of the in-
put data. In the designed 2D-CNN, the cell denotes the ba-
sic unit [23]. Each cell of the 2D-CNN is connected only
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to its neighbor cells [6, 23]. The so designed 2D-CNN’s
cells can interact directly with each other within the de-
fined neighborhood [6]. Moreover, the cells not directly
connected together (out of the neighborhood) may affect
each other indirectly because of the propagation effects of
the dynamics of 2D-CNN specified below. Specifically, in
our proposed transient-response 2D-CNN every single cell
of the designed network dynamically evolves from the ini-
tial state along a well defined trajectory that converges —in
a time-transient session— to a specific steady-state equilib-
rium point [8, 23, 25, 36]. Formally, the proposed transient-
response 2D-CNN mathematical model is defined as fol-
lows:

C
dxij(t)

dt
= − 1

Rx
xij+

+
∑

C(k,l)∈Nr(i,j)

A1(i, j; k, l)ykl(t)+

+
∑

C(k,l)∈Nr(i,j)

A2(i, j; k, l)ukl(t)+

+
∑

C(k,l)∈Nr(i,j)

A3(i, j; k, l)xkl(t)+

+
∑

C(k,l)∈Nr(i,j)

D1(i, j; k, l)(yij(t), ykl(t))+

+Kb

1 ≤ i ≤M, 1 ≤ j ≤ N (3)

yij(t) =
1

2
(|xij(t) + 1| − |xij(t)− 1|) (4)

Nr(i, j) = {Cr(k, l); (max(|k − i|, |i− j|) ≤ r)}
(1 ≤ k ≤M, 1 ≤ l ≤ N) (5)

The Eqs. (3)-(5) characterize the space-time dynam-
ics of the cells (and related neighborhood) of the imple-
mented 2D-CNN. As introduced, we developed a 2D-CNN
which takes the segmented CXR lung lobes IM (x, y) as in-
put ukl and state xkl. This means that each pixel of the
segmented CXR image will be fed as the input ukl and
state xkl of each cell of the designed 2D-CNN. Specifically,
we will consider a network of dimensions equal to that of
the IM (x, y) ie 256 × 256. In Eqs. (3)-(5), the Nr(i, j)
represents the neighborhood of each 2D-CNN cell C(i, j),
taking into account a radius r. The variable yij(t) repre-
sents the output generated hierarchical feature. The matri-
ces A1(i, j; k, l), A2(i, j; k, l), A3(i, j; k, l), D1(i, j; k, l)
represent the so called cloning templates while Kb denotes
a bias coefficient. In the pipeline herein described, we
configured the cloning templates as 3 × 3 matrices with
a 1 × 1 scalar bias, all randomly initialized. Clearly, for
each setup of the cloning templates and bias, the proposed
2D-CNN will generate a feature by applying the model re-
ferred to in the Eqs. (3)-(5), converging to a steady-state

after its transient evolution. Therefore we investigated to
understand how many setups were necessary to generate a
set of discriminating features from each segmented CXR.
After several heuristic tests, we have ascertained that an
excellent trade-off in terms of performance and compu-
tational costs is represented by a framework of 32 sepa-
rate setups of cloning templates and bias. This means in
a nutshell, that for each segmented CXR a set of 32 dis-
criminating features will be generated by the designed 2D-
CNN, each through a transient evolution of the model re-
ported in Eqs. (3)-(5) and with ad-hoc configuration of
the cloning templates and bias. Moreover, for each of the
defined 32 setups we randomly initialized a further set of
3×3 binary masksABv

1 (i, j; k, l) andABv

2 (i, j; k, l) for the
v−th template matricesAv

1(i, j; k, l) andAv
2(i, j; k, l) with

v = 1, 2, ..., 32. From the tests carried out we noticed that
no significant gain in terms of performance was obtained
by extending the update of the coefficients also to the matri-
ces templates A3(i, j; k, l), D1(i, j; k, l), but only a higher
computational cost. Therefore, once initialized, these ma-
trices are no longer updated during the training phase. As
reported in Fig. 1, during the training of the overall pipeline,
the temporal dynamics of the overall loss L(t) will be retro-
propagated to this block, defining the elements of the ma-
trices Av

1(i, j; k, l) and Av
2(i, j; k, l). The configuration of

the matrices is performed by using the proposed reinforce-
ment learning algorithm. More in detail, we determined the
optimal policy Po that optimizes the cumulative discount
reward R:

P0 = argmaxP0
E[

∑
t≥0

γtR(·|st, at)|P0] (6)

where γ denotes a proper discounted coefficient in (0, 1).
In order to evaluate the state st (which represents a spe-
cific setup of the v− th cloning templates and bias) and the
goodness of a coupled state-action (st, at), we defined the
correlated value function V P0(st) and the Q-value function
QP0(st, at) respectively:

V P0(st) = E[
∑
t≥0

γtR(.|st)|P0] (7)

QP0(st, at) = E[
∑
t≥0

γtR(.|st, at)|P0 ] (8)

In order to find an optimal policy Po for assigning the co-
efficients of the cloning templates and the bias that would
maximize the ability of the whole pipeline to correctly dis-
criminate the 2D-CNN generated features we decided to
correlate the reward function with the retro-propagated loss
L(t) of the downstream deep classifier as reported in Fig. 1.
Specifically, the reward function will be defined as follows:

R = −(
∂L(Av

m(·), Dv
1(·),Kv

b (·), ABv

p (·), Bv, v, t)

∂t
)2

m = 1, 2, 3; p = 1, 2; v = 1, 2, ..., 32 (9)
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where L(·) denotes the loss of the overall pipeline which
depends on the state st (2D-CNN setup: A1(i, j; k, l),
A2(i, j; k, l), A3(i, j; k, l), D1(i, j; k, l) and bias Kb) and
the actions at while the policy P0 is defined by the related
update of the ABv

1 (i, j; k, l) , ABv

2 (i, j; k, l) and Bv masks
(representing the setup among the defined 32 which will be
updated).

For each training iteration tγ , a classical genetic algo-
rithm through common crossover and mutation opera-
tions [26] applied to the binary mask Bv , selects the v− th
feature configurations to modify (among the defined 32 se-
tups). Through the same crossover and mutation oper-
ations, the proposed algorithm changes the binary masks
ABv

1 (i, j; k, l) and ABv

2 (i, j; k, l) of the selected v − th se-
tups, thus identifying the coefficient of the cloning tem-
plates A1(i, j; k, l), A2(i, j; k, l) which will be updated (to-
gether with the bias) by means of a random update (ac-
tion at) generating a new setup of spatio-temporal (time
tγ) cloning templates Av

1(i, j; k, l, tγ), A
v
2(i, j; k, l, tγ) and

bias. The others templates remain unchanged with respect
to initial configuration. Only the so generated adaptive
setup which produces a decrease in the overall loss dynamic
L(t) will be accepted while the others will be discarded. At
the end of the training phase, for each segmented CXR im-
age, we have obtained a 32× 256× 256 Volume of Interest
(VOI) which optimizes the loss of the whole pipeline.

3.5. The 3D Non-Local DenseNet
The aim of this block is the classification of the generated

3D features by the previous RL Spatio-Temporal Features
Generator block. Considering that these features require a
specific classification capability, we have decided to use a
densely connected deep classifiers embedding self-attention
mechanisms based on Non-Local Blocks [37]. The de-
signed network architecture consists of a sequence of 3D
dense blocks. The first convolution layer processes the in-
put volume (VOI) with a size of 32 × 256 × 256 pixels
using a kernel size of 3 × 3 × 3 pixels. The output of
this layer is processed by further dense blocks composed
by [6, 8, 8, 8, 8, 8, 6] 3D layers respectively, that also have
a kernel of 3 × 3 × 3 in size. The output is followed by a
ReLU non-linear activation function. Moreover, each dense
block is preceded by [0, 1, 2, 3, 4, 5, 6] Embedded Gaussian
Non-Local blocks [36], respectively. Finally, a transition-
down layer with a 2 × 2 × 2 max pooling completes the
block. In short, the input VOI is processed by the de-
scribed blocks (both dense and non-local) generating the
feature maps which will gradually decrease (in dimension)
until they become a one-dimensional vector having length
of 864 × 1. The resulting feature map traverses three fully
connected (FC) layers followed by ReLU. The final layer
consists of a fully connected layer which outputs trained
values to a softmax layer for a final classification. In Ta-
ble 1, the details of the overall architecture are reported.

Table 1: The layers specification of the proposed Deep Ar-
chitecture

Block Output Size Layer(s) Description Layers Numbers
Convolution 32× 16× 256× 256 3× 3× 3 conv. 1

Dense Block 128× 16× 256× 256

Batch Normalization
ReLU

3× 3× 3 depth-wise conv.
1× 1× 1 point-wise conv.

6

Transition Layer 128× 8× 128× 128
1× 1× 1 conv.

2× 2× 2 maxpool 1

Dense Block 256× 8× 64× 64 [...] 8

Transition Layer 256× 4× 32× 32
1× 1× 1 conv.

2× 2× 2 maxpool 1

Dense Block 384× 4× 32× 32 [...] 8

Transition Layer 384× 2× 16× 16
1× 1× 1 conv.

2× 2× 2 maxpool 1

Dense Block 512× 2× 16× 16 [...] 8

Transition Layer 512× 1× 8× 8
1× 1× 1 conv.

2× 2× 2 maxpool 1

Dense Block 640× 1× 8× 8 [...] 8

Transition Layer 640× 1× 4× 4
1× 1× 1 conv.

2× 2× 2 maxpool 1

Dense Block 736× 1× 4× 4 [...] 8

Transition Layer 768× 1× 2× 2
1× 1× 1 conv.

2× 2× 2 maxpool 1

Dense Block 864× 1× 2× 2 [...] 6

Transition Layer 864× 1× 1× 1
1× 1× 1 conv.

2× 2× 2 maxpool 1

Fully Connected 350 FC, ReLU 1
Fully Connected 250 FC, ReLU 1
Fully Connected 250 FC, ReLU 1

Classification 2 FC, Softmax 1

The designed 3D densely connected classifier embeds
separable convolution layers (both depth-wise and point-
wise) [24]. In our pipeline, we adopted separable convo-
lutions in order to yield effective results with fewer com-
putational cost. As highlighted in Table 1, each dense
block is followed by a transition down layer, aiming to re-
duce the dimension of the feature map by half. Finally,
the output of dense blocks is passed to Non-Local Blocks.
Non-Local Blocks have been recently introduced [37], as
a very promising approach for capturing space-time long-
range dependencies and correlation on feature maps, result-
ing in a sort of “self-attention” mechanism. Self-attention
through Non-Local Blocks aims to enforce the model to ex-
tract correlation among feature maps by weighting the av-
eraged sum of the features at all possible positions in the
generated feature maps [37]. In our pipeline, Non-Local
Blocks operate on almost each convolution layer to extract
feature in dependencies at multiple hierarchical levels. For-
mally, given a generic deep network as well as a general
Non-Local Block input data x (feature map), the employed
non-local operation computes the corresponding response
yi (of the given Deep block) at location i in the input data
as a weighted sum of the input data at all positions j ̸= i:

yi =
1

ψ(x)

∑
∀j

ζ(xi, xj)β(xj) (10)

where ζ(·) denotes a pairwise potential which describes
the affinity or relationship between data positions at index i
and j, respectively. β(·) is a non-linear function modulating
ζ according to input data. The sum is then normalized by a
factor ψ(x). The parameters of potentials ζ(·) are learned
during model’s training as follows:
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Table 2: Average performance metrics for different deep
learning networks for three-class classification problem.

Schemes Models Acc. Prec.
(PPV)

Sens.
(Recall) F1 Scores Spec.

W.out image
augm.

SqueezeNet 95.19 95.27 95.19 95.23 97.59
MobileNetv2 95.9 95.97 95.9 95.93 97.95

ResNet18 95.75 95.8 95.75 95.78 97.88
InceptionV3 94.96 94.98 94.95 94.96 97.49
ResNet101 95.36 95.4 95.36 95.38 97.68
CheXNet 97.94 96.61 96.61 96.61 98.31

DenseNet201 95.19 95.06 95.9 95.04 97.87
VGG19 95.04 95.06 95.03 95.04 97.51

With image
augm.

SqueezeNet 95.10 95.18 95.10 95.14 97.17
MobileNetv2 96.22 96.25 96.22 96.23 97.80

ResNet18 96.44 96.48 96.44 96.46 97.91
InceptionV3 96.20 97.00 96.40 96.60 97.50
ResNet101 96.22 96.24 96.22 96.23 97.80
CheXNet 96.94 96.43 96.42 96.42 97.29

DenseNet201 97.94 97.95 97.94 97.94 98.80
VGG19 96.00 96.50 96.25 96.38 97.52

Proposed 98.82 97.67 98.82 98.25 98.82

Notes. Acc. = Accuracy; Prec. = Precision; Sens. = Sensitivity; Spec. = Specificity.

ζ(xi, xj) = eΘ
′(xi)

T Φ(xj) (11)
Where Θ′ and Φ are two linear transformations of the

input data x with learnable weights WΘ′ and WΦ:

Θ′(xi) =WΘ′xi; Φ(xj) =WΦxj ; β(xj) = Wβxj
(12)

For the β(·) function, we defined a common linear em-
bedding (classical 1 × 1 × 1 convolution) with learnable
weights Wβ . The normalization function ψ is:

ψ (x) =
∑
∀j

ζ(xi, xj) (13)

In Eqs. (10)-(13) an Embedded Gaussian setup is re-
ported [37]. We adopted the Embedded Gaussian as specif-
ically recommended for 3D applications by the authors in
[37]. The so processed features are fed into the final layer
composed by a stack of fully connected layers (with 500,
350, and 250 neurons, respectively) with softmax for final
classification, i.e. to perform a discrimination between a
COVID-19 induced pneumonia with respect to no COVID-
19 pathology or not COVID-19 pneumonia (viral pneumo-
nia).

4. Experimental Results
The proposed pipeline has been tested and validated on

the “COVID-19 RADIOGRAPHY DATABASE” reported
in [14]. The updated version of the mentioned database
includes 3616 COVID-19 positive cases, 10192 normal
cases and 1345 viral pneumonia CXR images. Preliminary
benchmarking results based on classical deep learning so-
lutions have been reported in [5, 21]. We tested the pro-
posed pipeline regarding the ability to discriminate patients
with early COVID-19 pneumonia versus patients with viral
no-COVID-19 pneumonia or patients with normal radiog-
raphy. Therefore, it is a three-class discrimination that is

practically more useful for physicians as it allows not only
to early report the onset of COVID-19 pneumonia but also
allows to discriminate cases of viral pneumonia not induced
by the COVID-19, thus avoiding unnecessary treatments for
these subjects with consequent optimization of healthcare
costs. In order to provide a robust benchmarking of the
proposed method, we proceeded to compare the approach
herein described with the deep solutions proposed in [5]
considering the same splitting of the input dataset (training,
validation and testing) of the three classes to be discrimi-
nated (COVID-19, Normal, No COVID-19 Viral Pneumo-
nia). Specifically, we considered a dataset of 423 images
for each class divided as follows: 304 samples for the train-
ing, 34 for the validation set and 85 for the testing set.
Next, we will extend the benchmarking results to include
the full set of images available in the updated version of the
dataset [14] and compare the results with the deep architec-
tures that performed best in the previous comparison. In the
following, we present more details about the used setup of
our pipeline.

The CXR input image will be resized with a bi-cubic
algorithmic to 512 × 512 pixels and fed as input to the se-
mantic segmentation block based on the Criss-Cross model
with ResNet-50 backbone and recurrence coefficient equal
to 2. The aforementioned semantic segmentation module
has been trained for 200 epochs using the SGD algorithm
as optimizer, an initial learning rate equal to 0.001 and
a dropout factor equal to 0.1. The so segmented image
IM (x, y) will be resized to 256 × 256 and augmented by
means of the RL Spatio-Temporal Features Generator block
configured to generate —for each segmented CXR— a VOI
having a size of 32 × 256 × 256. The used Cellular Neu-
ral Network backbone consists of a 3× 3 cloning templates
A1(i, j; k, l), A2(i, j; k, l), A3(i, j; k, l), D1(i, j; k, l) and
biasKb. Each of the generated VOIs will therefore be fed to
the downstream deep classifier. Our classification architec-
ture is based on a densely connected backbone as reported
in Table 1. To perform the related training, we defined a
mini-batch size of 10, an initial learning rate of 3e − 4, a
number of epochs equal to 900 and the stochastic gradient
descent with momentum (SGDM) algorithm as learning op-
timizer. The collected experimental results are reported in
Table 2 and Table 3 for each of the mentioned testing setups
respectively. As benchmark indicators we used the same
suggested in the compared survey manuscript [5]:

Accuracyclass i =

=
TPclass i + TNclass i

TPclass i + TNclass i + FPclass i + FNclass i
(14)

Prec.class i =
TPclass i

TPclass i + FPclass i
(15)

Sens.class i =
TPclass i

TPclass i + FNclass i
(16)
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Table 3: Average performance metrics comparision (current
dataset dimension): DenseNet-201 vs Proposed.

Models Accuracy Precision
(PPV)

Sensitivity
(Recall) F1 Scores Specificity

DenseNet-201 97.72 97.51 95.61 96.55 98.78
Proposed 98.05 97.54 96.59 97.06 98.78

Figure 3: Innovative Point-of-Care system. The Figure
shows the two embedded platforms connected to each other
via IP socket, where a) represents the STA1295 Accordo5
[30] and b) represents the Jetson TX2.

F1 scoreclass i = 2 · Prec.class i · Sens.class i

Prec.class i + Sens.class i
(17)

Spec.class i =
TNclass i

TNclass i + FPclass i
(18)

where class i is referred to one of the three classes
i.e. COVID-19 induced pneumonia, Normal CXR or NO
COVID-19 pneumonia. For each class i the term TP means
“True Positive”, whicle FN means “False Negative”, FP
means “False Positive” and TN means “True Negative”. For
each deep architecture used as benchmarking comparison,
the input CXR images have been resized according to their
input size specification [5]. The following Table 2 and Ta-
ble 3 report the collected comparison results (average re-
sults after 5-fold cross-validation) by considering the initial
dataset dimension and the current updated dataset respec-
tively. We remark that in Table 2 the dataset was composed
by 423 images for each class splitted as 304 samples for
the training, 34 for the validation set and 85 for the testing
set. About the results reported in the Table 3, the dataset
is composed by 3616 COVID-19 positive cases, 10192 nor-
mal cases and 1345 viral pneumonia CXR images splitted as
follows: training 940, validation 200, testing 205 for each
analyzed class. As confirmed from Table 2 and Table 3,
our solutions outperform the compared deep solutions even
though the pipeline based on DenseNet-201 (with augmen-
tation) has better performance than ours in terms of pre-
cision having a substantially comparable specificity to our
solution, which however shows a greater sensitivity and ac-
curacy.

In Table 3 we have reported a comparison between our
solution and the most performing pipeline implemented in
the scientific literature, namely the DenseNet-201. This

comparison —as remarked— is based on the current com-
position of the dataset. Even on a larger dataset, the pro-
posed method shows significantly higher performance than
the best platform proposed in the scientific literature, both
in terms of accuracy and sensitivity, while showing substan-
tially an overlapping specificity with respect to DenseNet-
201.

5. Conclusions and Discussion
In this proposed scientific contribution, the authors ex-

ploited an innovative pipeline for performing COVID-19
induced pneumonia early prediction by examining a simple
CXR of the subject. The CXR method allows to perform
mass screening of the population due to the high sustain-
ability of the method both in terms of costs and invasive-
ness (significant reduction of ionizing radiation compared
to CT-scans). The proposed pipeline includes a block that
performs an efficient semantic segmentation of the patient’s
CXR using a deep architecture embedding Criss-Cross self-
attention mechanisms. The so segmented lung lobes are
augmented by an innovative block that combines reinforce-
ment learning and enhanced nonlinear cellular networks.
The so generated 3D features are then classified by a deep
network that embeds further self-attention layers based on
Non-Local Blocks. The experimental results reported in Ta-
ble 2 and Table 3 confirmed the promising performance of
the proposed method also in comparison with other deep
architectures. Both in the first version of the used dataset
and in the recent version that includes a greater number of
images, the proposed method showed superior performance
compared to the state-of-the-art architectures. In addition
to the advantage in terms of performance, the proposed
pipeline allows a more efficient porting to embedded sys-
tems. Specifically, the authors have designed an innovative
Point-of-Care consisting of two embedded platforms con-
nected to each other via IP socket. The first platform con-
sists of a Jetson TX2 equipped with GPU RTX 2080 with 8
Gbytes of video memory while the second is a platform with
STA1295 Accordo5 Dual ARM A7 with GFX accelera-
tor [30]. The so-designed system is shown in Figure 3. Both
architectures contribute to the segmentation, augmentation,
and classification of the CXR source. Specifically, the Jet-
son TX2 architecture hosts the segmentation and classifica-
tion while the STA1295 Accordo5 platform hosts the aug-
mentation part of the features and the correlated graphical
rendering. The feed-forward inference process of the pro-
posed pipeline takes on average 10 s for segmentation and
about 20 s for classification and rendering, making the Point
of Care practical in the medical field. Both platforms host
a Linux-based operating system with OpenCV. Future de-
velopments are aimed at carrying out a large-scale clinical
study that allows not only to assess signs of COVID-19 lung
disease but also the related patient’s prognosis.
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J. L. Suárez, J. Luengo, M. A. Valero-González, P. Garcı́a-
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