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Abstract

We present an automatic COVIDI-19 diagnosis frame-
work from lung CT-scan slice images. In this framework,
the slice images of a CT-scan volume are first preprocessed
using segmentation techniques to filter out images of closed
lung, and to remove the useless background. Then a re-
sampling method is used to select a set of fixed number of
slice images for training and validation. A 3D CNN net-
work with BERT is used to classify this set of selected slice
images. In this network, an embedding feature is also ex-
tracted. In cases where there are more than one set of slice
images in a volume, the features of all sets are extracted and
pooled into a feature vector for the whole CT-scan volume.
A simple multiple-layer perceptron (MLP) network is used
to further classify the aggregated feature vector. The mod-
els are trained and evaluated on the provided training and
validation datasets. On the validation dataset, the precision
is 0.9278 and the F1 score is 0.9261. On the test dataset,
the F1 score is 0.8822. The code will be available at xxx.

1. Introduction

The novel COVID-19 coronavirus breaking out in late
2019 has been one of the worst disasters in the human his-
tory !. Therefore, it is very critical to stop the spreading
of the virus. So first a person has to be confirmed to have
COVID-19 before safety measures and treatments can be
taken accordingly. One example is [20], where thermal
imaging is used to detect fever patients and face recognition
is used to report and trace patients and their close contacts.

Among the techniques to diagnosis COVID-19, X-ray
and CT-scan images are studied extensively. In this paper,
we present an automatic diagnosis framework from chest
CT-scan slice images. The goal is to classify COVID-19,
and non-COVID-19 from a volume of CT-scan slice images

Ihttps://covid19.who.int/

of a patient. We use the dataset provided in the ICCV2021
MIA-COV19D challenge 2 [11]. Since there is no slice an-
notation in this dataset, 2D CNN classification network on
single slice image is not considered. Instead, 3D CNN net-
work is explored.

In this paper, we first discuss the preprocessing of CT-
scan slice images, which is very critical for good classifica-
tion performance. The goal of preprocessing is to prepare
good-quality slice images per volume for training and val-
idation in the CNN classification network. In this work,
we propose segmentation techniques using both traditional
morphological transforms and a deep learning method us-
ing UNet [18]. Since the 3D CNN network requires fixed
number of images as input, we adopt and revise a resam-
pling method used in [7]. In validation and testing time, we
propose a method to use all available good slice images to
make the final classification prediction.

A 3D network is widely used in many tasks including
video understanding (recognition, detection, captioning). In
videos, frame images at different time form a 3D series of
images. A 3D CNN network is good at aggregating the tem-
poral information. 3D network is also used in COVID-19
diagnosis, where the slice images at different spacing form
a 3D series of images. The correlation between slice images
is just analogous to the temporal information in videos. We
are the first to use a 3D CNN network with BERT (CNN-
BERT) for video action recognition [10] in classification of
COVID-19 from CT-scan images.

Most 3D CNN networks use fixed number of images as
input. Others can use all available images by a global pool-
ing method. In our study, to avoid the out-of-memory prob-
lem caused by using all slice images, we choose to use fixed
number of images as input to the 3D CNN-BERT network.
However, since the available images may be a lot more than
this fixed number, if only one set of them is used, some use-
ful information may be missed. Motivated by this insight,

Zhttps://mlearn.lincoln.ac.uk/mia-cov19d/
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we extract the embedding feature vector of all available sets
of images for every CT-scan volume, then aggregate one
global feature vector out of them. This feature vector is sent
to a simple MLP classifier for extra classification. This way,
both the advanced 3D CNN network with BERT and the in-
formation in all available image are used. Evaluation results
show that this pooling method and MLP can improve the
accuracy on the validation dataset by 1.6%. To our knowl-
edge, we are the first to explore using embedding features
of all available sets of slice images in a 3D CNN network
for classification of COVID-19.

On the provided validation dataset, we achieve an accu-
racy 0.9278, and an F1 score 0.9261. On the test dataset,
we achieve an F1 score 0.8822.

2. Related Work

Deep learning has been used in a lot of medical imaging
analysis and diagnosis, e.g. in [13], [12], [14].

Since the outbreak of the COVID-19 pandemic, a lot of
researches have been done to diagnose it using deep learn-
ing approaches, mostly CNNs on CT scan images or X-ray
images. For a complete review, please refer to [16] and [1].

Among the classification methods, some use 2D network
on slice image individually and make prediction for every
image. This is called 2D network. To make a decision for
a patient, some kinds voting method is typically used [2],
[17], [8]. Others use 2D network on slice image, and gener-
ate embedding feature vector for every image, then all fea-
ture vectors are pooled to a single global feature vector, and
a few fully-connection (FC) layers are used for classifica-
tion. This is called 2D+1D network [15], [9], [3]. The third
method is a pure 3D CNN network, where slice annotation
is not needed, and a set of or all the available slice images
are used as input, and the 3D network process all these input
images all at once in a 3D channel space [25], [26], [7].

In the 2D CNN method, some use the lung mask seg-
mentation, but most of them directly use the raw slice im-
age. The COVID-MaskNet [21] uses a segmentation net-
work to localize the disease lesion, then use a FasterCNN-
based approach to do the classification on the detected le-
sion regions. The COVID-Net Initiative [5], [4] have done
extensive studies of COVID classification on both CT scan
images and X-ray images. They also collect and publish
the largest CT image dataset - so called COVIDx CT-2
dataset. In [17], Resnet50 with FPN is used. In [2], a com-
bination of infection/non-infection classifier, and a COVID-
19/CAP/normal classifier is used.

In the 2D+1D method, in [15], a pretrained 2D Resnet
network is used to extract a feature vector out of every im-
age, then all the features are pooled using max-pooling.
This feature is sent to a few FC layers to make classifica-
tion prediction. In [9], a Capsule network is used to extract
feature vector for every image, then these feature vectors are

pooled using max-pooling into a global feature vector and
a decision is made for the volume. In [3], a feature vector
is extracted for every image, then multiple pooling methods
are ensembled to generate a global feature vector before a
classification is made. In [11], an RNN is used to aggregate
2D features.

In the 3D CNN method, in [25], a 3D CNN network is
used, however, with both the slice image and a segmented
lung mask as input. They discard a fixed percentage of slice
images at the beginning and end of a CT-scan volume. In
[26], the authors first segment the lung mask from a slice
image using traditional morphological transforms, then use
this mask to select good slice images and generate lung-
only images (no bone or tissue) slice images. To make the
number of images a fixed number, they use 3D cubic inter-
polation to regenerate slice images. In [7], 3D CNN net-
work using a fixed number of slice images as input is used.
Instead of using a fixed 3D CNN architecture, an autoML
method is used to search for best 3D CNN architecture in
the network space with MobileNetV2 [19] block.

3. Data Preprocessing and Preparation

The first goal of preprocessing is to select good slice im-
ages for training and validation. The second goal is to seg-
ment the lung mask of a slice image, so a masked image,
where background, bones, vessels, tissues are all blacked
out. This has been shown useful in [9], [8], [26].

3.1. Morphological Lung Segmentation

In this work, we use two segmentation techniques to seg-
ment the lung region out of the slice image. The First tech-
nique is based on traditional morphological transforms. It
works well to get an bounding box of the lung (including
bones and tissues), and a coarse mask image of the two
lungs. The bounding box can be used to remove background
of the slice image, and the mask can be used to tell if the
lungs are closed. This bounding box and the mask image
are used to select slice images of a patient for training and
validation.

The segmentation involves Gaussian blurring, binariza-
tion, erosion and dilation, contour finding, seed filling,
clearing border, labelling, filling holes etc. Shown in Figure
1 (a)-(c) is an example of this segmentation. In this exam-
ple, the raw image has infection lesions. In the lung mask,
many important parts are filtered out by this segmentation.

3.2. UNet Segmentation

The morphological lung segmentation may miss many
important details of the true lung mask, particularly near the
edges, and on images with infection lesions. So it does not
work well for segmenting the lung images for COVID-19
classification. To overcome this problem, a UNet segmen-
tation network [18] is trained. The datasets from Kaggle
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Figure 1. Example of lung segmentation: (a) raw image, (b) af-
ter binarization, (c) morphological segmented mask, (d) origi-
nal UNet segmented mask, (e) refined UNet segmented mask, (f)
masked lung image

3 and CNBC [27] are used. Since the ICCV-MIA dataset
[11] does not have any lung mask annotations, we do not
retrain the model. We simply use the trained UNet model
to segment the slice images in the ICCV-MIA dataset. Fur-
thermore, since there are holes and noisy boundaries in the
segmented mask, we use further morphological transforms
to smooth the edges and fill the holes. The mask image af-
ter this step is used to extract the lung image for training
and validation. Shown in Figure 1 (d)-(e) is example of the
original and refined UNet masks. Figure 1 (f) is the masked
lung image.

Generally speaking, the UNet segmentation works better
than the morphological segmentation. However, it works
poorly on the closed-lung images. That is why we still need
the morphological segmentation for the selection of slices
images.

3.3. Selection of Slice Images

Previous works show that some slice images, particularly
those of closed lungs, are useless in classification the CT-
scan volume [17], [25], [26]. Therefore, it is beneficial to
filter out these closed-lung slice images. In [25], a fixed
percentage of slice images at the beginning and end of a
volume is discarded. In [26], lung mask is segmented, and
the images whose percentages of lung mask in the whole
image is less than a threshold are filtered out. We use a
method similar to [26]. However,since some volumes have
very small number of slice images, we make the threshold
adaptive. In the first step, the threshold 0.7 is used, i.e., slice
images whose percentage of lung mask is less than 0.7 of
the largest percentage in the whole volume are filtered out.
In the next step, if the remaining number of slice images is

3https://www.kaggle.com/kmader/finding-lungs-in-ct-data

too few (e.g., 8), then we reduce the threshold by 0.1 until 8
images remain or the threshold reaches 0.

3.4. Slice Images Resampling

As we explain before, we use fixed number (32) of slice
images as the input to the 3D CNN-BERT network. How-
ever, since the number of available slice images is varying,
we need to use resampling strategy to generate the input
slice images. There are two cases down-sampling and up-
sampling. We use the resampling idea similar to [7]. On
the training dataset, random sampling is used, while on the
validation and test datasets, a symmetrical and uniform re-
sampling is used.

In the training and validation time, only one set of im-
ages is selected in every epoch. However, in the testing
time, we use a different symmetrical resampling method.
Instead of selecting one set of data, we select multiple sets
of data if there are enough available images.

3.5. Input Image Composition

The 3D CNN-BERT network [10] requires to have three-
channel input image, which is typically RGB. In CT-scan,
all slice images are in gray-scale. So we need to compose
three-channel input images.

The first choice is the raw gray-scale slice image, which
is denoted as an R channel, as shown in Figure 1 (a). In
[25], the authors propose to use the segmented mask as part
of the input. We use it as well as one choice in our design,
which is denoted as an M channel, as shown in Figure 1
(e). In many works, the lung image masked by the mask,
i.e., the pixels inside the lung mask keep their gray-scale
values, while all other pixels have value 0, are used as in-
put to the classification network. We use this lung image
as the third choice, which is denoted as the L channel, as
shown in Figure 1 (f). So in comparison to the RGB image,
we have RML image, where the channels R, M, L can be
combined in many different ways. We will show different
performance of these images.

Since we have the bounding box for every image in a CT-
scan volume, we take the largest bounding box of all images
as the bounding box for the volume. This bounding box can
be used to crop the RML image inside the bounding box.

4. Classification Networks

In this paper, we explore two levels of 3D classification.
In the first level, a 3D CNN-BERT network [10] is used. In
the second level, feature vectors of all available set of slices
images are pooled to a global feature vector for every CT-
scan volume. This feature vector is sent to a simple MLP
classifier for second level classification.
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Figure 2. The modified 3D CNN-BERT Architecture from [10]

4.1. 3D CNN-BERT Network

We reuse the 3D CNN-BERT network in [10], as shown
in Figure 2. This architecture utilizes BERT-based temporal
pooling for video action recognition. In this work, we use
it to pool the correlation between CT-scan slice images. In
this architecture, the selected 32 slice images from the re-
sampling scheme are propagated through a 3D CNN archi-
tecture without applying temporal global average pooling
at the end of the architecture. A learned positional encod-
ing is added to the extracted features. In order to perform
classification with BERT, additional classification embed-
ding (xcls) is appended (represented as red box in Figure
2). The classification of the architecture is implemented
with the corresponding classification vector ycls which is
sent the FC layer, producing the classification output.

As the authors point out, the use of the temporal atten-
tion mechanism for BERT is not only to learn the conve-
nient subspace where the attention mechanism works effi-
ciently, but also to learn the classification embedding which
learns how to attend the temporal features of the 3D CNN
architecture properly [10]. In [10] many 3D backbone net-
works are studied, including the R(2+1)D [22]. On two
main video action recognition benchmark datasets, this ar-
chitecture achieves state-of-the-art performance. For more
detail of this architecture, including the cost function, please
refer to [10].

In this paper, we use the R(2+1)D backbone [22] where
the Resnet34 [6] is used. We use 32 slice images as input.
We make some modifications, including using input image
size 224x224, while 112x112 is used in [10], and outputting
the embedding feature. We use very different data augmen-
tations from [10], which are proven effective to bring the
best performance.

4.2. MLP Classification Network

The 3D CNN-BERT network produces a classification
result for a single set of input slice images. For CT-volumes
where there are more than one set of slice images, we want
to process all available slice images in order not to miss
some useful information. Therefore, we propose to use a
second level MLP classifier on the pooled embedding fea-

embedding features
from 3D CNN-BERT o
£
©
= B utm B &
& id
. % m—pl II :ﬁ%‘ﬁl—cevid
e 5
) é < FC2 | Activation
FC1 I Dropout

Figure 3. The MLP classification network

ture vectors out of the 3D CNN-BERT network.

To aggregate a global feature vector from multiple local
feature vectors, the max-pooling and the avg-pooling are
two most popular methods. We consider both of them, and
a concatenation of them. The first FC1 layer has 128 neu-
rons, and the second FC2 layer has 32 neurons. We consider
different activation functions, including ReLU and Sigmoid
after each FC layer. In order to prevent overfitting, we use
drop out of 0.5 after first two FC layers. This MLP network
is depicted in Figure 3.

5. Experiment Results
5.1. Dataset

In the ICCV-MIA dataset [11], there are 1552 training
CT-scan volumes, 374 validation volumes, and 3455 test
volumes. In each volume, there are various number of slice
images, ranging from 1 to more than a thousand. There
are no slice annotations, so 2D CNN classification is not
possible if not using extra datasets.

Most of the sizes of the images are 512x512. However,
there are quite a lot images whose sizes are not so. So we
first do a quick check, if the size of an image is not 512x512,
it is resized to 512x512 before any other preprocessing is
applied.

For the Unet segmentation, we use the annotated dataset
we find on Kaggle and from CNBC [27]. In the CNBC
annotation, three types of annotations - lung field, Ground-
glass opacity, and Consolidation. We merge all three types
to the lung field.

No other datasets are used in training or validation of the
3D CNN-BERT network or the MLP network.

5.2. Implementation details

The 3D CNN-BERT is implemented with Pytorch frame-
work. Input image size is set to 224x224. In order to do so,
a few changes are made in the source code from [10]. We
choose to use 32 slice images as input and use the R(2+1)D
backbone. We use the Adam optimizer with a initial learn-
ing rate 1E-5. A reduced learning rate on plateau with a
factor 0.1 and 5 epoch patience is used. The training runs at
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most 200 epochs with early stopping. The validation accu-
racy is used to select the best model.

The MLP network is also implemented with Pytorch.
The input feature vector size is 512 or 1024. We use the
Adam optimizer with a initial learning rate 1E-4 or 1E-5.
A reduced learning rate on plateau with a factor 0.1 and
5 epoch patience is used. The training runs at most 100
epochs with early stopping. The validation accuracy is used
to select the best model.

The UNet segmentation network is implemented with
Keras-2.3 and Tensorflow-GPU-2.2. The input image size
is 512x512. We use the Adam optimizer with a initial learn-
ing rate 1E-5. A reduced learning rate on plateau and early
stopping are used. The validation loss is used to select the
best model.

Data Augmentations: To make the model generalize
well, data augmentation is very important. In this work,
on the training dataset, we use random Affine transforms
with rotation of 10 degree, scaling range of 0.8-1.2, transla-
tion range of 0.1, width shearing of 10 degree, brightness of
50%, contrast of 30% [25]. In addition, the multiple scale
cropping (MSC) [24] is used with the image enlarged by
25%. Random horizontal flipping is also used. On the val-
idation and test dataset, central cropping is used with the
image enlarged by 25%. In the ablation study we will show
some results using different data augmentation methods.

5.3. Ablation Studies
5.3.1 3D CNN-BERT Network

In this section we compare the performance of different
configurations on the validation dataset.

Input Image Composition and Bounding Box Crop-
ping: In first panel of Table 1 we show the validation
accuracy of different image compositions without or with
bounding box cropping. In these tests, the MSC and ran-
dom horizontal flipping augmentations are used.

Data Augmentation: We use the best configuration
from the previous tests, and test the effects of data augmen-
tation. The most important factor is to find out if the random
Affine transforms help the accuracy. The results are shown
in the second panel of Table 1.

From these studies, we find that the RML image with
MSC augmentation without bounding box cropping gives
the best accuracy performance.

3D CNN without BERT: We use the best configuration
from the previous tests, and test the effect of 3D CNN net-
work without BERT. The result is listed in the third panel
of Table 1. It is a surprise to see that without BERT, the 3D
CNN performs very poorly. We also try different 3D net-
work, like the resneXt3D [23], the accuracy is around 0.71.
This shows the power of the BERT on classifying COVID-
19.

Input Augmentation Crop? Acc(%)
RRR MSC No 89.06
LLL MSC No 89.84
RRL MSC No 90.10
RML MSC No 91.18
RML MSC Yes 87.43
RML MSC+A No 90.91
RML A No 87.43
RML-NoBERT A No 68.45

Table 1. 3D CNN-BERT classification accuracy on validation
dataset for different configurations. In augmentation, two impor-
tant approaches Affine transforms (A) and multiple scale cropping
(MSC) are studies.

Pooling  Activation  Accuracy(%)
- - 91.18 (baseline)
Max ReLU 91.44
Avg ReLU 90.91
Both ReLU 91.18
Max Sigmoid 91.71
Avg Sigmoid 91.18
Both Sigmoid 91.98
Both Tanh 91.72

Table 2. MLP classification accuracy on validation dataset.

5.3.2 MLP Network

We use the RML image with the Affine transform and
multiple-scale cropping of Table 1 in this test. Embedding
features of all training and validation volumes are extracted
and save as Pickle files.

We test the max-pooling, avg-pooling, and concatenation
of both. For the activation function, we test ReLLU, Sigmoid,
and Tanh functions. The results are listed in Table 2. We see
that the concatenation of the max-pooling and avg-pooling
gives better results than using only one of them. Out of
the three activation functions, the Sigmoid gives best per-
formance but takes longer time to converge or needs to use
larger initial learning rate 1E-4.

Furthermore, we find that adding a new set of selected
images at the center of a CT-scan volume to previous sym-
metrical and uniform resampling can help improve the MLP
performance, so we include it in the final benchmarking
tests.

5.4. Benchmark Results

After the ablation study, we choose a few top perform-
ers to bench mark our algorithm. On the ICCV-MIA [11]
validation dataset, the benchmark results are listed in Ta-
ble 3. In this table, both the accuracy and the F1 score are
presented.

On the ICCV-MIA test dataset [11], the best F1 scores

443



Dataset  3D-CNN-BERT MLP
Validation  (91.18,91.00)  (92.78,92.61)
Validation  (90.91,91.65)  (92.25,92.05)

Test (-,88.22) (-,87.4)

Table 3. Classification results (accuracy %,F1-score %) on the val-
idation and test datasets.

from the 3D CNN-BERT and the MLP classification net-
works are 88.22% and 87.4% respectively.

6. Conclusions

In this paper we present a 3D CNN-BERT network with
an extra MLP network for COVID-19 classification. The
MLP can improved the accuracy by 1.6%. On the validation
dataset, our best F1 score is 92.61%. And on the test dataset,
our best F1 score is 88.22% from the 3D CNN-BERT, while
the MLP does not bring extra improvement.
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