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Abstract

Automated diagnosis of covid19 in chest CTs is becom-
ing a clinically important technique to support precision
and efficient diagnosis and treatment planning. A few efforts
have been made to automatically diagnose the COVID-19 in
CTs using CNNs, and the task still remains a challenge. In
this paper, we present a transformer-based framework for
COVID19 classification. We attempt to expand the adap-
tion of vision transformer as a robust feature learner to the
3D CTs to diagnose the COVID-19. The framework consists
of two main stages: lung segmentation using UNet followed
by the classification, in which the features extracted from
each CT slice using Swin transformer in a CT scan are ag-
gregated into 3D volume level feature. We also investigated
the performance of using the robust CNNs (BiT and Effi-
cientNetV2) as backbones in the framework. The dataset
from the ICCV workshop: MIA-COV19D, is used in our ex-
periments. The evaluation results show that the method with
the backbone of Swin transformer gain the best F1 score
of 0.935 on the validation dataset, while the CNN based
backbone of EfficientNetV2 has the competitive classifica-
tion performance with the best precision of 93.7%. The fi-
nal prediction model with Swin transformer achieves the F1
score of 0.84 on the test dataset, which doesn’t require an
additional post-processing stage.

1. Introduction
The Coronavirus Disease 2019 (COVID-19) pandemic

has led to tremendous public health concern across the
world. The COVID-19 caused by severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) harms patients
due to the lack of effective clinical treatment with antivi-
ral drugs [4], though some vaccines are available to date.
As such, it is of great crucial to prevent the further spread
of the disease by introducing a faster and more efficient
diagnosis of COVID-19, where it’s been commonly ac-
cepted that the Reverse transcription-polymerase Chain Re-
action (RT-PCR) test is the gold standard for the diagno-

sis of the COVID-19 [1]. However, the high false-negative
rate of RT-PCR raises a concern of missing some poten-
tial cases [4]. Therefore, as an important complementary
tool to the RT-PCR [1, 7], chest CT imaging has been
used in clinical flow to diagnose and grade the COVID-
19. Studies [20, 8] have reported that some radiographic
signs can be observed in chest CT images, such as ground-
glass opacities (GGO), crazy-paving pattern and consolida-
tion. However, with the rapidly increasing number of pa-
tients in the current situation, it leads to a great challenge
for manually interpreting CTs by radiologists. For instance,
lesion/GGOs presented in CTs are tiny, especially in early-
stage cases that could substantially increase the missed de-
tection rate. Moreover, the diagnosis error could be in-
troduced due to the similar signs between COVID-19 and
Non-COVID-19 CTs [22]. In this case, automated inter-
pretation of chest CT is non-trivial and becoming a clin-
ically important technique to support precision and effi-
cient diagnosis, treatment planning and quantify the dis-
charge criteria [20]. Recently, a number of deep learning-
based methods have been proposed for the automatic di-
agnosis of COVID-19. For instance, Wang [26] proposed
a 3D convolutional neural network (CNN) for COVID-19
classification and localization, where the diagnosis of the
COVID19 is treated as a typical image classification prob-
lem using a 3D CNN, the lesion localization was achieved
by employing the class activation mapping (CAM). A spe-
cific CNN was designed names COVIDNet-CT presented
in the studies [9, 2], which was further enhanced to the
COVIDNet-CT2 with fewer parameters. The core architec-
ture in these methods was constructed via machine-driven
design exploration. Li et al. [16] proposed a 2D CNN for
feature extraction from each slice in a CT, and the slice-
level features are further fused via a max-pooling layer.
In the study [22], the attention mechanism (including both
channel-wise attention (CA) and depth-wise attention (DA))
was integrated into a modified 3D Resnet18 that lever-
ages a residual network to automatically identify COVID-
19 from other common pneumonia and normal people in
the chest CTs. A unified DNNs based framework presented
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Figure 1. The general framework of our covid19 diagnosis method. (a) is the pre-processing stage for lung segmentation, (b) is the image
classification stage, where the features extracted from each slide in a CT scan are aggregated into CT volume level feature via max-pooling.

in the studies [12, 14, 13, 15], which couples the CNNs and
RNNs for prediction of COVID-19 and pneumonia from CT
scans. Domain adaption of applying the unsupervised latent
representation learning allows the method to be portable
in other independent data without extensive training. Al-
though plenty of efforts have been made to automatically di-
agnose the COVID-19 in CTs using deep learning, the task
remains a challenge due to similarities of appearances be-
tween COVID and Non-COVID CTs. Moreover, almost all
existing methods heavily rely on the strong capacity of fea-
ture representation learned by CNN. However, few attempts
have been made to adopt the Vison transformer architec-
tures [6, 18], though the latest studies [3, 21] have shown
its robustness and superior performance in image classifi-
cation compared to the CNN based architectures. In this
paper, we seek to expand the applicability of vision trans-
former such that it can be served as a more robust learner
for diagnosis of the COVID-19 in chest CTs. We conducted
our study by participating in the ICCV21 workshop of “AI-
enabled Medical Image Analysis Workshop and Covid-19
Diagnosis Competition (MIA-COV19D)” and reported our
method and experimental results in this paper.

2. Methods and Materials
2.1. Methods

In this study, we introduce a vision transformer classi-
fication network for COVID19 diagnosis in chest CTs, in-
spired by the success of the Swin vision transformer and
CT classification work in [26, 16]. The general framework
is shown in Figure 1, which consists of 2 main stages: lung
segmentation as pre-processing followed by the image clas-

sification using Swin transformer as backbone [18]. In the
first stage, a pre-trained Unet [10] for lung segmentation in
CTs was employed to generate lung masks. There are two
merits to do so. 1) it allows the learning to be limited in the
specific lung region. 2) while it could reduce the computa-
tional cost using the deep architectures for the CT volume.
In the second stage, the Swin vision transformer is used to
extract features from each 2D slices in a CT volume, which
are further aggregated into volume level features via a max-
pooling layer.

2.1.1 Backbone of swim transformer

Recently, the success of deploying the transformer with at-
tention mechanism [6, 24] in the Computer Vision (CV)
motivates the researchers to seek its applicability and adap-
tion to various data modalities in different applications. We
attempt to expand its adaption as a robust feature learner
to the 3D CTs for the diagnosis of the COVID-19. More
specifically, we adopted the swim transformer [18] as the
backbone for the feature learning in the framework shown
in Fig. 1, given the superior scaling strategy deployed
compared to the previous ViT [6, 24]. In this section, we
briefly introduce the preliminaries related to the ViT and
its variant-the swim transformer. The ViT is constructed by
stacking transformer blocks, consisting of two main compo-
nents: Multi-head Self Attention (MSA) and Feed-Forward
Network (FFN). In the image classification task, the images
are first divided into patch embedding sequences and then
fed into the transformer blocks.

Multi-head Self Attention (MSA) is the core compo-
nent of the ViT model, which is essentially dot product at-
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tention [25]. The self-attention is expressed as follows:

Attention(Q,K, V ) = Softmax(QKt/
√
d)V (1)

where Q = XWQ, K = XWK , V = XWV repre-
sent Query, Key and Value matrices, respectively. Here, the
W is a linear transformation with weighs w, and input X
is computed from a sequence of N input vectors via linear
projections. d is the query/key dimension, and

√
d in (1)

is a normalization term. The MSA, as the name implied, h
self-attention (heads) are considered in the transformation
that allows the more representative features to be learned
through the stacked blocks. The output of each head forms
a sequence of size N ×d. So that a sequence of N ×dh de-
rived from h heads is then fed through a linear transforma-
tion layer that produces a final output of the size of N ×D
from MSA.

Each transformer block comprises MSA, Layer Nor-
malization (LN), FFN, and skip connection. And its imple-
mentation can be formulated as follows:

z
′

l = MSA(LN(zl−1) + zl−1)

zl = FFN(LN(z
′

l) + z
′

l)
(2)

where the z
′

l and zl are the output features of the MSA
and FFN at the current lth block, respectively. The stan-
dard architectures [6, 24] equipped with the aforemen-
tioned transformer blocks are characterized by conducing
the global self-attention that leads to quadratic complex-
ity with respect to input sequence size. Alternatively,
as a general-purpose architecture, the Swin transformer
achieves a better speed-accuracy trade-off compared to the
standard ViTs. It is a hierarchical transformer that is built by
replacing the standard MSA in the transformer block by the
shifted window. The code design of shifted window enables
to compute self-attention within local windows, instead of
learning representation with self-attention globally in the
standard ViTs. To overcome the lack of connection across
the non-overlapped windows generated using a regular win-
dow partitioning strategy in the design, a shifted window
partitioning method is proposed, which adopts a windowing
strategy that shifted from the regularly partitioned windows
in the preceding layer. As such, following the expresses (2),
the consecutive Swin transformer blocks are computed as

z
′

l = W MSA(LN(zl−1) + zl−1)

zl = FFN(LN(z
′

l) + z
′

l)

z
′

l+1 = SW MSA(LN(zl) + zl)

z
′

l+1 = FFN(LN(z
′

l+1) + z
′

l+1)

(3)

Where W MSA is window based MSA using regularly
windowing configuration, and the SW MSA is windowing

using shifted window partitioning configuration, To provide
a comparison between Transformer architecture and CNN
based architecture, we replaced the backbone shown in the
(c) of Figure 1 by the BiT and EfficientNetV2.(we refer the
reader to [11, 23] for more details on these two state-of-the-
art CNN models).

2.1.2 Evaluation methods

We utilize traditional F1 score for binary classification to
measure the performance among the different settings for
model selection.

F1score = 2× precision× recall

precision+ recall
=

tp

tp+ 1
2 (fp+ fn)

(4)
Finally, our method is evaluated by Macro F1 Score for

competitive comparison, which is the challenge preferred
metrics.

Macro F1score =
1

n

N∑
i=0

F1scorei (5)

Where i is the class/label index and N is number of
classes/labels.

2.2. Dataset

We use the MIA-COV19D competition dataset [12] in
our experiments, which splits into training, validation and
test sets. The dataset consists of about 5,000 CT scan se-
ries, and each scan consists of a sequence of 50-700 2-D CT
slices, where the ground truths are provided with respect to
labels of Covid-19/non-Covid-19 diagnosis for each case.
The training set contains 1560 CT scans which include 690
COVID-19 cases and 870 Non-COVID-19 cases. The val-
idation set consists of 374 CT scans, of which 165 are
COVID-19 cases, and 209 are non-COVID-19 cases. No
additional datasets were used in our experiments for CTs
classification. The test dataset was used to validate our
method which contains additional 3455 CT scans.

3. Experiments and results
3.1. Data preprocessing

Each CT scan consists of a sequence of 2D CT slices,
and each slice is store in jpeg format. Due to the fact that
pre-trained weights of the Unet [10] for lung segmentations
were obtained by training and evaluating from the data in
the standard Hounsfield scale. [17] We projected the im-
age intensity back to the Hounsfield scale that allows us
to produce consistent lung segmentation masks using the
pre-trained weights. To further improve the image loading
efficiency in the training, a sequence of slides in a case is
converted to a 3D CT volume saved in NIfTI format.
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Backbone Input size Key architecture Parameters
BigTransfer 224×224 BiT-M-ResNetV2 101×1 45m

EfficientNetv2 224×224 EfficientNetV2-M 55m
SwinTransformer 224×224 Swin-B 88m

Table 1. The experimental settings with different backbones

Backbone Precision(%) Recall(%) Accuracy(%) F1(COVID) score
BiT-M 90.1 91.3 91.8 0.927

EfficientNetV2-M 93.7 92.5 94.0 0.931
Swin-B 93.2 93.8 94.3 0.935

Table 2. Evaluation results on validation dataset and comparisons

In our experiments, only lung regions generated via lung
masks(segmentations) are taken into account in classifica-
tion to reduce the computational cost. In addition, each
slide in a CT is rescaled considering the limitation of GPU
memory and comparability for different backbones.

3.2. Experiments and Settings

In order to explore the applicability of the Swin trans-
former for the COVID19 classification in chest CTs, we
conducted several experiments with the settings of using
different backbones in the framework (Figure 1). More
specifically, the deployed backbones include Swin trans-
former (Swin-B), BigTranfer (BiT-M) and EfficientNetV2
(EfficientNetV2-M). The CNN-based representations learn-
ers are provided mainly for comparisons. Table 1 sum-
marises the used settings of these backbones. We consid-
ered the speed-accuracy trade-off and size of networks due
to the limitation of GPU memory when we selected archi-
tectures within different backbones. The image size for all
architectures remains the same, with the size of 224×224
pixels.

Our experiments are implemented on the PC with speci-
fications of Intel Core i9 10980XE Processor, The GeForce
RTX 3090 with Memory Size of 24 GB.

3.3. Training protocols

For all architectures in the training stage, we employed
the same strategy. Namely, we fine-tunned the weights
based on the pre-trained weights of the ImageNet-21k
dataset [5]. For the Swin transformer backbone, we follow-
ing the same protocol used in the fine-tuning stage in [18].
We employed the AdamW [19] optimizer with an initial
learning rate of 10-5, weight decay of 0.05. For both CNN
based networks, we employed the Adam with the learn-
ing rate of 10-5. For all training, we set in a total of 50
training epochs, early stopping training strategy is adopted,
of which condition was set as the no decrease of the val-
idation loss within ten epochs. Our implementations are
open-sourced and available at https://github.com/

Dataset Methods Macro F1
Validation Baseline-ResNet-GRU [12] 0.70
Validation Our method 0.94

Test Baseline-ResNet-GRU 0.67
Test Our method 0.84

Table 3. Evaluation results on validation dataset and comparisons

leizhangtech/COVID19T.

3.4. Experimental results

The experimental results of the validation dataset are
summarized in Table 2. The evaluation metrics include the
precision, recall, accuracy and F1 score. Three backbones
described in Table1 were trained on the training dataset, and
the trained models are applied to the validation dataset. We
can observe from Table 2 that the method with the back-
bone of Swin-B has the best F1 of 0.935, which shows its
robust feature learning capability. Meanwhile, we can see
that the backbone of EfficientNetV2-M has competitive per-
formance in term of F1 and accuracy and gain the best pre-
cision of 93.7%.

We also compare our method to the baseline method
in terms of F1 score on both validation and test datasets
shown in Table 3. The best model obtained from archi-
tecture with the Swin-B backbone was selected as the final
prediction model on the testing dataset, as it shows the best
F1 score over the validation dataset. However, it’s worth
noting that the framework equipped with the backbone of
EfficientNetV2-M achieves a good speed-accuracy trade-
off according to the results on the validation dataset. This
suggests a potential of improvement for the classification
could be achieved by simply increasing the model size in
future work.

4. Conclusion
This paper presents a deep learning-based general frame-

work for the diagnosis of COVID19 using chest CTs. The
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framework consists of two stages: Unet based lung seg-
mentation followed by the image classification with Swin
transformer backbone. Our results show that the framework
with the backbone of the Swin-B gains the best classifica-
tion performance with a 0.935 of F1 score. This reflects the
strong applicability of vision transformer that can be served
as a robust learner for diagnosis of the COVID-19 in chest
CTs. It was not surprising that the CNN base backbone us-
ing EfficientV2 has a competitive performance with fewer
parameters than the Swin-B.
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