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Abstract

We propose contextual convolution (CoConv) for visual
recognition. CoConv is a direct replacement of the stan-
dard convolution, which is the core component of convo-
lutional neural networks. CoConv is implicitly equipped
with the capability of incorporating contextual informa-
tion while maintaining a similar number of parameters
and computational cost compared to the standard convo-
lution. CoConv is inspired by neuroscience studies indi-
cating that (i) neurons, even from the primary visual cor-
tex (V1 area), are involved in detection of contextual cues
and that (ii) the activity of a visual neuron can be influ-
enced by the stimuli placed entirely outside of its theoret-
ical receptive field. On the one hand, we integrate Co-
Conv in the widely-used residual networks and show im-
proved recognition performance over baselines on the core
tasks and benchmarks for visual recognition, namely image
classification on the ImageNet data set and object detec-
tion on the MS COCO data set. On the other hand, we in-
troduce CoConv in the generator of a state-of-the-art Gen-
erative Adversarial Network, showing improved generative
results on CIFAR-10 and CelebA. Our code is available at
https://github.com/iduta/coconv.

1. Introduction
Contextual information is vital for a visual perception

system. A point (or a small patch) in a scene (image) is
mostly meaningless without the surrounding contextual in-
formation. For instance, it is very difficult for a person to
provide a semantic label or a description for a small patch
(taken from an image) without providing a broader visual
context. As shown in the example illustrated in Figure 1,
it is even hard to label an entire object without context, let
alone some part of the respective object. In neuroscience
research, the critical role of the contextual influences on
visual perception systems is well proven since long time
ago [1, 4, 38]. For example, Zipser et al. [38] studied
the contextual modulation in the primary visual cortex of
awake, behaving macaque monkeys. The work shows that
the activity of a visual neuron is influenced by the stimuli

(a) (b)

Figure 1: An example in which the context is crucial in la-
beling the object (kitchen glove), which can easily be mis-
taken for something else if the rest of the image is not seen.
(a) A picture of a kitchen glove. (b) A picture of the same
glove with context.

placed entirely outside of its default receptive field. Fur-
thermore, the work demonstrates that the influence of the
context on the activity of a visual neuron is present even at
the early stages of the visual system (V1 area). Albright
et al. [1] stated that for each local region of an image, the
extraction of semantic meaning is only possible if informa-
tion from other regions is taken into account. This clearly
highlights the importance of contextual information in the
natural visual systems studied in the field of neuroscience.

Convolutional neural networks (CNNs) [18, 19] repre-
sent the backbone of nearly every current computer vision
task and application [3, 7, 8, 9, 11, 12, 13, 17, 21, 20, 30, 31,
34, 35, 39]. Although the neuroscience studies mentioned
above [1, 4, 38] clearly demonstrate the presence and the
importance of contextual influence in a visual neuron of a
biological visual cortex, in the current artificially-built vi-
sual systems, the core building block of CNNs, represented
by the convolutional layer (with spatial filters that activate
on local patterns), is not implicitly equipped with the ability
of integrating contextual information. In general, the con-
volutional filters have a limited receptive field, usually cor-
responding to a 3×3 spatial kernel size, due to the fact that
increasing the kernel size brings additional costs in terms of
parameters and computational resources. There are many
approaches that address the integration of contextual infor-
mation, e.g. [32], however, most of them follow the direc-
tion of integrating additional building blocks in the CNN
to incorporate contextual information. However, this line
of research results in additional costs for the CNN in terms
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of both parameters and computation, which is not in line
with the neuroscience findings, pointing out that the visual
system is extremely efficient and that the integration of the
contextual information is an implicit capability of the visual
neuron. Inspired by the aforementioned neuroscience stud-
ies and addressing the above limitations, this work makes
the following contributions:
• We propose contextual convolution (CoConv), a direct

replacement of the standard convolution that can be used
at any stage in CNN architectures. CoConv is implicitly
equipped with the ability of accessing contextual infor-
mation at multiple levels without increasing the demands
in terms of parameters and computational cost, compared
to the standard convolution (see Section 3).

• We integrate CoConv in convolutional and generative
networks of various depths, presenting novel architec-
tures based on CoConv for visual recognition and gen-
eration (see Section 4).

• We show improved detection, recognition and generation
performance obtained by CoConv over the standard con-
volution and competing methods on the core tasks and
benchmarks for visual recognition and generation (see
Section 5).
We underline that our approach, CoConv, is both effec-

tive and efficient. We believe that its simplicity coupled
with its effectiveness generates a great potential to become
widely-adopted.

2. Related Work
There are numerous works with the goal of integrating

contextual information in an artificial visual system. The
work of Wang et al. [32] introduced a non-local block to
capture contextual information in a CNN. In [11], the au-
thors proposed a squeeze-and-excitation block to capture
global information and scale each feature map accordingly.
However, these works propose additional building blocks
that need to be inserted in the CNN, therefore bringing sig-
nificant supplementary parameters and computational costs
that can negatively impact the efficiency of the visual sys-
tem. In contrast, we propose to implicitly integrate the pro-
cess of capturing contextual information in the core compo-
nent (the convolutional layer), without increasing the num-
ber of parameters and computational costs. Furthermore,
our approach can be complementary to these works, as they
still need to use convolutional layers, in their overall CNN
architectures. Dilated convolution [2, 36, 37] is an approach
to enlarge the receptive field of the convolution kernel. Our
work makes use of dilated convolution, however, there are
significant differences in the approach and usage from pre-
vious works. For example, Chen et al. [2] proposed atrous
spatial pyramid pooling (ASPP) to segment objects at mul-
tiple scales. There are fundamental differences that distin-
guish our work from that of Chen et al. [2], as explained

next. First, ASPP is proposed just as a head module for im-
age segmentation, while our approach is designed as a direct
replacement of the convolution along all stages of the CNN
architecture, irrespective of the visual recognition task. Sec-
ond, different from ASPP, our approach is specifically de-
signed to integrate contextual information at different levels
while maintaining the same number of parameters and com-
putational costs as the standard convolution. Importantly, as
in the neuroscience findings [1, 38] showing that contextual
influence is present and relevant, even in the primary visual
cortex (V1 area), we integrate the contextual information
within all network layers, including the early convolutional
layers as well. Contrary to the neuroscience findings, Chen
et al. [2] employed contextual modeling only at the end of
the CNN, just as an additional head before the final classifi-
cation layer for semantic segmentation. A more closely re-
lated work to our own is [37], which proposes dilated resid-
ual networks by integrating dilated convolution just towards
the end of the network. Thus, this work is also not in line
with the neuroscience conclusion regarding the importance
of the contextual modeling at the early stages of the visual
cortex. Furthermore, our approach is different from that of
Yu et al. [37], as we employ different levels of contextual
information, being able to capture information about local
details and various levels of contextual information in the
same time. Importantly, integrating the default approach
of Yu et al. [37] into residual networks for image recog-
nition drastically increases the demands in computational
resources. As shown in the experiments, our approach de-
livers improved recognition performance without increasing
the computational costs.

Another contribution that is aimed at capturing context
in all stages of neural architectures is represented by cap-
sule networks (CapsNets) [28]. Although CapsNets are also
backed by neurosciene studies and showed promising re-
sults on small data sets such as MNIST and CIFAR-10,
their low accuracy gains come with a large computational
cost. Furthermore, since their introduction by Sabour et
al. [28], CapsNets have failed to show their effectiveness
on very deep neural networks and on large image recogni-
tion benchmarks, mostly due to their extremely large com-
putational costs. Different from [28], we present empirical
evidence showing that CoConv improves the accuracy of
very deep models, e.g. ResNet-152, on very large bench-
marks, e.g. ImageNet, at no additional cost. Another plus is
that our contribution is fairly easy to implement, having the
right ingredients (simple, effective, no additional computa-
tional cost) to be widely adopted by the community.

3. Contextual Convolution
The standard convolution in state-of-the-art CNN archi-

tectures uses a single type of kernel with a fixed receptive
field, usually corresponding to a kernel size of 3×3, since
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Figure 2: (a) Contextual Convolution (CoConv). Instead of using standard or dilated convolution, we propose to integrate
multiple levels of kernels with different dilation ratios in the convolutional layer. At each level, we have multiple kernels. We
emphasize the fact that, in this illustration, d1 = 1, d2 = 2 and d3 = 3 is a coincidence that facilitates visualization, yet, in
general, we do not constrain di to be equal to i. Best viewed in color. (b) An example of CoConv residual building block.

increasing the kernel size brings additional costs in terms of
the number of learnable parameters and computational time,
respectively. The number of learnable parameters (weights)
and FLOPs (floating point operations) for the standard con-
volution can be computed as:

params =M in ·Kw ·Kh ·Mout,
FLOPs =M in ·Kh ·Kw ·Mout ·W out ·Hout,

(1)

where, M in and Mout represent the number of input and
output feature maps, Kw and Kh are the width and height
of the convolution kernel, and finally, W out and Hout are
the width and height of the output feature maps. For the
sake of simplicity, we ignored the bias terms and hyperpa-
rameters such as stride and padding in Equation (1).

Contextual convolution (CoConv), illustrated in Fig-
ure 2a, receives a number of input feature maps M in,
over which we apply different levels L = {1, 2, 3, ..., n}
of convolution kernels with varying dilation ratios D =
{d1, d2, d3, ..., dn}. In other words, the kernels at level i
have the dilation ratio di, ∀i ∈ L. By gradually increasing
the dilation ratio (basically introducing increasingly larger
“holes” into the kernels), the filters can have access to in-
creasingly broader contextual information. As we increase
the dilation ratio, the kernels become sparser, thus, being
applied over the input feature maps in a sparse pattern, skip-
ping elements in the computation. As depicted in Figure 2a,
only the colored spatial locations of the kernels are involved
in the computation of the output feature maps. Thus, each
level of dilated kernels maintains a similar number of pa-
rameters and FLOPs, while increasing the spatial receptive

field to integrate more contextual information. The kernels
with lower dilation ratios are responsible for capturing in-
formation about local details from the input feature maps,
while the kernels with higher dilation ratios are empowered
with the ability of incorporating contextual information for
helping the recognition process. At each level i, the ker-
nels provide a number of output feature maps Mout

i , for all
i ∈ L, each map having the width W out and the height
Hout. Hence, the total number of learnable parameters and
FLOPs of CoConv is computed as follows:

params=M in ·(Kw ·Kh)(d1) ·Mout
1 +

...+M in ·(Kw ·Kh)(dn) ·Mout
n ,

FLOPs=M in ·(Kw ·Kh)(d1) ·Mout
1 ·W out ·Hout+

...+M in ·(Kw ·Kh)(dn) ·Mout
n ·W out ·Hout,

(2)

where, (Kw ·Kh)(di) refers to the spatial size of the kernel
of width w and height h (basically, how many spatial lo-
cations of the kernel are involved in the computation of an
output feature map), di points to the dilation ratio used for
the kernels at level i, and:

Mout =

n∑
i=1

Mout
i ,∀i ∈ L. (3)

Although we use multiple levels of kernels with differ-
ent dilation ratios, the total number of kernels in CoConv is
equal to the total number of kernels in the standard convo-
lution, as it results from Equation (3). We emphasize that
all levels and kernels in CoConv are independent, allow-
ing parallel execution, just as in a standard convolutional
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layer. CoConv is a direct replacement of the standard con-
volution with the capability of integrating contextual infor-
mation. Moreover, as formally presented in Equations (2),
the number of learnable parameters and FLOPs involved in
CoConv is equal to those involved in the standard convo-
lution from Equation (1). We emphasize that the number
of dilation levels of CoConv can be adjusted, for instance,
based on the resolution of the feature maps. We present
various practical examples in the next section.

4. Contextual Convolutional Neural Networks
We describe some neural architectures based on contex-

tual convolution (CoConv). First, we integrate CoConv in
the widely-used residual networks (ResNets) [8]. ResNets
can be split into four main stages depending on the prox-
imity of the layers with respect to the input and, implicitly,
on the resolution of the feature maps, as shown in Table 1.
Figure 2b shows an example of a CoConv residual build-
ing block used in the first stage of a network. The CoConv
residual block uses a 1×1 convolution to reduce the number
of feature maps to 64, followed by a CoConv with four lev-
els to capture contextual information. Each CoConv level
has a different dilation ratio. The number of output fea-
ture maps at each level is 16, regardless of the dilation rate.
Then, a 1×1 convolution is used to restore the number of fea-
ture maps to 256. As in the standard residual blocks, batch
normalization (BN) [13] and Rectified Linear Unit (ReLU)
activations [25] follow each convolutional block.

Our network for image classification, termed contextual
residual network (CoResNet), is formally presented in Ta-
ble 1. Although we illustrate our updates on ResNet-50,
thus obtaining CoResNet-50, the changes can be analo-
gously operated on models of different depths. Since the
size of the feature maps decreases as the layers are farther
away from the input, we also adapt the number of levels
in our CoConv layers with respect to the resolution of the
feature maps. Hence, the first main stage of the network
uses four levels in the CoConv layers, with different dila-
tion ratios. Further, the second stage uses three levels in the
CoConv layers, while the third stage uses two levels. As the
spatial resolution of the feature maps in the last stage is re-
duced to 7×7, we consider that using multiple dilation ratios
is no longer justified. Thus, the last stage employs just one
level of CoConv. In the experimental section, we provide an
ablation study on the number of levels in the CoConv lay-
ers. However, the number of levels can be tuned for each
particular task or application, based, for instance, on the
resolution of the feature maps along the network. Based
on empirical evidence, we consider that our network has
improved recognition capabilities compared to the standard
ResNet, as the convolution is equipped with the ability of
integrating contextual information at multiple levels and, as
can be seen in Table 1, CoConv does not add any additional

stage output ResNet-50 CoResNet-50
112×112 7×7, 64, s=2 7×7, 64, s=2

56×56 3×3 maxpool 3×3 maxpool
s=2 s=2

1 56×56

1×1, 64
3×3, 64
1×1, 256

×3



1×1, 64
CoConv4, 64:
3×3, 16, d1=1
3×3, 16, d2=2
3×3, 16, d3=3
3×3, 16, d4=4


1×1, 256


×3

2 28×28

1×1, 128
3×3, 128
1×1, 512

×4



1×1, 128
CoConv3, 128:3×3, 64, d1=1
3×3, 32, d2=2
3×3, 32, d3=3


1×1, 512


×4

3 14×14

1×1, 256
3×3, 256
1×1, 1024

×6


1×1, 256
CoConv2, 256:[
3×3, 128, d1=1
3×3, 128, d2=2

]
1×1, 1024

×6

4 7×7

1×1, 512
3×3, 512
1×1, 2048

×3


1×1, 512
CoConv1, 512:[
3×3, 512, d1=1

]
1×1, 2048

×3

1×1
global avgpool

1000-d fc
global avgpool

1000-d fc
# params 25.56 × 106 25.56 × 106

FLOPs 4.14 × 109 4.14 × 109

Table 1: A side-by-side comparison of ResNet-50 and CoResNet-
50. Although we illustrate our updates on ResNet-50, the changes
can be analogously operated on models of different depths,
e.g. ResNet-152.

weights nor it enlarges the computational cost compared to
the original network.

We also show the benefits of integrating CoConv in a
generative adversarial network (GAN) [5]. We specifi-
cally consider progressive GAN (ProGAN) [14], a model
that generates high-resolution images starting with a low-
resolution output (4×4 pixels) and gradually adding layers
to the network to produce a high-resolution output (up to
1024×1024 pixels). We used the exact same architecture
described in [14], only replacing the convolutional layers
with CoConv layers. The ProGAN and CoProGAN gener-
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output ProGAN CoProGAN
4×4 3×3, 512 3×3, 512
8×8 2×2 upsample 2×2 upsample

8×8 3×3, 512

[
3×3, 256, d1=1
3×3, 256, d2=2

]
16×16 2×2 upsample 2×2 upsample

16×16 3×3, 512

3×3, 172, d1=1
3×3, 170, d2=2
3×3, 170, d3=3


32×32 2×2 upsample 2×2 upsample

32×32 3×3, 512


3×3, 128, d1=1
3×3, 128, d2=2
3×3, 128, d3=3
3×3, 128, d4=4


64×64 2×2 upsample 2×2 upsample

64×64 3×3, 256


3×3, 64, d1=1
3×3, 64, d2=2
3×3, 64, d3=3
3×3, 64, d4=4


128×128 2×2 upsample 2×2 upsample

128×128 3×3, 128


3×3, 32, d1=1
3×3, 32, d2=2
3×3, 32, d3=3
3×3, 32, d4=4


128×128 1×1, 3 1×1, 3
# params 27.21 × 106 27.21 × 106

FLOPs 54.76 × 109 54.76 × 109

Table 2: A side-by-side comparison of ProGAN and CoProGAN.

ator for the CelebA data set [24] is illustrated in Table 2.
The CoProGAN generator designed for the final output of
128×128 pixels starts with a feature map size of 4×4 pix-
els. Hence, at the first layer, we only use a dilation rate of 1.
When the output size increases to 8×8 pixels, we add two di-
lation rates of 1 and 2. Similarly, we add three dilation rates
(1, 2 and 3), when the output size is 16×16 pixels. When the
output size is 32×32, 64×64 or 128×128 pixels, we use four
dilation rates of 1, 2, 3 and 4, regardless of the size of the
output. The number of filters in each CoConv layer matches
the number of filters in the corresponding conv layer from
ProGAN. Thus, the number of parameters and FLOPs in
ProGAN and CoProGAN are identical.

5. Experiments
5.1. Experimental setup

We perform object recognition experiments on the
ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) [27], which is one of the most popular bench-
marks in visual recognition. The ImageNet data set con-
sists of 1000 classes of objects, 1.28 million training im-
ages and 50K validation images. As common, we report
both the top-1 and top-5 error rates. We follow the standard
settings in [6, 8, 9] and employ the Stochastic Gradient De-
scent (SGD) optimizer with a standard momentum rate of
0.9 and a weight decay of 0.0001. We perform the training
for 90 epochs, starting with a learning rate of 0.1, reducing
it by 1/10 at the 30-th, 60-th and 80-th epochs, similarly to
[6, 8]. Each model is trained using 8 GPUs. We use the
standard mini-batch size of 256 for training and data aug-
mentation as in [6, 31], training and testing on 224×224
image crops.

For the object detection task, we consider the MS COCO
data set [22], which contains 80 object categories. We use
COCO 2017 train (118K images) for training and COCO
2017 val (5K images) for testing. We train each model
for 130 epochs on 8 GPUs using mini-batches of 32 ex-
amples, resulting in 60K training iterations. The training is
performed using the SGD optimizer with momentum 0.9,
weight decay 0.0005, with the learning rate 0.02 (reduced
by 1/10 before the 86-th and 108-th epochs). We also use
a linear warm-up in the first epoch, following [6]. For data
augmentation, we perform random crop as in [23], color jit-
tering and horizontal flip. We consider an input image size
of 300×300 pixels. As evaluation metrics, we report the
average precision (AP) and the AP@IoU=0.5.

We conduct image generation experiments on CIFAR-
10 [16] and CelebA [24], considering only fully unsuper-
vised (not class conditional) GAN models. The CIFAR-10
training set is composed of 50K images of 32×32 pixels,
while the CelebA training set is formed of 202K images of
128× 128 pixels. Following Karras et al. [14], the opti-
mization is performed using the Adam [15] optimizer with
β1 = 0, β2 = 0.99, ε = 10−8 and the learning rate set to
10−3. We train each model until the discriminator sees 12
million real images in total. Each model is trained on a sin-
gle GeForce GTX 3090 GPU. As evaluation measures, we
report the Inception Score (IS) [29] and the Fréchet Incep-
tion Distance (FID) [10] for CIFAR-10, and the multiscale
structural similarity index measure (MS-SSIM) [33] and the
Sliced Wasserstein Distance (SWD) [26] for CelebA. To re-
produce the results of ProGAN, we used the official Tensor-
Flow implementation available at https://github.com/
tkarras/progressive_growing_of_gans.

5.2. Ablation experiments on CoConv dilation levels

In Table 3, we present ablation experiments with differ-
ent configurations generated by varying the number of di-
lation levels in the ConConv residual blocks corresponding
to each stage of the network. The first column indicates the
number of levels in the CoConv residual block used in each
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CoConv levels top-1 top-5 params GFLOPs

(1,1,1,1) 23.88 7.06 25.56 4.14
(2,2,2,1) 23.24 6.79 25.56 4.14
(3,3,2,1) 23.23 6.66 25.56 4.14
(3,3,3,3) 23.33 6.71 25.56 4.14
(4,3,2,1) 22.73 6.49 25.56 4.14
top(4,3,2,1) 25.58 8.05 25.56 4.14

Table 3: Ablation experiments on ImageNet with various
CoResNet-50 configurations, considering different num-
bers of dilation levels in the CoConv residual blocks.
The configuration (1, 1, 1, 1) corresponds to ResNet-50 [8].
Lower values are better.

Network stride top-1 top-5 params GFLOPs

ResNet-50 [8] 32 23.88 7.06 25.56 4.14
NL ResNet-50 [32] 32 22.91 6.42 36.72 6.18
CoResNet-50 [ours] 32 22.73 6.49 25.56 4.14

DRN-50 [37] 8 22.44 6.47 25.56 19.20
CoResNet-50 [ours] 8 21.93 6.17 25.56 19.20

Table 4: Comparison of CoResNet with closely related
works [32, 37] on ImageNet, considering neural models of
50 layers in all cases. Lower values are better.

of the four main stages of the network. The configuration
(1, 1, 1, 1) refers to the case where a single CoConv level
with dilation d1 =1 is used in all four stages, thus being
completely equivalent to the original ResNet [8], which is
the baseline in our object recognition experiments.

Integrating our CoConv with two levels for the first
three stages of the network, resulting in the configuration
(2, 2, 2, 1), significantly improves the top-1 error rate from
23.88% to 23.24%, while maintaining the same number of
parameters and FLOPs. In general, adding more levels to
our CoConv residual blocks further improves the results.

We obtain the best results with the configuration
(4, 3, 2, 1) for the number of levels in the CoConv blocks
involved in the four main stages of the network. We hereby
note that we performed experiments with even more lev-
els of CoConv, but we did not notice further significant im-
provements in terms recognition performance. Hence, we
find the configuration (4, 3, 2, 1) optimal for an input size of
224×224 pixels. If the input size would be higher, then per-
haps another configuration considering more dilation levels
can provide even further improvements. All in all, the flexi-
bility of adapting the CoConv levels for each network stage
with respect to the input resolution is an important strong
point of our approach.

To show the importance of having different levels of dila-
tion in CoConv, we include the configuration top(4, 3, 2, 1)
in Table 3, which considers only the highest level of dila-
tion in each stage of the network. For instance, in the first

stage, only the convolution with dilation ratio 4 is used, the
second stage uses only the convolution with dilation 3, and
so on. For a fair comparison, we stress out that the num-
ber of filters in each CoConv layer is always equal to the
number of filters in the original ResNet model. Regarding
the configuration top(4, 3, 2, 1), we can notice a significant
drop in recognition performance. This is basically the op-
posite case of the baseline (1, 1, 1, 1). We can observe from
the results that both (extreme) cases have significantly lower
recognition performance than CoConv with multiple levels.
This is due to the fact that the baseline (1, 1, 1, 1) is only
able to capture information about local details (as it uses the
lowest dilation), without being equipped with the ability to
capture contextual information. On the other side, the case
top(4, 3, 2, 1) is only able to capture contextual informa-
tion, lacking the ability of capturing information about lo-
cal details. This set of experiments proves an important and
strong point of our approach: CoConv captures information
regarding both local details and global context, providing
a more complete visual representation which improves the
recognition performance.

5.3. Comparison of CoResNet to closely related
works

In Table 4, we present the results of closely related meth-
ods [32, 37] by training all neural networks with the same
standard settings for providing a direct and fair comparison.
All methods are applied on top of the 50-layer deep residual
network. First, we observe that our CoResNet-50 outper-
forms more complex architectures, such as non-local (NL)
networks [32]. It is important to highlight the increase in
the number of learnable parameters and computational costs
brought by the introduction of the non-local block, while
our CoResNet-50 maintains the same number of parameters
and computational cost as the baseline ResNet-50 [8].

The dilated residual network (DRN) proposed by Yu et
al. [37] requires to decrease the overall stride of the net-
work from the default 32 to 8. Basically, DRN does not use
downsampling of the feature maps for the last two stages
of the network. In Table 4, we can observe that DRN has
a significant impact in increasing the requirements in terms
of computational resources, increasing the GFLOPs from
4.14 to 19.20. This significant increase in computational
cost makes DRN not feasible for standard image classifica-
tion as, for instance, increasing the depth of the baseline
ResNet [8] from 50 to 101 layers provides a top-1 error
improvement from 23.88% to 22.00%, while the require-
ments in GFLOPs increase from 4.14 to only 7.88. In the
same time, DRN-50 improves the baseline top-1 error from
23.88% to 22.44% at a higher computational cost. In com-
parison, our CoResNet-50 can improve the recognition per-
formance of the baseline without impacting the demands in
terms of computational resources.
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Figure 3: Training and validation curves on ImageNet for ResNet and CoResNet architectures of 50, 101 and 152 layers,
respectively. Best viewed in color.

Network network depth: 50 network depth: 101 network depth: 152

top-1 top-5 params GFLOPs top-1 top-5 params GFLOPs top-1 top-5 params GFLOPs

ResNet [8] 23.88 7.06 25.56 4.14 22.00 6.10 44.55 7.88 21.55 5.74 60.19 11.62
pre-act. ResNet [9] 23.77 7.04 25.56 4.14 22.11 6.26 44.55 7.88 21.41 5.78 60.19 11.62
SE ResNet [11] 22.74 6.37 28.07 4.15 21.31 5.79 49.29 7.90 21.38 5.80 66.77 11.65
NL ResNet [32] 22.91 6.42 36.72 6.18 21.40 5.83 55.71 9.91 21.91 6.11 71.35 13.66
CoResNet [ours] 22.73 6.49 25.56 4.14 21.29 5.72 44.55 7.88 20.97 5.48 60.19 11.62

Table 5: ImageNet results of CoResNet in comparison with other state-of-the-art methods [9, 11, 32], considering architec-
tures on different depths, ranging from 50 layers to 152 layers.

To make a direct comparison between our approach
and DRN [37] under the same number of parameters and
FLOPs, we also perform an experiment by setting the stride
of CoResNet-50 to 8 instead of 32. As shown in Table 4,
our approach provides improved recognition performance
in comparison to DRN. As another evidence that our ap-
proach is superior to DRN, we can link the DRN results
from Table 4 with our configuration top(4, 3, 2, 1) from Ta-
ble 3. More precisely, DRN and top(4, 3, 2, 1) are from the
same category of methods, as both use only the top dilation
for convolution. We have already shown that this is not the
optimal case for attaining good recognition performance, as
it is necessary to have kernels that can capture detailed (lo-
cal) information, as well as kernels that capture contextual
information. We conjecture that the range of kernels from
local to contextual is important for visual perception, as dif-
ferent levels of kernels bring complementary information
into the visual system.

5.4. Comparison of CoResNet on other architec-
tures of different depths

In Figure 3, we present the training and validation learn-
ing curves on ImageNet, considering ResNet and CoRes-
Net architectures of 50, 101 and 152 layers, respectively.
Comparing our CoResNet with the baseline ResNet [8], we
can see an improved convergence during training, this be-
ing due to the fact that CoConv provides a more complete
visual representation of the input.

Backbone AP AP@IoU=0.5 params GFLOPs

ResNet-50 26.20 43.97 22.89 20.92
CoResNet-50 28.63 46.71 22.89 20.92

ResNet-101 29.58 47.69 41.89 48.45
CoResNet-101 31.19 49.89 41.89 48.45

Table 6: Results of SSD with various ResNet and CoRes-
Net backbones of 50 or 101 layers on the MS COCO data
set, for input images of 300 × 300 pixels. Higher AP and
AP@IoU=0.5 values are better.

In Table 5, we provide the comparative results between
CoResNet and several other works [8, 9, 11, 32], consider-
ing neural networks of 50, 101 and 152 layers deep, respec-
tively. CoResNet outperforms the baseline ResNet [8] on
all network depths. We also outperform the pre-activation
ResNet [9] by a consistent margin, while maintaining the
same number of parameters and computational cost. In
terms of the top-1 error rate, we outperform the non-local
block of Wang et al. [32] on all three tested network depths,
namely 50, 101 and 152. We qualify our results as even
more impressive, considering that the work of Wang et
al. [32] significantly increases the number of parameters and
FLOPs of the model. Interestingly, our CoResNet provides
competitive results even when we compare it to the work of
Hu et al. [11], although their work proposes an additional
attention block (squeeze-and-excitation block) that needs to
be inserted into the CNN, thus increasing the number of
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CIFAR-10 CelebA

Method IS FID MS-SSIM SWD ×103

128 64 32 16 Avg.

ProGAN [14] 7.60±0.09 20.70 0.2894 3.65 2.48 2.66 7.29 4.02
CoProGAN 7.71±0.06 19.66 0.2875 3.29 2.43 2.27 5.35 3.34

Table 7: ProGAN versus CoProGAN results on CIFAR-10 and CelebA. Higher IS values are better. Lower FID, MS-SSIM
and SWD are better.

Figure 4: Examples generated by ProGAN and CoProGAN, selected by a human annotator from a set of 50 images generated
from CIFAR-10 and CelebA, respectively. Best viewed in color.

learnable parameters of the model.

5.5. Object detection on MS COCO

In order to show the generality and the transfer learning
capability of our approach, we integrate CoResNet in an ob-
ject detection pipeline, namely the Single Shot Multi-Box
Detector (SSD) [23]. As in [23], we remove all the layers
of the ResNet backbones after the third stage to maintain
the efficiency of the SSD. We also set the stride to 1 for the
third stage to obtain 38×38 output feature maps from the
backbones. The corresponding results, which are presented
in Table 6, show that our approach provides significant im-
provements in detection performance, without affecting the
number of parameters and computational cost.

5.6. Image generation on CIFAR-10 and CelebA

In Table 7, we compare our CoProGAN with ProGAN
[14] on CIFAR-10 and CelebA, respectively. While the IS
on CIFAR-10 indicates that our model is slightly better, the
FID points to a lager difference in favor of CoProGAN.
Analogously, on CelebA, the MS-SSIM indicates slight per-
formance gains brought by CoConv, but the improvements
measured by SWD are much higher, regardless of the res-
olution of the output (from 16× 16 to 128× 128 pixels).
Overall, the empirical evidence indicates that CoProGAN
produces superior results, regardless of the metric.

In Figure 4, we show the best and worst looking exam-
ples generated by ProGAN and CoProGAN selected by an
independent human annotator from a set of 50 images gen-
erated from each data set. On CIFAR-10, we observe that
our successful results seem more realistic, while our fail-
ure cases seems to contain objects with a global structure.

On CelebA, our successful faces seem more symmetrical,
while the faces seen in the CoProGAN failure cases are still
distinguishable as faces.

6. Conclusion

We proposed contextual convolution (CoConv) as a di-
rect replacement of the standard convolution, aiming to in-
tegrate contextual information at different levels of neural
architectures. CoConv is efficient, maintaining the same
requirements in the number of parameters and computa-
tional costs as the standard convolution, while providing im-
proved visual recognition capabilities. Our contextual con-
volutional neural network (CoCNN) architectures are mo-
tivated by a series of neuroscience studies which clearly
indicate the presence and importance of contextual modu-
lation, even at the early stages of the biological visual sys-
tems, specifically in the V1 area. In this work, we showed
that the findings in neuroscience can be applied to the ar-
tificial visual systems for object detection, recognition and
generation, where we obtain significant improvements over
several state-of-the-art baselines.

Acknowledgments
This work was supported by a grant of the Roma-

nian Ministry of Education and Research, CNCS - UEFIS-
CDI, project number PN-III-P1-1.1-TE-2019-0235, within
PNCDI III. This article has also benefited from the sup-
port of the Romanian Young Academy, which is funded by
Stiftung Mercator and the Alexander von Humboldt Foun-
dation for the period 2020-2022.

410



References
[1] Thomas D Albright and Gene R Stoner. Contextual influ-

ences on visual processing. Annual Review of Neuroscience,
25(1):339–379, 2002. 1, 2

[2] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. DeepLab: Semantic
Image Segmentation with Deep Convolutional Nets, Atrous
Convolution, and Fully Connected CRFs. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 40(4):834–
848, 2018. 2

[3] François Chollet. Xception: Deep learning with depthwise
separable convolutions. In Proceedings of CVPR, pages
1251–1258, 2017. 1

[4] Charles D Gilbert and Torsten N Wiesel. The influence
of contextual stimuli on the orientation selectivity of cells
in primary visual cortex of the cat. Vision Research,
30(11):1689–1701, 1990. 1

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Proceedings
of NIPS, pages 2672–2680, 2014. 4

[6] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, Large Minibatch
SGD: Training ImageNet in 1 Hour. arXiv:1706.02677,
2017. 5

[7] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. In Proceedings of ICCV, pages 2961–
2969, 2017. 1

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. In Proceed-
ings of CVPR, pages 770–778, 2016. 1, 4, 5, 6, 7

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and J. Sun.
Identity Mappings in Deep Residual Networks. In Proceed-
ings of ECCV, pages 630–645, 2016. 1, 5, 7

[10] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. GANs Trained by
a Two Time-Scale Update Rule Converge to a Local Nash
Equilibrium. In Proceedings of NIPS, pages 6626–6637,
2017. 5

[11] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua
Wu. Squeeze-and-Excitation Networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 42(8):2011–
2023, 2020. 1, 2, 7

[12] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely Connected Convolutional Net-
works. In Proceedings of CVPR, pages 4700–4708, 2017.
1

[13] Sergey Ioffe and Christian Szegedy. Batch Normalization:
Accelerating Deep Network Training by Reducing Internal
Covariate Shift. In Proceedings of ICML, pages 448–456,
2015. 1, 4

[14] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive Growing of GANs for Improved Quality, Stabil-
ity, and Variation. In Proceedings of ICLR, 2018. 4, 5, 8

[15] Diederik P Kingma and Jimmy Lei Ba. Adam: A method for
stochastic gradient descent. In Proceedings of ICLR, 2015.
5

[16] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical report, Uni-
versity of Toronto, 2009. 5

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
ImageNet classification with deep convolutional neural net-
works. In Proceedings of NIPS, pages 1097–1105, 2012. 1

[18] Yann LeCun, Bernhard Boser, John S Denker, Donnie
Henderson, Richard E Howard, Wayne Hubbard, and
Lawrence D Jackel. Backpropagation applied to handwritten
zip code recognition. Neural Computation, 1(4):541–551,
1989. 1
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