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Abstract

The investigation of CNN for image denoising has ar-
rived at a serious bottleneck and it is extremely difficult to
design an efficient network for image denoising with bet-
ter performance and fewer parameters. A nice starting
point for this is the cascading U-Nets architecture which
has been successfully applied in numerous image-to-image
tasks such as image denoising and segmentation. How-
ever, the previous related models often focused on the lo-
cal architecture in each U-Net rather than the connection
between U-Nets, which strictly limits their performances.
To further improve the connection between U-Nets, we pro-
pose a novel cascading U-Nets architecture with multi-scale
dense processing, named Dense Dense U-Net (DDUNet).
The multi-scale dense processing connects the feature maps
in each level cross cascading U-Nets, which has several
compelling advantages: they alleviate the vanishing gra-
dient problem, strengthen feature propagation and encour-
age feature reuse. Furthermore, we develop a series of re-
lated important techniques to improve model performance
with fewer parameters. Extensive experimental results on
both synthetic and real noisy datasets demonstrate that the
proposed model achieves outstanding results with fewer pa-
rameters. Meanwhile, experimental results show clearly
that the proposed DDUNet is good at edge recovery and
structure preservation in real noisy image denoising.

1. Introduction

Image denoising aims to recover the latent clean image
from the degraded observation. As a fundamental problem
in computer vision, image denoising is a prerequisite step
for many high-level computer vision tasks, such as image
segmentation [42], object detection [40], and video denois-
ing [12, 56]. It also has a wide range of application such
as medical imaging [23, 27, 43], satellite imaging [36, 44],
and image compression [25, 45].

*indicates equal contributions.

Figure 1: Parameters vs. Performance. The PSNRs are
evaluated on color Urban100 with the σ = 50. All models
do not share parameters except MemNet [46]. Our method
has leading performance with reasonable parameters.

Along with the era of neural networks, many methods
have been proposed based on prior knowledge and machine
learning [6, 9], which often require solving complex opti-
mization problems and tuning parameters manually. In the
meantime, convolutional neural network (CNN) has also
been carefully studied for image denoising, and the first
state-of-the-art CNN model, DnCNN [58], was proposed
by Zhang et al. in 2016. Since the success of DnCNN,
neural networks have become the mainstream research di-
rections towards image denoising. However, the research
of CNN for image denoising has reached a serious bottle-
neck. Indeed, in the development of CNN, many denoising
models such as MWCNN [31, 32] and DHDN [38] have
adopted U-Net structure [42] for its consideration of multi-
scale features, yet models with better performance need
more parameters in general and their PSNR only advance
marginally. Meanwhile, some cascading U-Net architec-
ture like MCU-Net [4] employ different techniques such as
residual learning and local dense connection for better per-
formance. However, none of them fully consider the multi-
scale feature cross different U-Nets except for upsampling,
which is useful for mining more image structures and keep
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more structures in the target image. Moreover, to seek good
performance, some excellent models such as DHDN [38]
also use hundreds of millions of parameters, which is im-
practical in some real-world applications due to the large
storage and the risk of over-fitting. This raises a natural
question. Can we have an efficient neural network model
which 1) exhausts the multi-scale features with 2) better
performance and 3) fewer parameters?

In this work, we give an affirmative answer to the above
question. As illustrated, the cascading U-Nets architecture
can be regarded as a nice starting point to design an effec-
tive network for image denoising. However, we need to pay
attention to three important related issues. First, we need
to smartly address the multi-scale information to keep more
structures in the target image. Second, the trade-off between
the efficiency and the number of parameters needs to be
carefully balanced. Generally speaking, the networks with
fewer parameters usually have better generalization abili-
ties. Third, we use suitable techniques to further improve
model performance effectively.

Based on the above observations, we now present a
novel Dense Dense U-Net model (DDUNet), where the first
“dense” refers to the multi-scale dense processing which
connects every level in the dense U-Net blocks while the
second “dense” refers to the local residual dense block used
in the dense U-Net block. In multi-scale dense process-
ing, dense connections are applied to connect every subnet-
work of the U-Nets at every level. This is helpful to exploit
more information from the feature maps in different scales
rather than upsampling only and utilize the gradient flow.
Furthermore, we develop a series of important techniques
to improve model performance with fewer parameters, and
these techniques should be inspiring for other related tasks.
Indeed, to reduce the number of parameters, we keep the
number of channels unchanged after downsampling and the
experimental results show that the number of parameters is
about 1/17 of doubling the number of channels while the
performance drops slightly only. Moreover, we use discrete
wavelet transform as our up- and downsampling operators
for its ability to capture both frequency and location infor-
mation of feature maps, which is helpful in preserving de-
tailed texture [10, 11]. We use a modified version of the lo-
cal residual dense block in the dense U-Net blocks to further
enrich feature representation and reduce the computational
burden. As an important U-Net variation, the number of
parameters of our DDUNet is only 2/5 of that of MWCNN
[32], see Figure 1, and our DDUNet outperforms the state-
of-the-art algorithms in gray-scale image denoising, color
image denoising and real noisy image denoising. Our re-
search also benefits the model selection in neural architec-
ture search [13]. To sum up, the main contributions of this
work are as follows

• We propose a Dense Dense U-Net (DDUNet) for im-

age denoising with a multi-scale dense processing
(MDP) mechanism for U-Nets, which fully utilizes the
location and frequency information at every level. To
the best of our knowledge, the multilevel dense con-
nection did not appear in any previous work, and could
be useful for other deep learning tasks and neural ar-
chitecture search.

• We give a better trade-off between the efficiency and
the number of parameters by our MDP. Experimental
results show clearly that our network achieves state-
of-the-art results in both gray-scale and color image
denoising with fewer parameters.

• We develop a series of important techniques to fur-
ther improve the model performance. As a result, our
model achieves the best visualization results in real
noisy image denoising. This shows the potential to use
our model in real-world applications. Moreover, these
techniques should be inspiring for other related tasks.

2. Related Works
2.1. Image Denoising

Image denoising aims to reconstruct a clear image x
from a noisy image y. The degradation model is often for-
mulated as

y = x+ n, (1)

where n is the additive white Gaussian noise (AWGN).
Nowadays, CNN-based image denoising methods convert
this problem into a learning problem.

Since 2009, many excellent CNN models have been in-
vented for image denoising [21]. Early methods generally
did not achieve state-of-the-art performance [21, 55]. To en-
hance the performance, many techniques, such as batch nor-
malization and residual learning [3, 49, 58], dilated filters
[59], skip connections in RED30 [34], memory-persistent
gate unit in MemNet [46], fractional optimal control [22],
residual dense blocks in RDN [62], attention mechanism
[48], edge feature guidance mechanism [7, 16], graph con-
volution in GCDN [52, 53], have been invented for image
denoising. Some methods [19, 32, 33, 38, 57] adopted hi-
erarchical structure to enlarge the receptive field for better
details preserving. To avoid training the network every time
for every single noise level, FFDNet utilized the noise level
map as an additional input to the network [60]. Apart from
CNN, recurrent neural network (RNN) also plays a major
role in image denoising. For instance, the NLRN [28] is
an RNN model with non-local modules for image restora-
tion. The non-local self-similarity information was also ex-
ploited in N3Net [39], which was inspired by the idea of
nearest neighbors. For a contemporary overview of image
denoising, one may refer to [15, 18, 47].
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Beside image denoising, CNN denoisers have been
widely incorporated into the model-based optimizations
such as SISR and deblurring [59, 41]. Meanwhile, they
have been also used as a pre-processing step in other deep-
learning-based models such as image classification [29].

2.2. Variations of U-Net

In 2015, Ronneberger et al. [42] introduced the cele-
brated U-Net for 2D biomedical image segmentation. It has
been extended to many applications soon, such as 3D image
segmentation [37] and image restoration [32, 33, 38]. Re-
searchers have been inventing many methods to improve the
architecture of U-Net, such as cascading U-Nets [4, 30, 54],
the skip connections [51] in UNet++ [64], discrete wavelet
transform in MWCNN [32], and the inception-residual and
dense connecting convolutional modules [63]. Since pro-
cessing large images often brings large memory consump-
tions , invertible learnable up- and downsamplings are thus
adopted in iUNets [14] for memory-efficient backpropaga-
tion. Unlike previous works, we connect several cascading
U-Nets via a multilevel dense connection in our DDUNet,
which exploit multi-scale features.

3. Method
In this section, we first give an overview of our

DDUNet’s architecture. Next, we present the technical de-
tails of our local residual dense block and global residual
dense structure. In the end, we give our loss function.

3.1. Network Structure

In Figure 2, we illustrate our proposed DDUNet, which
consists of dense U-Net blocks with the global residual
dense structure. The input is first sent to a convolution layer
with a rectified linear unit (ReLU), and then sent to cascad-
ing dense U-Net blocks with multi-scale dense processing.
After the dense U-Net blocks, a global feature fusion layer
followed by a convolution is applied to predict the residual
image. Unless other specified, all convolutions are 3 × 3
convolutions and the number of dense U-Net blocks is 5 .

3.1.1 Dense U-Net Block

Our dense U-Net block, as shown in Figure 3, is a U-Net
consisting of several local residual dense blocks. The input
is first processed with a fusion layer, which consists of a
concatenation layer followed by a convolution layer and a
ReLU, to fuse the feature maps from all preceding U-Nets
in the same level. Next, it is processed with a local residual
dense block and downsampled by the discrete wavelet trans-
form (DWT). After that, we process it with a fusion layer,
a local residual dense block, and downsample it twice. Af-
ter the last downsampling, a fusion layer followed by two
local residual dense blocks is applied. Finally, the features

are repeatedly upsampled, fused with the features maps in
the same U-Net and then processed with a local residual
dense block. Unlike traditional U-Net [42], the number of
channels of our dense U-Net blocks remains the same after
downsampling to save parameters. In the up- and down-
sampling part, we use Haar wavelet transform, which was
proposed in [2, 32], for its excellent ability to capture the
frequency and location information.

3.1.2 Local Residual Dense Block

To fuse information from all the convolution layers as much
as possible, unlike [61], we apply two consecutive convolu-
tions with ReLU for greater function space. Greater non-
linearity allows richer choices of representation and thus
beneficial to the performance. Moreover, we utilize several
techniques including local feature fusion and local residual
learning in our local residual dense block, as shown in Fig-
ure 4 to facilitate the information and gradient flow.

3.1.3 Global Residual Dense Structure

Apart from applying local residual dense structure in the
local residual dense block, we further propose multi-scale
dense processing, global feature fusion and global residual
learning for better information flow.

Multi-scale dense processing. The idea behind our
multi-scale dense processing (MDP) is to create a multi-
level dense connection, which aims at fusing information
from all levels of all preceding U-Nets to the subsequent U-
Net. Direct fusion among feature maps from all previous
layers is not practical due to memory and computational
limit. Instead, we fuse all the feature maps from the last
layer of all preceding U-Nets and the feature maps from the
previous level in the same U-Net after DWT. Let x0,0 be
the input for the first U-Net, xi,k be the output of the i-th
level in k-th U-Net for k ≥ 1, wi−1,n be the output of the
local residual dense block from the previous level. The in-
put yi,n for LRDB in the i-th level in the n-th U-Net can be
formulated as{
y0,n = ReLU (W0,n[x0,0, x0,1, . . . , x0,n−1]),

yi,n = ReLU (Wi,n[DWT (wi−1,n), xi,1, xi,2, . . . , xi,n−1]),

(2)
for i = 1, 2, 3, where Wi,n is some convolutions, [·] is
concatenation operation. Multi-scale dense processing al-
lows the preceding U-Net directly connect all subsequent
U-Nets. This is helpful for both feed-forward nature and
local dense feature extraction.

3.2. Loss Function

Denote Θ the total network parameters of DDUNet, and
let F (y; Θ) be the network output. Let {(yi, xi)}Ni=1 be
a training set, where yi is the i-th input image, xi is the
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Figure 2: Architecture of Dense Dense U-Net. Figure 3 shows the detailed structure of a dense U-Net block.

Dataset No. of Set12 BSD68 Urban100
σ Param. 15 25 50 15 25 50 15 25 50

BM3D [9] - 32.37/.8952 29.97/.8505 26.72/.7676 31.08/.8722 28.57/.8017 25.62/.6869 32.34/.9220 29.70/.8777 25.94/.7791
TNRD [6] - 32.50/.8962 30.05/.8515 26.82/.7677 31.42/.8822 28.92/.8148 25.97/.7021 31.98/.9187 29.29/.8731 25.71/.7756

DnCNN [58] 556K 32.86/.9027 30.44/.8618 27.18/.7827 31.73/.8906 29.23/.8278 26.23/.7189 32.67/.9250 29.97/.8792 26.28/.7869
IRCNN [59] 186K 32.77/.9008 30.38/.8601 27.14/.7804 31.63/.8881 29.15/.8249 26.19/.7171 32.49/.9244 29.82/.8839 26.14/.7927
RED30 [34] 4.13M 32.83/.9030 30.49/.8637 27.34/.7897 31.72/.8910 29.26/.8300 26.35/.7245 32.75/.9282 30.21/.8901 26.48/.7991

MemNet [46] 677K 32.78/.9015 30.50/.8635 27.38/.7931 31.66/.8883 29.26/.8290 26.35/.7249 32.61/.9257 30.23/.8902 26.64/.8024
FFDNet [60] 485K 32.75/.9027 30.43/.8634 27.32/.7903 31.63/.8902 29.19/.8289 26.29/.7245 32.43/.9273 29.92/.8886 26.52/.8057

MWCNN [32] 24.92M 33.15/.9088 30.79/.8711 27.74/.8056 31.86/.8947 29.41/.8360 26.53/.7366 33.17/.9357 30.66/.9026 27.42/.8371
DIDN [57] 165M 33.14/.9076 30.83/.8706 27.77/.8043 31.85/.8933 29.40/.8332 26.47/.7312 33.32/.9353 30.94/.9045 27.66/.8387

DDUNet (ours) 10.36M 33.23/.9101 30.89/.8728 27.83/.8071 31.94/.8958 29.50/.8379 26.58/.7382 33.48/.9383 31.11/.9087 27.83/.8461

Table 1: Number of parameters and average PSNR(dB)/SSIM results of the competing methods for gray-scale image denois-
ing with noise levels σ = 15, 25 and 50 on datasets Set12, BSD68 and Urban100. The red and purple color indicate the best
and the second-best performance respectively. Our DDUNet has leading performance with reasonable parameters.

Figure 3: Architecture of a dense U-Net block, where
LRDB denotes a local residual dense block shown in Fig-
ure 4. DWT and IWT are the discrete wavelet transform
and inverse wavelet transform respectively. The number of
channels is 64 except possibly the concatenation layers.

ground-truth image. We adopt the common l2-loss function
defined by

LΘ(y, x) =
1

N

N∑
i=1

∥F (yi; Θ)− xi∥22 (3)

during training. We adopt the ADAM algorithm [24] to
minimize the above objective function.

Figure 4: Architecture of a local residual dense block. The
numbers of channels of input and output are both 64.

4. Experiments
In this work, we choose the additive white Gaussian

noise as our research object due to its extensiveness and
practicality. Experiments are conducted for performance
evaluation and ablation study.

4.1. Experimental Setting

4.1.1 Datasets

We use a large training set constructed from DIV2K [1].
DIV2K contains 800 images with 2K resolution for training,
100 images for validation, and 100 images for testing. In the
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(a) Ground-truth

(b) Noisy image / 14.57 (c) BM3D[9] / 24.81 (d) DnCNN[58] / 25.17

(e) MWCNN[32] / 25.39 (f) DDUNet(ours)/ 25.83 (g) Ground Truth

Figure 5: Gray-scale image denoising results of “Test033” (BSD68) with noise level of 50 in PSNR (dB). The proposed
DDUNet method has higher PSNR value and better details.

(a) Ground-truth

(b) Noisy image / 15.14 (c) BM3D[9] / 22.66 (d) DnCNN[58] / 23.03

(e) MWCNN[32]/ 23.33 (f) DDUNet(ours)/ 25.00 (g) Ground Truth

Figure 6: Gray-scale image denoising results of “img 053” (Urban100) with noise level of 50 in PSNR (dB). The proposed
DDUNet method has higher PSNR value and better details.

training stage N = 66, 884 patches with a size of 256×256
are cropped from the 800 training images with stride 128.

For gray-scale image denoising, Gaussian noise with a
specific noise level is added to a clean patch, and DDUNet
is trained to learn a mapping from noisy image to denois-
ing result. We consider three noise levels σ = 15, 25 and
50, and evaluate our denoising method on three datasets,
including Set12 [58], BSD68 [35], and Urban100 [20].

Similarly, for color image denoising, we still add Gaus-
sian noise with a specific noise level to a clean patch and
train our DDUNet to learn the residual map. We consider
three noise level σ = 30, 50 and 70, and evaluate our de-
noising method on three datasets, including Kodak24 [17],
CBSD68 [35] and Urban100 [20].

Finally, to assess our denoising method on real noisy im-
age denoising, we choose RNI6 and RNI15 [26] as the test
datasets, which have no ground truth as reference.

4.1.2 Implementation Details

We adopt the ADAM algorithm [24] with β1 = 0.9, β2 =
0.999 and ϵ = 10−8 for optimization and use a mini-batch
size of 16. In each batch, we randomly extract 16 patches
with a size of 128 × 128 as input for gray-scale denois-
ing, and 128× 128× 3 as input for color image denoising.
The learning rate is 2.048 × 10−4 in the first 25 epochs re-
duce to half every 25 epochs. The total number of epochs
is 150. Rotation, flip-based or/and zooming data augmen-
tation [50] is used during mini-batch learning. All experi-
ments are conducted with Nvidia GTX1080Ti GPU.

4.2. Gray-scale Image Denoising

We compare our DDUNet with two classic denoising
methods, i.e., BM3D [9] and TNRD [6], and 7 CNN-based
methods, i.e., DnCNN [58], IRCNN [59], RED30 [34],
MemNet [46], FFDNet [60], MWCNN [32] and DIDN [57].
Table 1 lists the average PSNR/SSIM results of the com-
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Dataset No. of Kodak24 CBSD68 Urban100
σ Param. 30 50 70 30 50 70 30 50 70

CBM3D [8] - 30.89 28.63 27.27 29.73 27.38 26.00 30.36 27.94 26.31
TNRD [6] - 28.83 27.17 24.94 27.64 25.96 23.83 27.40 25.52 22.63

DnCNN [58] 556K 31.39 29.16 27.64 30.40 28.01 26.56 30.28 28.16 26.17
IRCNN [59] 186K 31.24 28.93 20.65 30.22 27.86 20.61 30.28 27.69 20.69
RED30 [34] 4.13M 29.71 27.62 26.36 28.46 26.35 25.09 29.02 26.40 24.74

MemNet [46] 677K 29.67 27.65 26.40 28.39 26.33 25.08 28.93 26.53 24.93
FFDNet [60] 485K 31.39 29.10 27.68 30.31 27.96 26.53 30.53 28.05 26.39
DIDN [57] 165M 31.97 29.72 28.26 30.71 28.35 26.89 31.70 29.39 27.77
DHDN [38] 168M 31.95 29.67 - 30.41 28.02 - 31.58 29.16 -

DDUNet (ours) 10.36M 32.01 29.80 28.41 30.76 28.45 27.04 31.72 29.50 27.94

Table 2: Number of parameters and average PSNR(dB) results of the competing methods for color image denoising with
noise levels σ = 30, 50 and 70 on datasets Kodak24, CBSD68 and Urban100. The red and purple color indicate the best and
the second-best performance respectively. The proposed DDUNet method has higher PSNR values with fewer parameters.

(a) Ground-truth

(b) Noisy image / 15.31 (c) CBM3D[8] / 26.10 (d) DnCNN[58] / 26.29

(e) DHDN[38] / 27.03 (f) DDUNet(ours)/ 27.31 (g) Ground Truth

Figure 7: Color image denoising results of “img 076” (Urban100) with noise level of 50 in PSNR (dB). The proposed
DDUNet method has higher PSNR values and better visual effect.

peting methods on three datasets. For unavailable data,
we use the symbol ‘-’. Experimental results show that
our DDUNet outperforms state-of-the-art algorithms in all
datasets and noise levels in both PSNR and SSIM. In par-
ticular, our DDUNet achieves excellent performance on Ur-
ban100 when the noise level is high, which is about 0.2 dB
higher than DIDN. Since Urban100 has a higher resolution
than other datasets, this demonstrates the potential of our
DDUNet in the restoration of high-resolution images. Fig-
ure 5 and Figure 6 give visual comparisons with BM3D,
DnCNN and MWCNN when the noise level is 50. Clearly,
our method achieves the best results.

4.3. Color Image Denoising

We compare with two classic denoising methods, i.e.,
CBM3D [8] and TNRD [6], and 7 CNN-based methods,
i.e., DnCNN [58], IRCNN [59], RED30 [34], MemNet [46],
FFDNet [60], DIDN [57] and DHDN [38], Table 2 lists the
average PSNR results of the competing methods on three
datasets. We do not compare the SSIM results since most

of the compared methods did not list their SSIMs in the
original literature. For unavailable data, we use the symbol
‘-’. Experimental results show that our DDUNet outper-
forms state-of-the-art algorithms in all datasets and noise
levels. In particular, our DDUNet achieves excellent perfor-
mance when the noise level is 50 and 70, which is 0.1-0.2
dB higher than the state-of-the-art method. Figure 7 gives a
visual comparison with CBM3D, DnCNN, and FFDNet at
the noise level 50. Again, our proposed DDUNet method
has higher PSNR values and better visual effect.

4.4. Real Noisy Image Denoising

Many reasons cause image noise in reality, such as cam-
era imaging pipelines (shot noise, read noise, and quanti-
zation noise), demosaicking, white balance, scanning, and
lossy compression [5]. All these different types of noise
are usually non-uniform and non-Gaussian. These make the
task of real image denoising difficult. To assess the practi-
cability of our DDUNet, we evaluate it on real noisy im-
ages. In particular, we choose RNI6 and RNI15 [26] as
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(a) Noisy Image (b) DnCNN [58] (c) FFDNet [60] (d) DDUNet (ours)

Figure 8: Real noisy image denoising. Left to Right: noisy images, denoised images by DnCNN, denoised images by
FFDNet, and denoised images by our DDUNet. We set σ = 15 and σ = 50 for gray-scale and color images respectively.
One can observe that our DDUNet is good at edge recovery and the preservation of the detailed structure.

MDP ✓ ✓ ✓ ✓
GRL ✓ ✓ ✓ ✓
GFF ✓ ✓ ✓ ✓

PSNR 33.26 33.33 33.34 33.34 33.36 33.35 33.35 33.37
SSIM .9363 .9370 .9371 .9369 .9370 .9370 .9370 .9371

No. of Param. 5.18M 5.62M 5.18M 5.36M 5.36M 5.80M 5.62M 5.80M

Table 3: Ablation investigation of multi-scale dense processing (MDP), global residual learning (GRL), and global feature
fusion (GFF). We observe the best performance (PSNR) on gray-scale Urban100 with σ = 15 in 100 epochs. The red color
indicates the best performance.

the test datasets, which have no ground truth as reference.
Therefore, the performance can be assessed only by visual
comparison. We choose DnCNN and FFDNet for compar-
ison for their wide acceptance as the benchmark for image
denoising. In Figure 8, we provide a visual comparison of

these models. Since our DDUNet is a non-blind denoising
model, we set σ = 15 and σ = 50 for gray-scale and color
images respectively by our rough estimation. One can ob-
serve that our DDUNet is good at edge recovery and preser-
vation of the detailed structure.
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No. of Channels after Downsampling ×1 ×2

PSNR 33.37 33.52
SSIM .9371 .9386

No. of Param. 5.80M 102M

Table 4: Ablation investigation of the number of chan-
nels after downsampling. We observe the best performance
(PSNR) on gray-scale Urban100 with σ = 15 in 100
epochs, where ’×1’ and ’×2’ means the number of chan-
nels are (64 → 64 → 64 → 64 → 64) and (64 → 128 →
256 → 512 → 1024) respectively.

No. of U-Nets 2 3 4 5

PSNR 33.29 33.38 33.44 33.48
SSIM .9365 .9373 .9378 .9383

No. of Param. 3.75M 5.80M 8.01M 10.36M

Table 5: Investigation of the number of U-Net blocks. We
observe the best performance (PSNR) on gray-scale Ur-
ban100 with σ = 15 in 100 epochs.

4.5. Ablation Study

4.5.1 Study of the Number of Channels

Table 4 shows the relation between the number of channels
and the performance of DDUNet. Both networks have the
same number of U-Nets (N = 3). Experimental results
indicate that doubling the number of channels after down-
sampling only improves the PSNR for about 0.15 dB but the
number of parameters increases 17 times. This justifies our
choice of a deeper network instead of a wider one.

4.5.2 Study of Number of U-Nets

In this subsection, we investigate the basic network param-
eter: the number of U-Nets (denote N for short). Table 5
shows that the performance of our DDUNet increases with
the number of U-Nets. Note that the number of parame-
ters increases roughly linearly with the number of U-Nets.
Since the improvement decelerates when the number of U-
Net blocks attaining N = 5 and a single GPU does not have
enough memory to train a DDUNet for N = 6, we adopt
N = 5 throughout the whole paper unless other specified.

4.5.3 Study of the Global Residual Dense Structure

Table 3 shows the ablation investigation on the effects of
multi-scale dense processing (MDP), global residual learn-
ing (GRL) and global feature fusion (GFF). The eight net-
works have the same number of U-Nets (N = 3). Experi-
mental results show that the global residual dense structure
is essential for our network. The number of parameters in-
creases only 1/8 after adopting all these dense techniques.

4.6. Number of Parameters

The number of parameters is crucial in determining the
potential of a neural network. More parameters usually lead
to better performance but it requires larger storage space
and often risks over-fitting. In Table 1-5, we compare the
number of parameters and the performance in PSNR (dB)
under different setting. Experimental results demonstrate
that our DDUNet outperforms DIDN [57], DHDN [38] and
MWCNN [32] with fewer parameters. Figure 1 gives a visu-
alization of different models’ number of parameters against
their performance. Note that MemNet [46] is the only
parameter-sharing models.

5. Conclusion

The investigation of CNN for image denoising has ar-
rived at serious a bottleneck as models with better perfor-
mance usually need more parameters in general and their
PSNR can only by improved marginally in recent years.
It is an extremely challenging task to design an efficient
network for image denoising with better performance and
fewer parameters. In order to solve this problem, in this
work, we propose Dense Dense U-Net (DDUNet) to utilize
the hierarchical feature in each scale and a better trade-off
between the number of parameters and efficiency. To this
end, we keep the number of channels of the U-Net the same
after downsampling and connect several dense U-Net by the
multilevel dense connection, which directly connects every
level cross the U-Nets. To further utilize the global feature,
we apply global feature fusion (GFF) and global residual
learning (GRL). Inside the dense U-Net, the invertibility of
the Haar wavelet transform allows better preservation of the
location and frequency information during up- and down-
sampling. With the usage of local residual dense blocks,
the flow of gradient and information has further improve-
ment. By combining local and global features together, our
DDUNet surpasses state-of-the-art models in gray-scale,
color and real noisy image denoising with fewer parame-
ters. In future work, we aim to extend our DDUNet to other
image-to-image tasks like single image super-resolution,
image restoration and image segmentation. We will also
investigate to incorporate our multi-scale dense processing
in neural architecture search.
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