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Abstract

This work bridges recent advances in once-for-all (OFA)
networks [I|] and sample-adaptive dynamic networks. We
propose a novel neural architecture dubbed as Russian doll
network (RDN). Key differentiators of RDN are two-folds:
first, a RDN topologically consists of a few nested sub-
networks. Any smaller sub-network is completely embed-
ded in all larger ones in a parameter-sharing manner. The
computation flow of a RDN starts from the inner-most (and
smallest) sub-network and sequentially executes larger ones
according to the nesting order. A larger sub-network can
re-use all intermediate features calculated at their inner
sub-networks. This crucially ensures that each sub-network
can conduct inference independently. Secondly, the nesting
order of RDNs naturally plots the sequential neural path
of a sample in the network. For an easy sample, much
computation can be saved without much sacrifice of accu-
racy if an early-termination point can be intelligently de-
termined. To this end, we formulate satisfying a specific
accuracy-complexity tradeoff as a constrained optimization
problem, solved via the Lagrangian multiplier theory. Com-
prehensive experiments of transforming several base mod-
els into RDN on ImageNet clearly demonstrate the superior
accuracy-complexity balance of RDN.

1. Introduction

Modern deep neural networks have been firmly estab-
lished as state of the art approaches in many computer vi-
sion and multimedia analysis tasks, such as image recog-
nition [8}, 28] 5], object detection [31]] and vision-language
learning [21]]. The development of several key engineer-
ing techniques, particularly modular network design and
residual learning, has spurred the explosive growing of very
deep or dense models to obtain further performance gain.
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Figure 1. Conceptual comparison of Russian Doll Network (RDN)
(in (c)) with representative once-for-all networks [1] (in (a)) and
dynamic networks [25] (in (b)). Blocks with similar color (as in
(a)) or filled pattern (as in (b)) imply parameter-sharing, which are
jointly optimized during training.

Despite the remarkable new performance, large-sized deep
networks have limited practical use owing to the intensive
computations and memory footprint. Tremendous efforts
have been devoted to learning slimmer and faster networks,
such as using network compression [9} 32] and novel neu-
ral designs [22, 20]. In this work, we expose a novel net-
work architecture, dubbed as Russian Doll Network (RDN),
whose motivations are two-folds:

First, a deep model can be deployed on diverse hardware
platforms with different requirement, ranging from low-cost
smart-home sensors to dedicated Tensor Processing Unit
(TPU). These platforms enforce different efficiency con-
straints and thus demand neural networks with varying com-
plexities. Training an optimal model separately for each ap-
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plication scenario is seemingly possible yet economically
forbidden. Recently, once-for-all networks [1] (see Fig-
ure[T[a)) devise multiple sub-networks with varying depths,
widths, kernel sizes, and resolutions in a parameter-sharing
manner. The training cost can be amortized by jointly op-
timizing all sub-networks in a single process. The resul-
tant sub-networks can be flexibly deployed under diverse
architectural configurations without re-training the models.
Multiple sub-networks share similar architectures and con-
text information, which makes the larger sub-networks effi-
ciently deploy information and get faster and more accurate
predictions.

Secondly, in image recognition or object detection, the
difficulty level of confidently classifying an input signifi-
cantly varies across different image or candidate box. Pro-
cessing all samples equally is computationally inefficient
since a lot of computations would be wasted on easy sam-
ples. [14] allocates proper weights for discriminating easy
samples and hard samples during training. It is also cru-
cial to treat easy samples during inference stage [3]]. Re-
searchers have recently proposed numerous methods for
dynamic inference. Based on predictive inspection at
some early network stage, a sample can choose different
routes [24] 26], adaptively emphasize specific image sub-
region according to a learnable policy [25], or follows a
gating mechanism for dynamically unrolling some neural
units [7]].

This paper introduces Russian Doll Network (RDN) as
a new solution that bridges once-for-all networks and dy-
namic inference. Figure [T[c) shows the conceptual archi-
tecture of RDN, depicting a K-in-1 full network with re-
cursively nested sub-networks Ny, No, ..., Ng. Crucially,
we constrain RDNs to have strict sequential nesting order.
To be specific, an inner sub-network in the sequence is fully
embedded into any one larger than it, with all its param-
eters shared, which means the information flow from in-
ner sub-networks to larger sub-networks, irreversibly. The
computational flow always follows Ny — Ny — -+ —
Npg. On the one hand, larger sub-networks have full ac-
cess of the feature maps calculated at all previous sub-
networks, but previous sub-networks are not affected by the
larger sub-networks. This way, each sub-network acts as
an uni-directional dependent classifier, and the residual net-
work N; — N;_1,7 = 2... K aggregates all previous sub-
networks Vq, ..., N;_1 and progressively improves current
sub-network. On the other hand, the sequential nesting or-
der naturally enables dynamic inference. The calculation of
a sample can early terminate once the confidence at some
sub-network has been already sufficiently high. This will
avoid unnecessary computations without heavy sacrifice of
accuracy. In this work, we formulate the policy network
to estimate the confidence distribution of samples, and pro-
pose a sample-adaptive inference as searching an optimal

Lagrangian variable, which intelligently strives to achieve
some pre-specified accuracy-complexity trade-off. The cal-
culation of a sample can terminate by judging and weighing
the user-given expected accuracy in order to save the com-
putation complexity.

2. Related Works

Once-for-all network: Deep neural networks nowadays
have wide deployment at diverse scenarios, which request
different trade-off between latency and accuracy. Conven-
tionally, deep networks are trained for special hardware
platform, and need be re-configured and re-trained for any
new deployment. For economic concern, training once and
getting many diverse networks [30, 6] would alleviate the
expensive cost of multiple deployments. Slimmable neu-
ral networks [29] privatize all batch normalization layers
for each switch of channel width, producing varying-width
networks. Once-for-all (OFA) networks [[1]] derive multiple
networks along multiple dimensions (e.g., resolution, chan-
nel width, depth etc.) and jointly train them via progres-
sive shrinkage. In the model specialization stage, OFA-Net
samples a subset of sub-networks to train an accuracy pre-
dictor and latency predictors. An optimal choice of sub-
network will be thereby chosen for the target hardware and
constraint.

Nested structure in deep networks: Numerous non-
sequential structures in deep neural networks [[13} 10} 23]
have been recently explored for improved performance.
Among them the most relevant work to ours is Nested-
Net [12]. Similar to our RDN, it is a resource-aware ver-
satile architecture as the same network can meet diverse
resource requirements. NestedNet is comprised of nested
multiple levels of networks. Model parameters are shared
across levels. However, NestedNet does not prune unnec-
essary connections between two levels of sub-networks,
allowing high-level sub-network to update the features at
lower level. This causes heavy parameter redundancy. In
contrast, our proposed RDN only permits uni-directional in-
formation flow from inner-nested sub-network to large ones
that it embeds, but not vice versa.

Dynamic deep networks: To avoid unnecessary com-
putations, some methods have developed various sophisti-
cated schemes for skipping part of the model. Examples
include dropping some neural layers as piloted by a con-
troller [27, [15] or conducting an early exit [11]. In image
recognition task, image resolution occupies an important
parts in both accuracy / complexity trade-off. GFNet [25]]
micro-form the traditional convolution neural networks and
provides dynamic focusing to the enlarging image sub-
regions. In this work, the proposed RDN naturally enforces
a sequential nesting order of sub-networks. We adopt a La-
grangian multiple based policy for determining the optimal
nested sub-network where a sample achieves desired level
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of accuracy / complexity trade-off.

3. Russian Doll Network
3.1. Overview

Here we formulate the construction of RDN as a generic
network-transforming process. It aims to transform a pre-
trained super-net into a new network which satisfies the
primary requirement of RDNs, rather than learning RDN's
from scratch. This way decouples structure configuration
and parameter initialization, tending to lead to better accu-
racy as validated in our experiments. The construction of an
RDN is comprised of four consecutive steps: adjusting the
neuron connections that violate the nested structure, fine-
tuning the new network as a multi-objective optimization,
determining an optimal nesting order and eventually learn-
ing a policy that generates sample-adaptive neural route for
pre-specified accuracy-complexity trade-off.

3.2. Transform Pre-trained Networks into RDN

In modern networks, channel-wise operators (variants
ReLU, Sigmoid, Batch Normalization, depth-wise convo-
lution etc.) need not any transform to become nested. But
there are several popular neural operators in-proper to be
transformed, including: 1) the output of L2 normalization,
Softmax or Layer Normalization in some intermediate lay-
ers are tightly coupled. Remove or change a neuron would
affect all others and violates the nesting requirement; 2) For
a few popularly-adopted variants of convolution (such as
grouped or depthwise separable convolution as used by Mo-
bileNeXt or MobileNetV2), they have already significantly-
reduced parameters. Further transforming will not bring
more model compression yet are prone to performance loss.
We thus keep such operators unchanged.

Inspired by OFA-Net [1]], we explore multiple dimen-
sions to construct a nested network. In particular, we
demonstrate the construction by operating on the dimen-
sion of network depth or channels in a convolution. Other
dimensions are left for future exploration. Note the fully-
connected (FC) layers can be treated as a special convolu-
tion with 1 x 1 receptive field.

Convolutional channel-wise nesting. Now let us elab-
orate on the surgery on vanilla convolutions. Let X €
Re*"xw he the input feature tensor of a vanilla convolu-
tional layer, W € R¢XIXkXk be the parameter matrix,
where h,w define the spatial resolution and c,d are the
counts of input / output channels respectively. Denote the
convolutional output as Y = W ® X € R¥&>rxw  To
make a convolution nested, assume its channels are split
into k£ non-overlapping groups. Correspondingly, there are
k x k sets of inter-group convolutional parameters. The
main challenge of defining a nested convolution is tackling
the connections that violate the nesting order (e.g., red con-
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Figure 2. Learning a Russian Doll Network (RDN) can be accomplished
by re-organizing and fine-tuning a pre-trained super-net. This figure
overviews such a network surgery along the channel dimension. Each
block represents a group of channels. The results RDN has a nesting struc-
ture as N1 — No — N3 — N4 — ... = Ng. We use different colors
to imply which sub-network a connection or channel belongs to.
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Figure 3. Illustration of transforming a vanilla convolution (a) with &
groups into a nested one (b) with K = 2k — 1 groups. Connections that
do not violate the nesting property are displayed in solid lines (e.g., those in
red and blue), otherwise shown in dashed lines. Note that the dependency
is uni-directional for the groups in (b).

nections in Figure 2] Our proposed solution is introducing
another £ — 1 groups as the new destination of these con-
nections, forming a total of K = 2k — 1 groups. This way
eliminates all violating connections. For example, k = 4
and K = 7 in Figure 2]

Nested convolution can be regarded as group convolu-
tion + nested dependency among groups. Formally, we can
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define nested convolutions recurrently as below:

Y,
Yia= (v ' ), 1<i<Kk-1,
i (Yi—>i+1> ==
Xy (1

Yi%iJrl = W;;r*)i+1 ® + W;']:Arl ® Xi+1,

'
T,

where ( ), + denote tensor concatenation / addition, respec-
tively. q° € R™ is a sequence of indices, which defines
the nested dependencies in group 7. By the definition of
nested convolution, qj- < 7 is a necessary condition. Feature
Y1 concatenates two sources: one is the frozen Y as cal-
culated by previous sub-networks in the nesting sequence,
and the other is computed via vanilla convolution using
both Xfﬁ’ cee Xq:-“ (parameterized by W, _,; 1) and X; 14
(controlled by W, 1). In this way it establishes nested de-
pendency among sub-networks. In Figure [d we show two
popular base models, including MobileNeXt and ResNeXt.
The operators which violate nesting manners are colored
red.

Network initialization is widely-known to be crucial for
converging at high accuracy. We empirically find that train-
ing RDNs from scratch is not ideal, as later validated in
experiments. Instead, we directly borrow the parameters
in pre-trained super-net, namely using W to initialize all
{W,;} and {W,_,;;+1}. Figure |3| presents an example of
transforming into a nested one. In addition, the supplemen-
tal materials describes more engineering implementation of
above transform, including a greedy selection scheme that
splits an input tensor into k£ groups and an inflation oper-
ation that solves the feature dimension mis-matching be-
tween nested convolution and other neural layers.

Depth-wise nesting. Nesting can be also accomplished
along the dimension of network depth. Figure [5] shows an
example of depth-wise split that divide a sub-network Ny
to Ni,0 and Nj ;. For the two new sub-networks, Ny o
is a relatively-shallow network with some additional light
blocks for aligning spatial resolution and channel dimen-
sion between neural layers. The other Nj ; reads the fea-
tures outputted by Ny, o. These new sub-networks still have
uni-directional dependency. Once the network Ny, o finishes
the computation, its features will not be updated during run-
ning N 1. Again, all blocks can re-use the parameters of
the original N except for the newly-added light blocks.

Head design for sub-networks. We follow the common
practice of stacking multiple MLP layers as the classifier’s
head. As shown in Figure 2] since the active feature chan-
nel varies for different nested sub-networks, the eventual
flattened features for different heads may differ in length.
To tackle this issue, we simply append an extra MLP layer
in each head, aligning all the features to the same feature
dimension. More importantly, as inspired by [25], the last
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Figure 4. Two concrete examples (MobileNeXt and ResNeXt re-
spectively) for transforming a pre-trained network into RDN. The
surgical operations are mainly conducted on parameter-intensive
convolutions (highlighted in red in the figures). Specially-
designed convolutions (e.g., depth-wise separable convolution in
(a) or grouped convolution in (b) remain untouched, since their
parameters are already economically used in the original network.

layer of all heads are enforced to share parameters, which
supposedly improves the robustness. Note that in RDN, the
last layer is initialized by the classifier layer in the super-
net.

Greedy Select In Algorithm [I] we show the details of
greedy select. The main purpose is getting an optimized
permutation of filters which could reduce the differences
between outputs of vanilla convolution and nested convolu-
tion. The whole algorithm is organized by selecting filters
greedily and getting the target permutation step by step.

3.3. Learning Nesting Order

Previous works such as OFA-Net [1l] adopt a large,
searchable space for sub-spaces. For example, OFA-Net
specializes a sub-network along four dimensions: depth,
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Light block

Figure 5. Our implementation of depth-wise nesting. On the left is
a network with a classification head Nj. The right are two new sub-
networks induced from NNj. Dependency of these two networks is still
uni-directional.

Algorithm 1 Greedy Select

Input: convolutional parameters matrix, W € ReX@xkxk,
input tensor, X € R¢*"*%; nested groups which is a
divisor of both ¢ and d, K € N*; input permutation of
length ¢ from previous nested convolution, i,

Output: output permutation for the next layers, w°%¢;

D SC 4 %, sd <+ %
cforgel... K —1do
7 < a full permutation of length d

1

2

3

4 7r9 — 7-(-;7;50+1,...,c

5: fortel...sddo

6: b+ argmin, W] X [bem
; N

8

9

Ty Xb
T mT—b R
7.rout — 7.l,out U b
end for
10: end for
11: 7o — gout g
12: return 7ou

width, kernel size and resolution. This brings tremendous
memory for storing all of them and jointing training many
sub-networks may cause interference with each other. The
authors thus proposed to actively select a limited number
of sub-networks occasionally during the training. Since the
search space is not our main focus, this work adopts a rel-
atively small space for sub-networks. As seen in Figure [6]
we only allow the variations along network width or depth,
establishing a 2-D grid of sub-networks. During training, a
unique head is appended onto each sub-network. To strictly
ensure a sequence of expanding nested sub-network, the
transition between sub-networks are naturally defined by
the network topology, as shown in the left panel of Figure[6}
Once the optimization converges, all sub-networks are plot-
ted with a complexity-accuracy frame. The optimality of
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Figure 6. Learning nesting order. Lef: topology of 2-D sub-networks
along network depth and width; Right: plotting the learned sub-networks
according to their network complexity and accuracy. The best nesting order
is connected in red lines.
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Figure 7. The training procedure of the policy network. Given an image,
RDN with K sub-networks outputs a vector ({1, ..., Lk ), which indicates
K classification results of each sub-networks. Policy network estimates
a vector (p1, ..., px) of k probabilities as described in Section The
bottom black dashed box indicates the adapting targets of policy network,
in which y is the ground-truth label of given image. Note that “[P]” is the
Iverson bracket, i.e., 1 if P is true and O otherwise.

a nesting order is intuitively set as maximizing the integra-
tion under the curve, similar to the AUC (Area under the
ROC Curve) metric widely used in image search. The opti-
mal solution tends to be a convex hull of all sub-networks’
plots. In addition, topological constraints should be satis-
fied. A pursued optimal nesting order is illustrated in the
right panel of Figure [6]

3.4. Accuracy-Complexity Trade-off

Inspired by the DARTS algorithm in [3], we here
propose a Lagrangian theory based scheme for elegantly
searching a policy, which adaptively determines how far
a sample will go in the learned nested RDN. In specific,
we mis-use the notation K to denote the number of sub-
networks in a learned RDN. Ny is the largest full model
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Models Avg Mem Used.(M) MAdds. Top-1 Acc.(%) Top-5 Acc.(%) Integrated Nets.
MobileNeXt-multil.0 3.54 317M 74.02 91.65 1 full network
MobileNeXt-multil.5 6.9 683M 76.64 93.10 1 full network
MobileNetV2-multil.4 6.19 598M 74.16 91.63 1 full network
RDN-MobileNeXt-multil.0 6.92 369M 74.17 91.68 7 sub-networks
RDN-MobileNeXt-multil.5 14.40 789M 76.56 92.54 7 sub-networks
RDN-MobileNetV2-multil.4 7.54 665M 73.96 91.67 7 sub-networks
RDN-MobileNeXt-multil.0 4.89 250M 74.15 91.56 7 sub-networks
RDN-MobileNeXt-multil.5 11.54 660M 76.68 93.54 7 sub-networks
RDN-MobileNetV2-multil.4 7.08 465M 74.03 91.65 7 sub-networks

Table 1. Main results of Russian Doll Network (RDN) and base models. “RDN-MobileNeXt”, “RDN-MobileNetV2” are RDNs transformed from Mo-
bileNeXt, MobileNetV2 respectively. “multi1.0”, “multil.4”, and “multi1.5” are variants definded by different paramters of multiplier as in [19]. “Avg
Mem Used.(M)” are the average memory used during inference of whole network. In the top part, we show the results of base models. All of them are
integrated by only 1 full network. In the middle part, the performances of the largest sub-networks in RDNs are compared with corresponding base models.
In the bottom part, variants with a super-script T utilize our proposed dynamic inference. Number of parameters are slightly bigger than the basic RDN due
to the additional policy network, and MAdds. are significantly saved because of the sample-adaptive dynamic inference.

and consumes most expensive computations. For a sub-
network Ny, let the reward function 7, € [0,1] to in-
dicate the percentage of saved computations in compari-
son with Ng. Clearly rx = 0, and the sub-networks
in the nesting order exhibit a decreasing r-value, namely
rL>re> ... >TK.

Let f be a policy-induced classifier. ®(f) is the aver-
aged accuracy of classifier f. The optimization objective of
accuracy-complexity trade-off can be written as below:

R(f

) = E(ryx)[f(X) is correct])
subjectto  ®(f) >1

maximize
f

2)

— €,

where € (0 < 1 — e < 1) is a key hyper-parameter that

decides the target accuracy level. The corresponding La-
grangian is:

L(f;A) = R(f) + M2(f) =1 +¢). 3)

The optimization boils down to finding the Lagrangian
variable A that maximizes L. In practice, we pile up some
Multi-Layer Perceptrons (MLPs) which reads the features
of Ny and plays as the policy net, seen in Figure[7] It is op-
timized to approximate py | x (v|z) = Pr(v is correct| X =
x). A one-pass binary search then finds A* for specific €.

4. Experiments

In this section, we empirically evaluate the effectiveness
of the proposed RDN and present ablation studies to cor-
roborate various designs in our method. Firstly, we de-
scribe the experiment settings and critical implementation
details. Secondly, we analyze the main results of all sub-
networks in RDN, including the results when applying the
sample-adaptive inference described in Section [3.4] during
inference. Finally, we conduct a series of ablation experi-
ments to show the superiority of our approach over variants.
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Figure 8. Performance of Russian Doll Network (RDN) trans-
formed from MobileNeXt-multil.5 base model. x-axis indicates
the average MAdds during inference, and y-axis is the top-1 ac-
curacy on ImageNet validation partition. In the figure, RDN-
MobileNeXt-m1.5" (shown in red dots) is an enhanced RDN by
applying sample-adaptive dynamic inference. Each red dot corre-
sponds to the performance under a specific user-given .

4.1. Implementation Details

Dataset. Following previous work, we use Ima-
geNet [18] for all of our classification experiments. The
comparisons are based on accuracy versus various measures
of resource usages such as the number of parameters, la-
tency and multiply adds (MAdds) in mobile settings. We
adpot the same data augmentation and pre-processing con-
figurations as [2].

Setup. We adopt PyTorch toolbox [17]] to implement all
experiments. Code and pretrained models are mainly based
on the implementation of public MobileNeXt-PyTorch [2].
If not mentioned, all the training and validation settings are
the same as [2]. In specific, we train our models using dis-
tributed training setup on 8 NVIDIA V100 GPUs. As for
both training-from-scratch or fine-tuning RDNs, we use the
initial learning rate of 0.1, with batch size 1024 (128 images
per GPU), and cosine learning rate scheduler [16] with de-
cay rate of 1.0 and minimum learning rate of 1 x 107°. We
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No. Basemodel Integrated Nets  Top-1 Acc.(%)
1 MnXtl.5 7 sub-networks 76.56
2 MBv21.4 7 sub-networks 74.16
3 MnXtl.5 14 sub-networks 75.44
4 MBv21.4 14 sub-networks 73.35

Table 2. Impact of depth-wise transformation in RDN. Both
in MobileNeXt-multil.5 and MobileNetV2-multil.4, utilizing
depth-wise transformation cause performance drop on ImageNet
validation dataset by 1.12% and 0.81%, respectively.

use the standard SGD optimizer with Nesterov momentum
0.9 and weight decay 1 x 10~%, and exponential moving
average (EMA) with decay 0.9999. All convolutional lay-
ers use batch-normalization layers with an average decay of
0.99. The RDNss are further fine-tuned for 200 epochs after
transformed from pre-trained super-models until otherwise
clarified.

Backbones. MobileNetV2 [19] and MobileNeXt [2]] are
used as the pre-trained large networks to be converted into
RDNs. After transforming them into nested architectures,
additional MLP heads will integrate the features generated
by each nested sub-networks. A shared classifier will output
the classification results of all the sub-networks.

Nested transformation details. In our experiments, We
adopt £ = 4 by default, which totals 7 sub-networks in
the final RDN. If a depth-wise transform is also utilized
in RDN, we limit the transform to split the original sub-
network into 2 new ones, which doubles the number of sub-
networks to 14. A few shallow layers will be not involved in
the nesting conversion, avoiding unnecessary performance
drop. More concretely, the stem layer and the first two
Sandglass Blocks in MobileNeXts, as well as the stem layer
and the first two InvertedResidual Blocks in MobileNetV2s
remain non-transformed. RDN transforms all the other lay-
ers which violate the nested property.

Policy network details. The policy network utilizes the
features of the lightest sub-network in RDN. Given input
samples, policy network could estimate the classification
confidences of all the sub-networks in RDN. More con-
cretely, policy network outputs binary predictions, indicat-
ing the estimations for top-1 classification precision of sub-
networks. The (e, A*) pairs are calculated on the training
split of ImageNet [18]], and used for sample-adaptive infer-
ence on the validation / test data.

4.2. Main Results

Table [I] presents key experimental results. For
the notations, “RDN-MobileNeXt” is the RDN trans-
formed from corresponding MobileNeXt. Likewise “RDN-
MobileNetV2” is defined. “multil.0”, “multil.4”, and
“multil.5” correspond to three variants defined by a param-
eter of multipliers, full definition of which is found in [19].

No. Pre-trained Training Duration Top-1 Acc.(%)

1 v 200 epochs 74.17
2 200 epochs 70.35
3 400 epochs 71.03

Table 3. Impact of pre-trained base models of RDN-MobileNeXt-
multil.0. Note that the pre-trained MobileNeXt-multil.0 is also
trained for about 200 epochs under the same configuration as ex-
periment 1 in this table.

The super-script T implies the use of our proposed dynamic
inference. We have two major observations: 1) the RDNs
demonstrate comparable performances, with slight increase
of computation caused by the k — K group expansion and
appending new network heads as described in Section [3.2]
2) our proposed dynamic inference can intelligently avoid
unnecessary computation and save MAdds without sacri-
fice of performance. For example, the MAdds of RDN-
MobileNeXt-multi1.0 and RDN-MobileNeXt-multi1.0" are
317M v.s. 250M respectively, with similar top-1 accuracy.

Depth-wise transformation. Transforming into depth-
wise nested manners brings drop of performance but dou-
bles the number of sub-networks. As shown in Table 2] af-
ter utilizing depth-wise transformation, both MobileNeXt-
multil.5 and MobileNetV2-multil.4 would cause perfor-
mance drop on ImageNet validation dataset by 1.12% and
0.81%, respectively.

Sample-adaptive dynamic inference. Figure
shows the accuracy-complexity trade-offs utilizing sample-
adaptive dynamic inference. The RDN with sample-
adaptive inference, termed RDN-MobileNeXt-m1.5" in
Figure 8] clearly improves the top-1 accuracy, particularly
at lower MACs.

4.3. Ablation study

Importance of pre-trained base models. In Table
we study the choice of utilizing pre-trained base models
as well as random initialization. It can be seen that us-
ing pre-trained base models achieves better performance.
Even after extending the training duration for the randomly-
initialized network, there is still ~ 3% gap on Top-1 accu-
racy.

Importance of greedy select. In Table 4] we compare
randomly or greedily split the channels into k& groups when
transforming vanilla convolutions. when utilizing greedy
select strategy, performance of all the sub-networks in RDN
will be improved, especially the lightest one. It is consistent
with the insights in previous studies [1]], [4] that parameters
with better initialization and shared structures improve the
generalization ability.

Joint optimization of multiple sub-networks in RDN.
Table [5] investigates the mutual impact of multiple sub-
networks in an RDN. We report the performances with 7
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select strategy  Top-1  Top-1(light)
RDN- greedy select  76.55 64.38
MnXtl.5 random select 76.21 62.17

Table 4. Impact of greedy select strategy of RDN-MobileNeXt-
multil.5. “Top-1" indicates the top one accuracy on Ima-
geNet validation dataset of the largest sub-network in RDN, and
“Top-1(light)” indicates the accuracy of the lightest sub-network.
Greedy select strategy significantly improves the performance of
the lightest sub-net by ~ 1.8%, and slightly effects the largest
sub-network.

No. Integrated Nets Top-1 Acc.(%)
1 7 sub-networks 76.55
2 6 sub-networks 76.61
3 1 sub-network 76.12

Table 5. Impact of all the sub-networks in RDN. No.1 is vanilla
RDN-MobileNeXt-multil.5 model. No.2 shares the same struc-
tures with No.1, but is training without the lightest sub-network.
Similarly, No.3 also shares RDN structures, and is only training
with the largest sub-network.

(all), 6 (removing the lightest one), and 1 (only using the
largest one) sub-networks. It is observed that jointly opti-
mizing all sub-networks is apparently a better choice.

5. Conclusion

This work designs a novel Russian Doll Network (RDN)
and present a method that transforms modern deep networks
into RDNs. Additionally a dynamic inference scheme is
proposed, targeting expedited computation with RDN. Our
comprehensive evaluations clearly demonstrate the effec-
tiveness of our proposed method.
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