
PP-NAS: Searching for Plug-and-Play Blocks on Convolutional Neural Network

Biluo Shen1,2, Anqi Xiao1,2, Jie Tian*1,2,3 and Zhenhua Hu*1,2

1Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences
2School of Artificial Intelligence, University of Chinese Academy of Sciences

3Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University
{shenbiluo2019,xiaoanqi2020,zhenhua.hu,jie.tian}@ia.ac.cn

Abstract

Multi-scale features are of great importance in modern
convolutional neural networks and show consistent perfor-
mance gains on many vision tasks. Therefore, many plug-
and-play blocks are introduced to upgrade existing convolu-
tional neural networks for stronger multi-scale representa-
tion ability. However, the design of plug-and-play blocks is
getting more complex and these manually designed blocks
are not optimal. In this work, we propose PP-NAS to de-
velop plug-and-play blocks based on neural architecture
search. Specifically, we design a new search space and de-
velop the corresponding search algorithm. Extensive exper-
iments on CIFAR10, CIFAR100, and ImageNet show that
PP-NAS can find a series of novel blocks that outperform
manually designed ones. Transfer learning results on rep-
resentative computer vision tasks including object detec-
tion and semantic segmentation further verify the superi-
ority of the PP-NAS over the state-of-the-art CNNs (e.g.,
ResNet, Res2Net). Our code will be made avaliable at
https://github.com/sbl1996/PP-NAS.

1. Introduction
Multi-scale features are important for visual tasks in nat-

ural scenes. Objects within a single image may have various
sizes and the same object may have different sizes between
multiple images. Then, different parts of an object are usu-
ally of different sizes and maybe all helpful for understand-
ing the object. Furthermore, under some circumstances,
recognition of an object may be hard from the object it-
self, but much easier when relying on essential context in-
formation from multi-scale. Thus, it is of great importance
to capture multi-scale features benefiting computer vision
tasks including image classification [12, 26, 11, 30], object
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detection [24, 19, 27], instance segmentation [15], semantic
segmentation [28, 6], keypoint detection [17], and salient
object detection [2].

The key to capturing multi-scale features in convolu-
tional neural networks is the design of network architec-
ture. Many plug-and-play blocks [12, 26, 11, 30], which can
be easily integrated into existing networks by replacing the
regular convolution operation, were proposed to improve
the multi-scale representation ability of networks. How-
ever, the design of these blocks has become more and more
complex and requires significant architecture engineering.
Moreover, these manually designed blocks may contain hu-
man bias and are not optimal. We believe a new design
pattern would be introduced to facilitate the development of
plug-and-play blocks.

To address these problems, we advocate for the use of
neural architecture search (NAS) to find better plug-and-
play blocks automatically. In particular, a new search space
for plug-and-play blocks is proposed. Following the de-
sign of previous works, the new search space can be eas-
ily integrated into existing networks by only replacing the
main convolutional operation. Therefore, we name the new
search space as PPConv. To better focus on the design of
plug-and-play blocks, we simply choose the most widely
used ResNet with bottleneck structure as the macro archi-
tecture and replace the 3x3 convolution with the searchable
plug-and-play blocks. The concrete connections and oper-
ations inside the plug-and-play blocks will be searched and
derived.

After the definition of search space, differentiable neu-
ral architecture search (DNAS, or DARTS) [22] methods
are used to jointly optimize the network weights and archi-
tectural parameters in a weight-sharing super-net via gra-
dient ascent. The final architecture is derived from the
trained super-net at the end of the search phase. Different
from most DARTS-based methods using bi-level optimiza-
tion which suffers from heavy computational burden and
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inaccurate estimation of architectural gradients, we apply
one-level optimization to speed up and simplify the search
procedure and add strong regularization to prevent the fail-
ure causing by overfitting [32, 1].
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Figure 1. Comparison between group convolution (GroupConv),
the blocks used by Res2Net, and our proposed searchable PPConv.
The solid lines represent the selected connections, and the dotted
lines represent the pruned connections. The selected operation is
placed at the center of the node and the pruned operations are at the
corner. The candidate operations include identity, 1x1 convolution
and 3x3 convolution.

The overall NAS method containing both a novel search
space and a corresponding search algorithm is named PP-
NAS. We mainly apply PP-NAS on ResNet architectures
and name it as PP-ResNet. We perform experiments on
many representative vision tasks including image classifica-
tion, object detection and semantic segmentation. PP-NAS
can find a series of novel blocks that are similar but different
from previous manually designed ones. PP-ResNet with the
discovered blocks outperforms state-of-the-art CNNs (e.g.,
ResNet, ResNeXt, Res2Net), and shows consistent gains
on datasets and benchmarks including CIFAR10/100, Im-
ageNet, COCO, PASCAL VOC and Cityscapes.

2. Related Work

2.1. Multi-scale network and plug-and-play block

The key to capturing multi-scale features in convolu-
tional neural networks is the design of network architecture.
[12] proposed to connect split small filter groups in a hierar-
chical residual-like style to increase multi-scale representa-
tion strength. [26] mixed up multiple kernel sizes in a single
depthwise convolution to capture patterns at different reso-
lutions for better accuracy and efficiency. [11] introduced
pyramidal convolution which contains a pyramid of kernels
with varying size and depth to capture different levels of
details in the scene. [30] addressed the Hierarchical-Split
Block which contains many hierarchical splits and concate-
nates connections within a single residual block.

2.2. Differentiable Neural Architecture Search

Differentiable architecture search is one of the one-shot
search methods, in which an over-parameterized super-
network containing all candidate operations was trained
only once. [22] introduced a differentiable framework by
relaxing the search space so that the architectural parame-
ters can be continuous and optimized together with the net-
work weights by gradient descent. Despite its simplicity,
many follow-on works reveal some of its drawbacks, such
as instability, the inevitable aggregation of skip connections
and the gap between the search and the evaluation. [5] de-
signed a progressive search strategy to bridge the depth gap
between the super-network and the sub-network. [7] pro-
posed a zero-one loss combined with sigmoid function to al-
leviate the issue of discretization discrepancy. [32] showed
that adding regularization strategies can robustify DARTS
to find solutions with less curvature and better generaliza-
tion performance. [1] enlarged the search space to contain
more than 10160 candidates and used one-level optimiza-
tion with a variable resource constraint to explore this large
search space.

3. Methodology
3.1. Search Space

The structure of the PPConv is shown in Figure 1. To
make it easier to understand, we also show group convo-
lutions [29] and the blocks used by Res2Net. Group con-
volutions split the feature maps into D groups, apply con-
volution on each group and concatenate all output feature
maps. The Res2Net blocks add connections between out-
put feature maps to increase the actual network depth. Be-
sides, the convolution operation applied to the first group is
replaced as an identity operation. This design reduces pa-
rameters, or in another way, allows wider convolution for
the rest groups.

PPConv is a generalization of group convolution and
Res2Net blocks. Let’s first split the input feature maps into
s groups evenly and denote them as x(i)(0 < i ≤ D), then
we also have s groups of intermediate feature maps denoted
as x(i)(D < i ≤ 2D), and s groups of output feature maps
denoted as x′(i)(D < i ≤ 2D). A group of feature maps
will be called a node for convenience in the following. The
connection between xi and xj is a directed edge (i, j). Each
intermediate node is computed based on all of its predeces-
sors: x(j) =

∑
i<j x

(i), D < j ≤ 2D, and each output
node is the output of the associated operation applied on
the intermediate node: x′(j) = o(j)(x(j)), D < j ≤ 2D.
With this design of search space, the task of learning the
block is reduced to learning the connections between nodes
and the operations applied on intermediate nodes. It should
be noted that their learning is decoupled, which is different
from previous works.
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The candidate operations include identity, 1x1 convolu-
tion and 3x3 convolution. By including these operations,
we ensure that group convolution and Res2Net blocks are
also in the search space. Zero operation is not included as
candidates, because that we want to fix the number of out-
put nodes and the number of output feature maps the same
as the input.

Next, we describe the macro architecture. PPConv is de-
signed to replace the main convolution (usually 3x3 con-
volution) in networks. Therefore, it is easy to integrate it
into existing mainstream network architectures. To better
focus on the design of new plug-and-play blocks, we simply
choose the most widely used ResNet as the macro architec-
ture. Specifically, ResNet with bottleneck structure is used
and the middle 3x3 convolution with stride 1 in the bottle-
neck is replaced with PPConv, for all the following experi-
ments. We call the ResNet with PPConv as PP-ResNet.

To achieve better performance on different datasets,
ResNet architectures with an appropriate number of stages
and times of downsampling are required. Therefore, the
concrete architecture is dependent on the dataset following
the original ResNet. For example, the ResNets on CIFAR
have 3 stages and downsample 2 times, and the ResNets
on ImageNet have 4 stages and downsample 5 times. The
PPConv structures are searched separately across different
stages and shared between blocks in the stage.

3.2. Differentiable Architecture Search

Following previous works, we use continuous relaxation
to make the search space continuous and search procedure
differentiable. Every edge (i, j) between node x(i) and x(j)

is parameterized by α(i,j). As we want to have a variable
number of connections for each node rather than a fixed
number of connections, softmax activation that encourages
competition between edges is not appropriate. Instead, the
sigmoid activation (σ) is used and the edges of a node will
cooperate with each other, leading to a smoother informa-
tion flow. More importantly, each edge will be switched on
or off independently according to its corresponding param-
eter. Formally, the intermediate node is computed as:

x(j) =

∑
i<j σ(α

(i,j))x(i)∑
i<j σ(α

(i,j))
(1)

Note that the output is normalized by the sum of all asso-
ciated σ(α). Because intermediate nodes have a different
number of predecessors and the norm of nodes will dif-
fer significantly without normalization, which might hurt
model stability.

Next, we discuss how to search operations. Let O de-
note a set of possible operations (identity, 1x1 convolution
and 3x3 convolution) where every operation is to be applied
on the intermidiate nodes to get output nodes. The categor-
ical choice of a particular operation for x′(j) is relaxed to a

softmax over all candidates:

ō(j)(x) =
∑
o∈O

exp(β
(i)
o )∑

o′∈O exp(β
(j)
o′ )

o(x) (2)

The operation weights for a node are parameterized by a
vector β(j) of dimension |O|. At the end of search phase,
the mixed operation ō(j) can be replaced with the most
likely operation, i.e., o(j) = argmaxo∈O β

(j)
o .

After relaxation, we jointly optimize the architecture
α, β and the network weights w. Previous differentiable
methods recognized it as a bi-level optimization problem
and alternatively optimized the training loss on the train-
ing set and validation loss on the validation set using gra-
dient descent. However, as pointed by, bi-level optimiza-
tion suffers from heavy computational burden and inaccu-
rate estimation of architectural gradients. We instead use
one-level optimization that optimizes the architecture α, β
and the weights w at the same time, only on the training set.
To avoid the failure of one-level optimization which might
be caused by overfitting, we also add strong data augmen-
tation and regularization. With one-level optimization, the
search procedure is exactly the same as training a classifica-
tion network except for the use of two different optimizers
for the architecture α, β and the weights correspondingly.

3.3. Architecture Derivation and Optimization Gap

At the end of the search when the architecture α, β is
fully optimized, we derive concrete connections and oper-
ations to form discrete architectures. For connections be-
tween nodes, we select all possible choices if their associ-
ated α is above σthreshold. As for operations, we simply
choose the one with the largest weight β.

As is well-known, the biggest pitfall of weight-sharing
methods is the optimization gap between the super-net and
the sub-architectures. Without any extra constraints, at the
end of search, the final σ(α) will be only slightly larger or
less than 0.5, thus resulting in the optimization gap. To al-
leviate this gap, an extra zero-one loss is explicitly added to
push the sigmoid value of architectural parameters towards
0 or 1, formally as,

L0−1 = −
∑
i,j

(σ(α(i,j))− 0.5)2 (3)

After this, it is also possible that no connection is se-
lected from the input nodes or to the intermidiate nodes if
their associated σ(α) are all below σthreshold. If any of the
input nodes have no connection to the intermediate nodes,
this group of feature maps is completely dropped and a part
of the input information will be lost. On the other hand, if
any of the intermediate nodes have no connection from the
other nodes, the number of output nodes will change, which
is not expected.
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To solve these problems, we coerce another connection
existence loss to ensure the existence of at least one connec-
tion, formally as,

Lconn =
∑
i

max(1−
∑
j

σ(α(i,j)), 0)2+

∑
j

max(1−
∑
i<j

σ(α(i,j)), 0)2 (4)

As the zero-one loss pushes σ(α) towards 0 or 1, the
connection loss should work well.

To conclude, the total loss to optimize is the sum of the
classification loss (cross entropy), the L2 loss for all learn-
able parameters, and the zero-one loss and the connection
existence loss for α, formally as:

L = LCE + LL2 + L0−1 + Lconn (5)

Weights for the 4 parts of losses may be assigned and tuned,
but we omit them here for clarity.

Our goal is to bridge the optimization gap and derive dis-
crete architectures from the super-net without discretization
error. The design of loss functions helps to eliminate it, but
the depth and width gap still exists. We noticed that PPConv
decouples the search of connections and operations, leading
to a much less usage of memory and searching cost. Then it
is possible to use precisely the same depth and width for ar-
chitecture search as architecture evaluation. As a result, we
can directly obtain a trained network by pruning unimpor-
tant connections and operations at the end of search, with a
very small performance drop.

4. Experiments and Results
4.1. Searching on CIFAR

CIFAR-10 is a standard image classification dataset and
consists of 50K training images with 5K images per class
and 10K testing images with 1K images per class. The
resolution of each image is 32×32. CIFAR-100 is just like
CIFAR-10 and has the same images as CIFAR-10 but with
100 fine-grained classes. The training set of CIFAR-100 has
50K images with 500 images per class, and the test set has
10K images with 100 images per class. Since we use one-
level optimization, there is no need to split the training set
for another validation set, so we conducted the architecture
search on CIFAR-10/100 with all the training images.

We use ResNet-110 with the bottleneck structure as the
backbone network for CIFAR-10/100. It should be no-
ticed that, to achieve comparable performance with WRN
[31], some improvements are applied. In the original paper,
ResNet-110 is based on the basic blocks which are different
from ours, so every stage in our ResNet-110 has 12 residual

Architecture Test Error (%) Params
(M)C10 C100

SENet + Shake-Shake1 2.12 13.81 26.2
PyramidNet272 + Shakedrop1 1.70 11.70 26.0

ResNet-110 3.77 18.13 18.1
ResNeXt-110 (4×24d) 3.71 17.73 18.1
Res2Net-110 (26w×4s) 3.67 17.46 18.5

PP-ResNet-110 (26w×4s) 3.50 17.33 18.5
PP-ResNet-110* (26w×4s) 1.94 13.67 18.5
Table 1. Results of different architectures on CIFAR-10/100. The
results denoted with 1 are trained for 1800 epochs. The result de-
noted with * is trained under the augmented setting (600 epochs).

blocks. And the number of channels of 3 stages of ResNet-
110 in the original paper is 16, 32, 64, but we use 64, 128,
256. The resulting ResNet-110 has a total of 18.5M pa-
rameters. Another tweak to the architecture is adding a 2x2
average pooling layer with a stride of 2 before the convolu-
tion with a stride changed to 1. This tweak is also applied
to the ResNeXt, Res2Net for a fair comparison.

As mentioned before, to minimize the optimization gap,
we try to keep most of the network and hyperparameter
settings the same between the search and the evaluation.
The model weights w are optimized by SGD with an ini-
tial learning rate 0.1, momentum 0.9, and weight decay 5e-
4, and the architecture parameters α are optimized by Adam
[18], with a learning rate 1e-3, momentum (0.9, 0.999), with
a batch size of 128. As we use explicit L2 loss for the archi-
tecture parameters, no weight decay is used for Adam. The
super-net is trained for 300 epochs with an additional data
augmentation including Cutout [10] and AutoAugment [9].
The learning rate for SGD is adjusted according to a cosine
schedule [23] and the learning rate for Adam is fixed.

In the evaluation, the network depth and width are not
changed, and the architecture is derived from the super-net.
For CIFAR10/100, we have 2 training settings for a fair
comparison between other works: standard and augmented.
Under the standard setting, we train the network for 200
epochs with only random crop, random horizontal flip and
normalization as the data augmentation. For the augment
setting, the network is trained for 600 epochs with Cutout,
AutoAugment and Mixup [33]. The cutout length is 16 and
the mixup ratio α is 0.2. Other hyperparameters are pre-
cisely the same as in the search phase. For each type of
network architecture, we repeat the evaluation 5 times un-
der the standard settings and 3 times under the augmented
setting. The mean of these results is reported.

ResNet, ResNeXt, Res2Net are reimplemented and
trained under the same training settings as PP-ResNet. The
ResNeXt has a cardinality of 4 and the number of channels
for each group is 24, formally as 4c × 24w. The Res2Net
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has a split of 4 and the number of channels of each split is
26, formally as 4s × 26w, which is the same as PP-ResNet.

To ensure that PP-ResNet has similar number of parame-
ters with ResNeXt and Res2Net, we keep exactly 1 identity
operation after searching. This decision slightly narrows
search space and may affect final performance. Similarly,
many previous works of DARTS[5, 21] limited the number
of ”skip connect” operation to 1 or 2.

In Table 1, we compare the test error and the number of
parameters of the discovered architectures with other mod-
els. Our PP-ResNet has an improvement of 0.17% over
Res2Net on CIFAR-10 and 0.13% on CIFAR-100 under the
standard setting.
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Figure 2. The discovered block on CIFAR-10 for the 3 different
stages of PP-ResNet.
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Figure 3. The discovered block on CIFAR-100 for the 3 different
stages of PP-ResNet.

The architectures discovered on CIFAR-10/100 are
shown in Figure 2 and Figure 3. We find that there is
no Conv1x1 in the discovered architectures. According to
many related works of NAS, we speculate that the non-
parametric identity operation has some special advantages
over the parametric convolution operations during optimiza-
tion. And between the parametric operations, Conv3x3 has
8x more parameters than Conv1x1, resulting in a big advan-
tage. We plan to explain it from more aspects in the future.

4.2. Searching on ImageNet

ImageNet-1K(ILSVRC2012) dataset consists of 1.3M
images for training and 50K images for testing, equally dis-
tributed among 1,000 classes. Thanks to the use of one-level
optimization, no extra validation set is split from the train-
ing set. And because of the low memory usage and training
cost of PP-NAS, we directly search on the full training set
without any subsampling. The training protocol generally
follows [16]. We use label smoothing (ϵ = 0.1) as the reg-
ularization strategy, and use SGD with weight decay 1e-4,

Architecture Top-1 Top-5 Params

ResNet-50 78.37 93.99 25.6
Res2Net-50 (26wx4s) 79.09 94.45 25.7
PP-ResNet-50 (26wx4s) 79.48 94.57 25.7
PP-ResNet-50† (26wx4s) 78.92 94.29 25.7
PP-ResNet-50* (26wx4s) 80.06 94.96 25.7
Table 2. Results of different architectures on ImageNet. The result
denoted with † is directly derived after searching without retrain-
ing. The result denoted with * is trained under the augmented
setting (200 epochs).

momentum 0.9, and a mini-batch of 1024. Our learning
rates are adjusted according to a cosine schedule for train-
ing 120 epochs and with a warmup up of 5 epochs [13].
Mixup or Knowledge Distillation is not used to avoid the
long training time. The architecture parameters α are op-
timized by Adam, with a fixed learning rate 1e-3 and mo-
mentum (0.9, 0.999). Except for the use of Adam, all hy-
perparameters are the same between the search phrase and
the evaluation phase.

The architecture discovered on ImageNet is shown in
Figure 4. We compare the top-1 accuracy and top-5 accu-
racy and the number of parameters of the discovered archi-
tecture with other models in Table 2. Our PP-ResNet-50 has
an improvement of 0.39% over Res2Net-50 on top-1 accu-
racy and 0.14% on top-5 accuracy with the same number of
parameters. If trained for 200 epochs with AutoAugment
and Mixup as extra data augmentations, PP-ResNet-50 can
achieve an 80.06% top-1 accuracy and 94.96% top-5 accu-
racy.

Interestingly, it is also possible to avoid retraining, con-
sidering the minor differences between the search and the
evaluation. At the end of search, all σ(α) are around 0.995
or 0.005, so we can safely prune these unnecessary con-
nections. After pruning, PP-ResNet without retraining can
achieve a top-1 accuracy of 78.92%, which is only 0.56%
lower than retraining.
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Figure 4. The discovered block on ImageNet for the 4 stages of
PP-ResNet-50.

4.3. Object Detection

We further validate on the large-scale detection bench-
mark COCO. Following the previous works [24, 19], we
use the COCO train2017 split (115K images) for training
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and val2017 split (5K images) as the major results.
GFLV2 [20] is one of the state-of-the-art one-stage de-

tectors and used as the baseline method with ResNet-50,
Res2Net-50 and PP-ResNet-50 as the backbone network.
For a fair comparison, we reimplemented GFLV2 and keep
all the implementation details the same except for the use of
different backbone networks.

First, we use the EfficientDet style data augmentation
rather than the Faster RCNN style. Specifically, Faster
RCNN randomly resizes the short edge of the original im-
age, while EfficientDet randomly resizes the original image
and crop a square region from it. We use a crop size of
896×896, which is close to the original 800×1333. We use
a resizing range from 0.5 to 2.0, following the implementa-
tion of EfficientDet. A random horizontal flip is also used
after cropping. During testing, we resize and pad the images
to the target size (896x896) without flipping or multi-scale
augmentation.

We train all networks with the SGD optimizer with mo-
mentum 0.9 and weight decay 1e-4. We use a total batch
size of 32 on 8 TPUv2 cores and a learning rate of 0.02.
The learning rate is linearly warmed up from 0 to 0.02 for
the first 1 epoch and then decayed to 0 according to a co-
sine schedule. Synchronized batch normalization is added
after every convolution with momentum 0.9. All models are
trained for 24 epochs (around 90K iterations, comparable to
2x schedule). The GIoU [25] loss is used for bounding box
regression with a weight of 2.0. At inference, we keep the
top 5k predictions from all FPN levels and then apply the
standard non-maximum suppression with an IoU threshold
of 0.6 and confidence threshold 0.05 to yield the final de-
tections.

Table 3 shows the object detection results on COCO
val2017. Note that our reimplemented GFLV2 with
ResNet-50 backbone network has similar results as the orig-
inal paper. Overall, the PP-ResNet-50 based model outper-
forms ResNet-50 and Res2Net-50 by 2.0% and 0.6% on av-
erage precision (AP). For specific metrics, PP-ResNet per-
forms better on AP50, AP75, APM, and APL, and worse
on APs, which indicates more accurate detection, especially
for larger objects. It might be explained that larger objects
benefit more from multi-scale features.

4.4. Semantic Segmentation

Multi-scale representations are essential for semantic
segmentation, which is position-sensitive and relies on con-
textual information of objects. We thus evaluate our PP-
ResNet on the semantic segmentation task using PASCAL
VOC dataset and Cityscapes dataset [8].

Following previous works [3, 4], we use the augmented
PASCAL VOC 2012 dataset [14] which contains 10582 im-
ages for training and 1449 images for validation.

We use the DeepLabv3+ as the segmentation method.

Backbone AP AP50 AP75 APS APM APL

ResNet-50 44.3 62.3 48.5 26.8 47.7 54.1

ResNet-50† 44.1 61.7 48.2 25.8 48.2 58.5
Re2sNet-50 45.5 63.2 49.5 27.4 49.6 60.0
PP-ResNet-50 46.1 64.1 50.1 27.2 50.4 61.4
Table 3. GFLV2-based object detection results on the COCO
datasets, measured using AP (%), AP@IoU=0.5 (%),
AP@IoU=0.75 (%) and AP with different sizes. The result
denoted with † is our reimplemented version, to ensure a fair
comparison between different results.

Dataset Backbone mIoU

PASCAL VOC
ResNet-50 78.74
Res2Net-50 79.13
PP-ResNet-50 79.55

Cityscapes
ResNet-50 77.99
Res2Net-50 78.82
PP-ResNet-50 79.40

Table 4. DeepLabv3+ based semantic segmentation results on the
PASCAL VOC dataset and Cityscapes dataset, measured using
mIoU (%).

We reimplemented DeepLabv3+ and keep all details the
same except that the backbone network is replaced with
ResNet, Res2Net, or our proposed PP-ResNet. The out-
put strides used in training and evaluation are both 8. The
multi-grid method of (1, 2, 4) is also used for better perfor-
mance.

Following previous works, we employ crop size to be
512 during both training and test on PASCAL VOC 2012
dataset. For data augmentation, we randomly scale the in-
put images (from 0.5 to 2.0), then randomly left-right flip
the images, and finally randomly crop square patches from
them during training. When testing, we only pad the orig-
inal images to the target size (512x512) without resizing.
Single-scale results are reported.

All models are trained with the SGD optimizer with mo-
mentum 0.9 and weight decay 1e-4. We use a total batch
size of 16 on 8 TPUv2 cores and a learning rate of 0.01.
The learning rate is linearly warmed up from 0 to 0.01 for
the first 5 epochs and then decayed to 0 according to a co-
sine schedule. Synchronized batch normalization is added
after every convolution with momentum 0.9. All models are
trained for 60 epochs (around 40K iterations).

Cityscapes is a large-scale dataset containing high-
quality pixel-level annotations of 5000 images (2975, 500,
and 1525 for the training, validation, and test sets respec-
tively) and about 20000 coarsely annotated images. We use
these 2975 images for training and 500 images for valida-
tion.

The data augmentation is generally the same as VOC ex-
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cept for a different crop size of 512x1024 and additional
random photometric distortion. When testing, we simply
use the original images without flipping or multi-scale aug-
mentation.

The training settings are also almost the same as VOC
except for a smaller batch size of 8 and longer training
epochs of 90 (around 45k iterations).

Table 5 shows the semantic segmentation results on
PASCAL VOC dataset and Cityscapes dataset. For PAS-
CAL VOC, our PP-ResNet-50 based model outperforms
ResNet-50 and Res2Net-50 by 0.81% and 0.6% on mean
IoU (mIoU). And for Cityscapes, the PP-ResNet-50 based
model outperforms ResNet-50 and Res2Net-50 by 1.41%
and 0.58%. The greater improvement in Cityscapes than
VOC might be explained that images in Cityscapes dataset
are harder to segment and require stronger multi-scale fea-
ture extraction ability, which is just the advantage of PP-
ResNet.

5. Conclusion
This work proposed a novel PP-NAS method which in-

cludes a new search space PPConv for plug-and-play blocks
and the corresponding search algorithm. We applied PP-
NAS on ResNet architectures to replace the main 3x3 con-
volution and obtained PP-ResNet. PPConv search space
decouples connections and operations, thus resulting in a
lower memory usage and training cost. Our search algo-
rithm uses one-level optimization to speed up and simplify
the search procedure and introduces extra loss functions to
help search. PP-NAS largely shrinks the optimization gap
caused by weight sharing, so that PP-ResNet with discov-
ered novel blocks can outperform ResNet, ResNeXt, and
Res2Net on many vision tasks including image classifica-
tion, object detection, and semantic segmentation.
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