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Abstract

Transformer-based vision architectures have attracted
great attention because of the strong performance over the
convolutional neural networks (CNNs). Inherited from the
NLP tasks, the architectures take Layer Normalization (LN)
as a default normalization technique. On the other side, pre-
vious vision models, i.e., CNNs, treat Batch Normalization
(BN) as a de facto standard, with the merits of faster infer-
ence than other normalization layers due to an avoidance of
calculating the mean and variance statistics during inference,
as well as better regularization effects during training.

In this paper, we aim to introduce Batch Normalization
to Transformer-based vision architectures. Our initial ex-
ploration reveals frequent crashes in model training when
directly replacing all LN layers with BN, contributing to the
un-normalized feed forward network (FFN) blocks. We there-
fore propose to add a BN layer in-between the two linear
layers in the FFN block where stabilized training statistics
are observed, resulting in a pure BN-based architecture. Our
experiments proved that our resulting approach is as effec-
tive as the LN-based counterpart and is about 20% faster.

1. Introduction
Transformer [30] is initially proposed for Natural Lan-

guage Processing (NLP) tasks. The great success in this
field encourages the researchers in computer vision com-
munity to apply Transformer in vision tasks. Along this
direction, Vision Transformer (ViT) [8] and Data-Efficient
Image Transformers (DeiT) [27] are two pioneers to make
Transformer based architecture work effective on an im-
portant task of image recognition. Swin Transformer [19]
further introduces certain inductive biases, such as local-
ity, hierarchy and translation invariance, into the design of
Transformer architectures, resulting in a general-purpose

*This work is done when Zhuliang Yao, Yutong Lin, Ze Liu are in-
terns at Microsoft Research Asia. Correspondence to: Yue Cao (yue-
cao@microsoft.com).

backbone which achieves the state-of-the-art accuracy on
various vision benchmarks, such as COCO object detection
and ADE20K semantic segmentation.

While vision Transformer achieves strong performance,
we note the de facto standard of CNNs, i.e., Batch Nor-
malization (BN) [16], is not included or well-studied in it,
probably because vision Transformers directly inheriting the
LN layers for that of standard Transformers for NLP tasks.
BN is proposed by Ioffe and Szegedy to make neural net-
works converge faster and more stable by re-centering and
re-scaling the activations. The effectiveness is widely proved
by the past success in vision tasks. However, early attempts
of using BN in NLP tasks faced significant performance
degradation [22]. On the other hand, Layer Normalization
(LN) [1] seems born suitable for variable length input. So
Transformer has incorporated LN instead of BN as their
default normalization scheme.

Although both BN and LN normalizes the activation of
each layer by mean and variance statistics, the different ways
to compute statistics make the training dynamics different.
Compared to LN, BN shows better robustness and general-
ization ability for vision tasks. Also, BN has an advantage
that it is in generally faster in inference than other batch-
unrelated normalizations such as LN, due to an avoidance of
calculating the mean and variance statistics during inference.
Further more, this offline statistic characteristic in inference
provides a possibility of building Inception-like convolu-
tional blocks [6, 7], which has noticeable performance gain
and no extra time cost in inference.

Despite of the advantages of BN and the past experience
of CNNs, most Transformer-based vision architectures just
inherits LN from Transformer and pays rare attentions on
BN. CvT and CeiT adopt BN after Convolution layers in
proposed new modules, but keep all LN layers in other orig-
inal modules. MoCo v3 [3] evaluates the performance of
replacing LN with BN in FFN blocks of ViT to shrink the
systematic gap between ViT and ResNets, but its replace-
ment is incomplete and lack of further analysis.

In this paper, we aim to introduce BN layers into the
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Figure 1: An illustration of normalization methods. Each subplot represents a feature map tensor, with B as the batch axis, C
as the channel axis, and (H, W) or Seq_len as the spatial axes. The elements in blue are normalized by the same mean and
variance, computed by aggregating the values of these elements.

vision Transformers. Our direct application of using BN in-
stead of LN results in frequent crashes in model training. To
investigate this phenomenon, we proposed eXtended Signal
Propagation Plots (XSPPs) from SPPs [2] to adapt the dif-
ference of statistics calculation between BN and LN. Then
we monitor the XSSPs during training and find that most of
such crashes are due to the un-normalized FFN blocks. We
thus propose to add a BN layer in-between the two linear
layers in each FFN block. The effectiveness of this simple
modification is proved not only by observed stabilized train-
ing XSPPs but also the on-par results with LN-based ViT
and Swin-T backbones on practical vision tasks. Besides,
ascribed to the use of BN, our vision transformers easily
acquire 20% speed performance gain without any special
optimizations.

2. Related Work

Transformer-based vision backbones. Vision Trans-
former (ViT) [8] is the pioneering work to show the po-
tential of transformer based backbones for vision tasks.
With large scale training (ImageNet-21k, JFT-300M), it
achieves impressive results, which are comparable with large
ResNets [11]/EfficientNets [26]. Its follow up, DeiT [27],
adopts several training strategies to make it efficient with
ImageNet-1k training. Besides, PVT [32] and Swin Trans-
former [19] both introduce a hierarchical structure into vi-
sion transformer. This design makes them suitable for down-
stream dense prediction tasks and Swin Transformer with
further locality inductive bias achieves state-of-the-art results
on COCO detection task and ADE semantic segmentation
task.

There are also some follow-ups introducing convolutional
modules to transformer architectures. CvT [34] introduces
convolutional token embedding layers and extends the atten-
tion module with convolutional projection layers. CeiT [39]
also proposes a convolutional Image-To-Tokens module. In

addition, it inserts convolution layers in-between feed for-
ward networks. Visual Transformer [33] utilizes several
convolutional layers to extract low-level features and then
tokenize these features.

Convolution based vision backbones. Convolution
based backbones have become mainstream since the propose
of AlexNet [18], which shows triumphant performance at
the ILSVRC 2012 contest [21] and changes the landscape
of deep learning. Since then, a lot of convolution based
networks have been proposed, like VGG [23], Incep-
tion [24], ResNet [11], DenseNet [13], HRNet [31] and
EfficientNet [26]. Most of the recent convolution based
architectures adopt BN as the default normalization layer
and show that BN is in general faster in inference and
achieves better performance than other batch-unrelated
normalization.

Normalization methods. It is well-known that normaliz-
ing the feature maps makes the training faster and more
stable [35]. To normalize the activations, a variety of nor-
malization methods like BN [16], LN [1], IN [29], GN [35]
are developed for general tasks or specific applications.

All these normalization methods can be categorized
into batch-related methods and batch-irrelevant methods.
Batch-related methods include BN and its variants like
SyncBN [20], BRN [15], CBN [38] and so on. They all
treat the batch data as a whole. The batch dimension is used
in the calculations of both mean and variance. To overcome
the problems of batch size changes or nonexistence, many
new data dimensions are explored for providing more statis-
tic data. Another solution is exclude the batch concept from
statistics, leading to batch-irrelevant methods. Among all
these methods, LN [1] shows the best performance on NLP
tasks, GN [35] is the most powerful competitor to BN which
achieved good performance especially for dense prediction
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Figure 2: The training loss and validation accuracy of Swin-T with LN, BN, BN+FFNBN on ImageNet-1K.

tasks, such as object detection, and IN [29] owns the best
artistic ability.

3. Method
We describe the exploration of pure BN-based vision

transformer design space in this section. First, we discuss
the relationships of various normalization techniques. Then
we show the different normalization choices for different
neural networks, and point out that Transformer-based vision
architectures meets the need of Batch Normalization well.
Finally, we use our proposed eXtended Signal Propagation
Plots to build a robust pure BN-based Swin Transformer, as
well as show a fusion technique for speedup.

3.1. BN v.s. LN

As one of the most important components in deep neu-
ral networks, normalization technique has achieved much
attention in literature.

Among all those methods, Batch Normalization (BN) [16]
plays the most important role for vision tasks in convolu-
tional neural networks (CNNs). It mainly normalizes the
input by re-centering and re-scaling, which shows great reg-
ularization ability. Given a 4D tensor input (N,C,H,W ),
BN has 2C elements of statistics, where each mean and
variance value are computed across (N,H,W ) in training
while running mean and variance are used in inference. This
design makes BN much faster and even possible to be fused
into other layers in inference [6].

However, the effect of BN is dependent on the batch-size
and it is not obvious how to apply BN to recurrent neural net-
works. Therefore Layer Normalization [1] as well as some
other batch-irrelevant normalization methods are designed
to acquire statistics for each sample independently. In detail,
LN normalizes the input along (C) leading to 2NHW sta-
tistical values. But this choice requires statistic calculations
in both training and inference, which is noticeably slower.

3.2. Normalizations for Different Architectures

Contributed to the diversity of normalization methods
above, all kinds of neural networks can always select the one
that suits their applied tasks the most.

For CNNs, BN became the most widely used normal-
ization layer soon after it was proposed in 2015. Most
breakthroughs of CNNs, such as Inception V2/V3 [24],
ResNet [11], DenseNet [13], MobileNet [12], Efficient-
Net [26] choose BN as the default normalization method.
Although there do exist some unique normalization methods
for a particular group of scenarios, such as GN for small
batch-size regime [35] and IN for style transfer [9], they
could hardly match the comprehensive performance of BN
or provide similar regularization ability like BN.

For Transformer, its development is closely coupled with
LN. The main reason is that almost all NLP tasks take vari-
able length sequences as input, which is very suitable for LN
that only calculates statistics in the channel dimension with-
out involving the batch and sequence length dimension. Note
that the concept of LN in Transformer is different from the
one in CNNs, as Figure 1 illustrated. LN in Transformer has
exactly the same formulation with Channel Normalization
(CN) [4] in CNNs.

For Transformer-based vision architectures, a lot of de-
sign principles are inherited from Transformer in NLP, in-
cluding LN as the default normalization method. But the
input is switched from sequences with variable length to
usual fixed size images, which means the stable and suffi-
cient data for statistics offers new possibilities for applying
BN in these architectures.

3.3. Pure BN-based Vision Transformers

Initial attempt with convergence problem As an initial
attempt, we conduct a straightforward experiment that all LN
layers are directly replaced by BN layers. Our model base
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on the tiny version of the standard Swin Transformer (Swin-
T) [19], and all the other hyperparameters follow Swin-T’s
official settings. Unexpectedly, this plain design leads to
convergence problem, i.e., the model is very unstable to
frequently crash during training. The training curve and vali-
dation accuracy in Figure 2 with BN-try{1,2,3} reveal that
the crash happens suddenly and irregularly. We hypothesize
this crash is originated from exceeding the current local op-
tima, which may be observed with some abnormal statistics
in the hidden activations.

Analysis with eXtended Signal Propagation Plots Gen-
erally, the statistics of the hidden activations are believed
to be extremely beneficial for finding out the key reason
that contributing to frequent crashes. We notice that Signal
Propagation Plots (SPPs) [2] is introduced for similar pur-
pose as a simple set of visualizations which help to inspect
signal propagation in neural networks. Since SPPs is origi-
nally proposed for deep ResNets with BN, We modify some
statistic calculations of original SPPs to meet our needs on
vision transformer with both BN and LN, noted as eXtended
Signal Propagation Plots (XSPPs). We use XSPPs not only
for initialization but also the checkpoints during training.

Average Feature Squared Mean (AFSM) computes the av-
erage span along the corresponding normalization’s feature
axis, and then averages it on the left axis:

AFSMBN =
1

C

∑
c

 1

N ∗H ∗W
∑
n,i,j

(Fn,i,j,c)

2

AFSMLN =
1

N ∗H ∗W
∑
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(
1

C

∑
c

(Fn,i,j,c)

)2
(1)

Average Feature Variance (AFV) computes the variance
across the corresponding normalization’s feature axis, and
then averages on the left axis:

AFVBN =
1
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C
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)2
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(2)

Average Feature Variance on Residual (AFVR) computes
similar statistics as AFV, but uses the hidden activation at
the end of each residual branch. It could be considered as
the differential value of AFVR.

Though this tool only takes the forward pass into consid-
eration, many previous analyses [25, 37, 10, 2] have pointed
out that for the backward pass of networks with shortcuts
will typically neither explode nor vanish so long as the sig-
nal on the forward pass is well behaved. Besides, we also
observe that the spike always appear in hidden activations of
forward first and then in the following gradient of backward.

With XSPPs, we observe several meaningful patterns as
plotted in Figure 3. Here the y-axis denotes the values of
corresponding statistics. And the x-axis denote the index of
the residual block. For Swin-T, there are (2, 2, 6, 2) encoder
blocks for each stage, while each encoder block contains
two residual blocks, i.e., the attention block and the Feed-
Forward-Network (FFN) block. The trained model of BN is
the checkpoint of last epoch before crash. The trained model
of LN is the checkpoint at the end of training, and we also
evaluate the checkpoint at same epoch of BN’s model with
no trend effect of these statistics.

First, both initialized models of LN and BN have con-
trollable statistics, which is consistent with our observation
that both models will not face crash problems at beginning.
Second, all statistics of AFSM and AFV positively corre-
late to the block depth inside each stage, contributing to
the positive increment from every residual branches. Third,
BN model has much larger AFSM statistic than that of LN
model, especially in Stage 1 and Stage 3.1 Because Stage 1
has the largest feature dimension and Stage 3 has the most
residual blocks. Lastly, the AFVR at even layers are always
larger than the one at odd layers for both LN and BN. This
indicates that FFN blocks contributes a lot more to the rapid
growth than attention blocks.

Solution to stable pure BN-based vision transformer
Clearly, the convergence problem is mainly contributed to
the increment from the FFN blocks. We therefore propose
to add a BN layer in-between the two linear layers in each
FFN block, noted as BN+FFNBN. Then we investigate the
dynamic changes of this model with our XSPPs. Although
the initialized BN+FFNBN model (yellow line in Figure 3)
seems slightly higher statistics than both BN and LN models,
it is still acceptable and probably owing to more normaliza-
tions make the hidden activations closer to a variance of 1.
Then we try to train such a BN+FFNBN model with same
hyperparameters as above. The whole training procedure

1The AFV and AFVR statistics cannot be fairly compared between
LN and BN, due to the intrinsic differences between channel dimension
and batch & feature dimension, such as channel dimension contains less
elements than batch & feature dimension and batch & feature dimension
has locality due to downsample and shifted-window.
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Figure 3: Signal Propagation Plot for a Swin-T tiny at initialization as well as trained.

is quite stable and we plot the trained BN+FFNBN model
as the light blue line in Figure 3), where most abnormal
trends are controlled. Compared to BN, BN+FFNBN model
has more consistent AFSM and AFV over all four stages.
Its AFSMs in Stage 1 and Stage 3 stay under a reasonable
limitation like only 1 or 2. And the AFVR is significantly
smaller than BN in Stage 4. Please also see Section 4 for per-
formance comparison of image classification on ImageNet
1K [21].

3.4. Merging BN into Linear Layer

In CNNs, fusing BN and preceding convolution in in-
ference is a quite mature technique for extra speedup. The
scenario changes a little when pre-normalization is adopted
as in vision transformers, that we need to merge the freezed
BN layer to a subsequent linear (1×1 conv) layer.

Given a feature map F with the shape (C,H,W ), and
the freezed BN layer’s parameters µ̂, σ̂2, γ, β ∈ RC , the
calculation of BN layer can be formulated as a 1×1 convo-
lution. The F ’s normalized version, F̂ at position (i, j) is
formulated as:


F̂1,i,j

F̂2,i,j

...
F̂C−1,i,j

F̂C,i,j

 = W ·


F1,i,j

F2,i,j

...
FC−1,i,j

FC,i,j

+



β1 − γ1
µ̂1√
σ̂2
1+ε

β2 − γ2
µ̂2√
σ̂2
2+ε

...
βC−1 − γC−1

µ̂C−1√
σ̂2
C−1

+ε

βC − γC
µ̂C√
σ̂2
C
+ε


,

W =



γ1√
σ̂2
1+ε

0 · · · 0

0 γ2√
σ̂2
2+ε

...
. . .

...
γC−1√
σ̂2
C−1

+ε
0

0 · · · 0 γC√
σ̂2
C
+ε


. (3)

Thus the computation of BN and the linear layer can be
expressed as

f̂i,j = WLinear · (WBN · fi,j + bBN ) + bLinear, (4)

where fi,j ∈ RC denotes the vectorized F as position (i, j),
WBN ∈ RC×C , bBN ∈ RC denote the parameter of BN,
and WLinear ∈ RCout×C , bLinear ∈ RCout denote the
parameters of subsequent linear layer.

Obviously, these two layers can be replaced by one linear
layer as:

W = WLinear ·WBN

b = WLinear · bBN + bLinear.
(5)

Thus the BN could still be merged to the linear layer in
vision transformers for the speedup in inference.

4. Experiment
4.1. Supervised Classification

Setup For supervised classification, we strictly follow the
setting in [19]. We adopt ImageNet-1K [5] as the benchmark
dataset, which contains 1.28M training images and 50K val-
idation images from 1,000 classes. The top-1 accuracy on
a single crop is reported. We employ an AdamW [17] op-
timizer for 300 epochs using a cosine decay learning rate
scheduler and 20 epochs of linear warm-up. A batch size of
1024, an initial learning rate of 0.001, and a weight decay
of 0.05 are used. For all model variants, we adopt a default
input image resolution of 2242. An increasing degree of
stochastic depth augmentation is employed for larger mod-
els, i.e. {0.2, 0.3, 0.5} for LN-based Swin&SwinD-{T, S,
B}, {0.1, 0.2, 0.4} for BN-based Swin&SwinD-{T, S, B},
respectively. DeiT-S adopts same setting as Swin-T. We
train all these models on 8 NVIDIA V100 GPUs. Each ex-
periment costs about 50, 100, 200 hours for T-, S-, B-level
models.

DeiT and Swin Transformer We start by replacing the
LN in DeiT and the original Swin to BN. Main results are
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Table 1: Comparison of different backbones with different normalizations on ImageNet-1K classification.

Architecture Params FLOPs Normalization Top-1 Acc (%)

DeiT-S 22M 4.6G LN 79.8
22M 4.6G BN+FFNBN 78.8

Swin-T 29M 4.5G LN 81.2
29M 4.5G BN+FFNBN 80.9

Swin-S 50M 8.7G LN 83.0
50M 8.7G BN+FFNBN 82.8

Swin-B 88M 15.4G LN 83.3
88M 15.4G BN+FFNBN 83.1

SwinD-T 22M 3.9G LN 81.1
22M 3.9G BN+FFNBN 81.4

SwinD-S 41M 7.8G LN 82.2
41M 7.8G BN+FFNBN 82.4

SwinD-B 92M 17.2G LN 83.1
92M 17.2G BN+FFNBN 83.1

Table 2: Analysis on different drop path rates for different
architectures. Experiments are conducted with BN+FFNBN
normalization. * indicates the best setting for LN.

Architecture Drop Path Rate Top-1 Acc(%)

Swin-T
0.05 80.7
0.1 80.9

0.2* 80.6

SwinD-T
0.1 81.4

0.2* 81.0
0.3 80.6

SwinD-B
0.3 82.0
0.4 83.1

0.5* 82.5

shown in Table 1. Compared to the LN-based DeiT, BN-
based DeiT suffers a significant drop (79.8% vs. 78.8%),
this is probably because DeiT lacks some useful inductive
bias which is inhibited by the good statistical properties
of BN. This situation is mitigated for Swin as all BN-based
models with different capacities show similar Top-1 accuracy
with their LN-based counterpart. Considering the initial
crash, this comparable result demonstrates the practicality
of XSPPs and the reliability of the proposed BN+FFNBN
method.

Deeper Swin Transformers Some recent works [28, 40]
notice that vision transformers saturate fast and even fail
during training when scaled to be deeper. However most
CNNs performance can be always improved by stacking
more layers. To verify if BN is one reason of CNN’s surpris-
ing depth-expansion ability, we build a series of deeper Swin
models called SwinD-{T, S, B}. Their network configura-

tions are as follow:

• SwinD-T: C = 64, layer numbers = 2, 2, 18, 2

• SwinD-S: C = 64, layer numbers = 2, 2, 42, 2

• SwinD-B: C = 96, layer numbers = 2, 2, 42, 2

where C denotes the channel number of the hidden layers
in the first stage. Note we construct variants of different
depths by varying only the layer number of the third stage,
following [19, 11].

For all the experiment pairs of Swin and its corresponding
SwinD with BN+FFNBN, the overall performance is compa-
rable under similar parameters and FLOPs. One spotlight is
that the 24 layers SwinD-T obtains 0.5% higher performance
than Swin-T with even 24% less parameters and 13.3% less
FLOPs, which may shed some light on efficient vision trans-
former design.

For the comparison between LN and BN+FFNBN under
the same architectures, most BN+FFNBN models achieve
slightly better results. Furthermore, our plain 48-layer mod-
els, i.e., SwinD-S and SwinD-B are trained smoothly without
any crashes, which may proves our hypothesis that BN could
help deeper networks work well.

4.2. Analysis

For analysis section, we use the same setting as described
in Section 4.1. For the experiments in Pre-Norm and Res-
Post-Norm and Addition BN for all 1×1 convolution, we use
a 100-epoch cosine decay learning rate scheduler, and the
model is specified as Swin-T. These two parts are conducted
to deliver more observations and knowledge about the com-
bination of BN and Transformer-based vision architectures.
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Table 3: Analysis on Pre-Norm and Res-Post-Norm.

Normalization Pre-Norm Res-Post-Norm Top-1 Acc(%)

LN
✓ 78.3

✓ 78.2
✓ ✓ 79.1

BN+FFNBN
✓ 78.0

✓ 77.8
✓ ✓ 78.4

Table 4: Analysis on additional BN for all 1×1 convolution layer.

Normalization Extra BN in attention Extra BN in FFN Top-1 Acc(%)

LN
78.3

✓ 78.4
✓ ✓ 78.6

BN
78.0

✓ 78.2
✓ ✓ 78.4

Drop path rate Stochastic depth [14] has been proved as
an effective regularization technique for Transformers. To
achieve the best performance, we ablate the drop path rate
for all the architectures. In Table 2, we list results of Swin-T,
SwinD-T, SwinD-B with BN+FFNBN normalization. Ap-
propriate drop path rates lead to 0.8% and 1.1% performance
boost for SwinD-T and SwinD-B, respectively. Besides, we
also observe that the optimal drop path rates for BN+FFNBN
are consistently smaller than those for LN, indicating that
BN may act as an implicit regularizer.

Pre-Norm and Res-Post-Norm In early versions of
Transformer [30], LN is placed after the addition of residual
branch and shortcut as called Post-Norm. Recent imple-
mentations adopt Pre-Norm in which LN is applied on the
input of every sub-layer, which shows better performance
than post-norm. However there is a design choice left as
putting LN at the end of each residual block. To avoid con-
fusion, we call it Res-Post-Norm. Ideally, Res-Post-Norm
won’t stop the gradient in main branch as Post-Norm did,
and would better control the output of each residual block to
avoid explosion than Pre-Norm.

The results are listed in Table 3. For both LN and
BN+FFNBN, Pre-Norm keeps 0.1%-0.2% increase over Res-
Post-Norm. Because both models have few troubles in con-
vergence while Pre-Norm is indicated [36] as help gradients
well-behaved at initialization. Besides, using Pre-Norm and
Res-Post-Norm together leads to noticeable performance
gain over using each one separately.

Addition BN for all 1×1 convolution BN is usually
added after every convolutional layer in CNN practice. Here
we propose two choices of adding extra BN in vision trans-
formers, considering all linear layer as 1×1 convolution.
One is adding BN after every linear layer in attention block
except the query and key embedding layers. Another is
adding BN after the two linear layer in FFN block. We
show the results in Table 4. Obviously, more BN layers
leads to better performance no matter what the Pre-Norm
is. Adding as much BN as possible could bring 0.3%-0.4%
Top-1 accuracy benefit.

4.3. Speedup Evaluation

Layer-level benchmark for BN and LN In order to show
the original speed performance gap between BN and LN, we
conduct a benchmark to compare the training and inference
time of a single BN and LN layer in Table 5. This benchmark
adopt the input shapes from the standard Swin-T model’s 4
stages. The time cost in millisecond is calculated by feeding
the batch data into one NVIDIA V100 GPU for 100,000
times. We use PyTorch as our experiment framework.

BN is generally faster than LN in early stages when input
has larger spatial resolution. BN slows down along the
channel number grows. Overall BN saves about 50% time
cost of LN, because early stage contributes more to the total
time cost.

Model-level comparison of BN and LN We run tests on
Swin Transformer series to compare the end-to-end speed
performance on model level. As Table 6 shows, BN+FFNBN
is faster than LN in training but slower than LN in inference.
The reasons are two folds. First, BN+FFNBN adds a extra
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Table 5: Layer-level benchmark for BN and LN The time cost of BN and LN layers is counted in millisecond on a V100
GPU. The stages and input shapes are adopted from the standard Swin Transformer tiny model.

Stage 1 2 3 4 Total
Input Shape
[B,H,W,C] [128,56,56,96] [128,28,28,192] [128,14,14,384] [128,7,7,768] -

# Blocks single 2× single 2× single 6× single 2× -
LN 14.07 28.13 3.92 7.84 1.19 7.12 0.39 0.77 43.87
BN 4.20 8.40 2.20 4.40 1.14 6.84 0.54 1.08 20.72

Speedup 70.14% 70.14% 43.88% 43.88% 3.93% 3.93% -39.66% -39.66% 52.77%
(a) Training

Stage 1 2 3 4 Total
Input Shape
[B,H,W,C] [128,56,56,96] [128,28,28,192] [128,14,14,384] [128,7,7,768] -

# Blocks single 2× single 2× single 6× single 2× -
LN 6.14 12.28 1.99 3.99 0.53 3.20 0.18 0.36 19.82
BN 1.83 3.67 0.81 1.61 0.41 2.47 0.26 0.52 8.27

Speedup 70.14% 70.14% 59.53% 59.53% 22.65% 22.65% -44.40% -44.40% 58.28%
(b) Inference

Table 6: Model-level comparison of BN and LN Standard Swin Transformer models is used. Throughput is measured using
a V100 GPU, following [27]. * denotes fusing BN into linear layers.

Model Normalization Params FLOPs
Training throughput

(images/s)
Inference throughput

(images/s)

Swin-T
LN 28.29M 4.49G 270.6 755.2

BN+FFNBN 28.32M 4.50G 291.2 675.9
BN+FFNBN* 28.26M 4.49G - 882.7

Swin-S
LN 49.61M 8.75G 140.9 436.9

BN+FFNBN 49.68M 8.76G 181.6 376.6
BN+FFNBN* 49.56M 8.74G - 491.8

Swin-B
LN 87.77M 15.44G 91.21 278.1

BN+FFNBN 87.86M 15.45G 120.3 262.2
BN+FFNBN* 87.71M 15.43G - 318.6

BN in each FFN block, leading to more FLOPs than LN.
Second, normalization layers generally take a larger propor-
tion of time cost in training. Thus BN+FFNBN saves more
time than LN in training and therefore hide the extra time
cost of BN in FFN. Also, with merging BN to linear layers,
the inference speed could be further accelerated. Overall,
BN-based Swin Transformers are about 20% faster than LN
on average for both training and inference.

5. Conclusion

In this paper, we leverage the Batch Normalization to
Transformer-based vision architectures. Our initial explo-
ration reveals that the frequent crashes in model training
when directly replacing all LN layers with BN is due to the
un-normalized feed forward networks. We therefore propose
to add a BN layer in-between the two linear layers in the

FFN block where stabilized training statistics are observed,
resulting in a pure BN-based architecture. Our experiments
proved that our resulting approach is as effective as the LN-
based counterpart and is about 20% faster in both training
and inference due to the inherent advantages of BN. We hope
that our exploration could motivate the future study on how
to design better normalization strategies or architectures for
vision Transformers.
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