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Abstract

We introduce a generalized fractional convolutional fil-
ter (FF) with the flexibility to behave as any novel, cus-
tomized, or well-known filter (e.g. Gaussian, Sobel, and
Laplacian). Our method can be trained using only five pa-
rameters – regardless of the kernel size. Furthermore, these
kernels can be used in place of traditional kernels in any
CNN topology. We demonstrate a nominal 5X parameter
compression per kernel as compared to a traditional (5×5)
convolutional kernel, and in the generalized case, a com-
pression from N ×N to 6 trainable parameters per kernel.
We furthermore achieve 43X compression for 3D convolu-
tional filters compared with conventional (7×7×7) 3D fil-
ters. Using fractional filters, we set a new MNIST record for
the fewest number of parameters required to achieve above
99% classification accuracy with only 3, 750 trainable pa-
rameters. In addition to providing a generalizable method
for CNN model compression, FFs present a compelling use
case for the compression of CNNs that require large kernel
sizes (e.g. medical imaging, semantic segmentation).

1. Introduction

Computer vision has generated an impressive array of
increasingly sophisticated techniques over the last decade,
driven chiefly by Convolutional Neural Networks (CNN).
Modern deep learning models have achieved state-of-the-art
accuracy in a variety of tasks including image classification
[8, 32, 53], semantic segmentation [42, 38], object detection
[5], pose detection [41], and more. Much of the research in
this area is rooted in the development of increasingly deep
architectures, comprised of millions (even billions [49]) of
trainable parameters to elicit performance increases. Due to
the memory and computational constraints of these large-
scale models, many of these outstanding results have yet
to fully translate over to edge computing devices and other

compute constrained environments.
As an alternative to training and deploying unwieldy,

overparameterized models, researchers have recently fo-
cused on more sustainable network designs [56] in an at-
tempt to generate smaller, more efficient models at the
cost of a potentially minor trade-off in accuracy. There
have been many approaches proposed in this vein, includ-
ing ShuffleNet [62], MobileNet [20], HENet [48], and
SqueezeNet [22].

Motivated by prior research exploring the addition of
adaptive parameters to activation functions [60] and con-
volutional kernels [61], here we explore the application of
fractional calculus [47] to the creation of fractional kernels
for CNNs. In this work we apply concepts from fractional
calculus to enable a neural network to learn a reduced repre-
sentation of a convolutional kernel in functional form, i.e.,
as a fractional kernel. In addition, we demonstrate that
neural networks utilizing fractional kernels perform com-
parably to state-of-the-art models on several benchmark
data sets (MNIST [35], CIFAR-10 [31], ImageNet [8] and
UCF101 [30]), but with a significant reduction in the num-
ber of kernel parameters in the compressed layers. We show
that this novel convolutional paradigm facilitates the cre-
ation of generalized high performance architectures that are
more efficient with respect to their memory and compute
resource consumption.

In particular, our analysis focuses on larger kernel sizes
(e.g., 5 × 5, 7 × 7 and above), as our method can leverage
the benefits of these larger kernels while yielding apprecia-
ble increases in model compression rates. Recent research
[46, 37, 58, 52] has demonstrated the superior performance
of CNNs using large kernel sizes on high fidelity computer
visions tasks including semantic segmentation, super res-
olution upsampling, and medical imaging; moreover, the
positive benefits of using larger kernels to increase the ef-
fective receptive field of a CNN is well-documented [39, 2].
Despite their proven utility, large kernel size CNNs are nev-
ertheless currently underutilized because of their prohibitive
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memory and compute requirements; our research is meant
to address this gap.

The main contributions of this work are as follows:

• We describe a methodology to define a convolutional
filter of any size with only 6 parameters, a substantial
reduction from the N × N parameters used in tradi-
tional convolutional filters.

• We demonstrate a compression rate of (N×N
6 ) in train-

ing parameters required by our method over baseline
CNN architectures in the compressed layer for two-
dimensional filters.

• We demonstrate a compression rate of (N×N×N
8 ) in

training parameters required by our method over base-
line CNN architectures in the compressed layer for
three-dimensional filters.

• We set a new MNIST classification record for the
smallest number of parameters (3,750) required to
achieve above 99% accuracy.

• A generalized, efficient methodology to convert any
conventional CNN to an FF-based CNN.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews related work, Section 3 presents a detailed
explanation of fractional calculus, the mathematics that un-
derpins this work. In the Section 4, we provide a formal
description of fractional filters. Section 5 highlight the im-
plementation details of the fractional filters. The results and
discussion, and our conclusions are presented in Sections 6
and 7, respectively.

2. Related work
In the main, research in computer vision over the past

decade has tended to leverage the benefits of the composi-
tional structure of high-capacity, deep networks [12, 40].
Recent work [18, 10], however, reveals that many deep
models suffer from severe inefficiencies due to the pres-
ence of gross overparameterization. These discoveries have
spurred interest in the development of more efficient CNNs.

SqueezeNet [22] and MobileNets [20], for example,
compress the convolutional kernels by using N × N × 1
kernels instead of N × N × 3, thus reducing the number
of channels processed by the convolutional layer, yielding a
reduced model in the number of trainable parameters.

In [4], the authors demonstrate a dynamic filter frame-
work in which a network generates a single filter used by
all nodes in the the first layer of convolutional kernels and
is trained with the other network parameters. This network
takes an input IA, with shape h × w × cA where h, w,
and cA are the height, width and number of input chan-
nels respectively, and outputs filters Fθ parameterized by

θ ∈ Rs×s×cA×n×d where s × s is the kernel size, n is the
number of nodes in the layer, and d is 1 for dynamic convo-
lution or h× w for dynamic local filtering.

Pruning represents a common technique used to reduce
the memory and compute overhead required by overpa-
rameterized models [13, 9, 14]. Pruning methods are not
in conflict with the present work; both pruning and frac-
tional filters can be applied in tandem to further augment
model compression results. Similarly, memory-reducing
approaches such as quantization [21] can also be applied
in concert with our technique.

The theory of fractional calculus [6] has previously been
applied to neural network design. In [60], the authors use
fractional calculus to group existing activation functions
into families by defining the fractional order of a primitive
activation function that is tuned during training. In this way,
each neuron in the network learns a bespoke activation func-
tion. The authors demonstrate, for instance, that ResNet-18
utilizing this adaptive activation method can outperform a
ResNet-100 topology [15].

3. Fractional Calculus

This section describes the motivation behind the use of
fractional derivatives and integrals, as a way to define a nu-
merically trainable hyperparameter value to automatically
select an optimal convolutional kernel in a neural network.

3.1. Fractional Derivative

In its conventional form, the mathematical derivative is
associated with natural values (i.e. the first derivative of a
function, second derivative of a function, etc.), and can be
defined as:

y′ =
dy

dx
, y′′ =

d2y

dx
, y′′′ =

d3y

dx
, (1)

where the preceding expressions represent the first, second,
and third order derivative of the function y with respect to x.
In recent years, fractional calculus has successfully served
as a tool for modeling complex dynamics [59], for under-
standing wave propagation [19], and for working with quan-
tum physics [33], among other applications.

To understand how a fractional derivative works, we be-
gin with a simple illustrative example. Here, we show that
the natural n-derivatives of the function f(x) = xk are de-
fined as:

df(x)

dx
= kxk−1, (2)

d2f(x)

dx2
= k(k − 1)xk−2, (3)

daf(x)

dxa
= k(k − 1)(k − 2) · · · (k − a+ 1)xk−a.(4)
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Equation 4 can be rewritten as a product of the factorial
operation as:

daf(x)

dxa
=

k!

(k − a)!
xk−a, (5)

For the case above, the factorial operator can only be de-
fined for non-negative integer numbers. In order to generate
a fractional derivative, the factorial operator can be replaced
by the Gamma function Γ as proposed in [1]:

Γ(z) =

∫ ∞

0

t(z−1)e−tdt, (6)

For the particular case of n ∈ N:

Γ(n) = (n− 1)!, (7)

a known efficient method to compute Gamma is [7]:

Γ (z) =
e−γz

z

∞∏
k=1

((
1 +

z

k

)−1

e
z
k

)
, (8)

where γ is the Euler-Mascheroni constant (γ = 0.577 . . . )
[1]. Thus, replacing the factorial in equation 5 by the
Gamma function, the fractional derivative is then given by
[17]:

Daf(x) =
daf(x)

dxa
=

Γ(k + 1)

Γ(k + 1− a)
xk−a. (9)

The above definition represents the fractional derivative of
function f(x) = xk valid for k, x ≥ 0. Using analogous
definitions, one can similarly construct fractional integrals;
we omit such a discussion for brevity.

In the following sections, we apply these fractional cal-
culus concepts to define a generalized convolutional filter
function that can be used to render a fractional kernel for a
convolutional neural network.

4. Fractional Filter
The most popular filters used in computer vision include

the Gaussian [11], Sobel [26], Laplacian [11] and the so-
called Mexican Hat [11] filters. These filters are related
through the derivatives of a Gaussian filter. The fractional
derivative concept from fractional calculus theory [43] can
be used to generate any of these conventional filters, as well
as an infinite number of novel filters that represent interpo-
lations between these filters. To this end, we approximate
the fractional derivative of a Gaussian function using a trun-
cated Taylor series as follows:

DaG =
1

uha

15∑
n=0

(−1)nΓ(a+ 1)

Γ(n+ 1)Γ(1− n+ a)

(
e
− (x−nh)2

u2

)
(10)

Figure 1. Plots generated by our fractional filter definition in Equa-
tion 10. We plot the family of functions generated by taking the
fractional derivative of the Gaussian filter (blue), and compare it
with its first derivative (Derivative of Gaussian, DoG, in green),
and its second derivative (Laplacian of Guassian, LoG, in red).
The dashed black functions are the interpolations generated using
our fractional filter.

where G = e−x2

is the Gaussian function, a is the fractional
derivative order and Γ(a) represents the gamma function,
defined in 6. Thus, our fractional filter allows for the use of
a single general filter that can be tuned for different appli-
cations. By changing a single trainable parameter (viz., the
order of the fractional derivative) it is possible to generate
every fractional instance between the Gaussian filter and the
Laplacian filter, as shown in Figure 1.

4.1. Two-Dimensional Fractional Filters

In order to provide a comprehensive description of a gen-
eralized two-dimensional filter, we first briefly review three
of the most frequently encountered filters in computer vi-
sion and their underlying mathematical relationships. When
convolved with an image, the Gaussian filter introduces a
blur by removing (or filtering out) high frequency image
components. The Gaussian filter is defined by the follow-
ing equation:

G(x, y) = e−
x2+y2

σ2 (11)

The Sobel filter [27] approximates the first derivative of a
Gaussian (DoG) filter. In classical image processing, the
Sobel filter is often used to detect sharp borders or edges
in an image by reducing the low frequency components and
amplifying high frequency features. The mask of this filter
is given by the equation:

∂G(x, y)

∂x
= xe−

x2+y2

2σ2 (12)
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Figure 2. Visualization of repeated application of a fractional filter to the same source image for a range of α parameter values from [0, 1]
specifying the fractional derivative of the filter. We illustrate that the fractional filter can interpolate between a Gaussian and a DoG filter
by changing a single parameter.

The Laplacian filter is defined by the second derivative
of the Gaussian filter. This filter can also be used for edge
detection. In application to computer graphics, it is often
used to simulate bump mapping. One can generate this filter
using the Laplacian operator:

∇2G(x)

∂x
= 4x2e−x2

− 2e−x2

(13)

The Mexican hat filter can be characterized as the sign-
inverted second order derivative of the Gaussian filter [25].
This filter is frequently used as a blob detector. All of the
aforementioned classical image filters can be rendered as
n-order derivatives of a Gaussian function (see Figure 3).

Figure 3. We illustrate the relationship between the Gaussian fil-
ter (top), DoG filter (middle) and LoG filter (bottom), which are
related by their derivatives.

Because the derivative generates the filters and fractional
calculus describes how to compute fractional derivatives, it
is possible to interpolate between these filters and generate
a general filter whose behavior ranges between the previ-
ously cited filters simply by changing a single parameter.
With this in mind, we define a 2D Fractional Filter (FF) as
follows:

F = ADaDbe−
(x−xo)2+(y−yo)2

σ2 (14)

where a and b represent the fractional derivative order, A,
σ, xo,and yo represent the parameters used to define the fil-
ter. With A ∈ (−∞,∞) , σ ∈ (0,∞), xo ∈ (−∞,∞),
yo ∈ (−∞,∞) and a ∈ (0, 2) and b ∈ (0, 2). Addition-
ally, by changing A, σ, xo, and yo, it is possible to generate
many of the kernels generated by the convolutional filters
in the convolutional layers of a CNN. This approach allows
for the reduction of parameters in a convolutional filter from
N ×N (where N is the number of pixels in each dimension
of the kernel) to only 6. This construct yields a large reduc-
tion in the parameters needed to train such a layer, but as
a consequence, fractional filters can only approximate the
equivalent CNN filter. Thus we expect a slight reduction in
model accuracy when the traditional CNN layer is replaced
by a layer of fractional filters.

4.2. Three-Dimensional Fractional Filters

We employ a similar approach to generalize fractional
filters to higher, n-dimensional filters. In practice, three-
dimensional convolutions are common to both video pro-
cessing [38] and medical imaging [24] applications. Here,
for example, a single convolutional kernel of dimension
5× 5× 5 requires the specification of 125 independent pa-
rameters, while a 3D fractional filter can be defined using
only 8 parameters. Similarly, in the case of a 7× 7× 7 con-
volutional filter, the number of parameters can be reduced
from 343 parameters to 8 generating almost 43X compres-
sion. We define a 3D FF:

F (x, y, z) = ADaDbDce−
(x−xo)2+(y−yo)2+(z−zo)2

σ2 (15)

where (a, b, c) denotes the fractional derivative per
axis,(xo, yo, zo), respectively, and the centroid and scale fil-
ter A are all tuneable parameters. In summary, our 3D FF
formulation requires the addition of two parameters to scale
from 2D; see Figure 5.

5. Implementation
The general 2D fractional filter defined in the previous

section comprises 6 independent parameters (Equation 14).
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In practice, to efficiently compute this derivative, we take
into account only the first 15 terms of the Taylor series:

DaG(x) =
A

ha

15∑
n=0

Γ(a+ 1)G(x, y)

(−1)nΓ(n+ 1)Γ(1− n+ a)
(16)

where
G(x) = e−

(x−xo)2

σ2 , (17)

is the Gaussian function, a is the fractional derivative or-
der and Γ(a) represents the gamma function, defined in
Equation 6. The computation of the fractional deriva-
tive b of the filter in terms of y, DbG(y) is performed
analogously. Finally, the fractional derivative of the two-
dimensional fractional kernel is defined as the realization
of DaDbG(x, y) = DaG(x)×DbG(y).

Figure 4. The computation of the N2 elements of a filter are ex-
ecuted by the exterior product of the N elements on the x-axis
and the N elements on the y-axis. The remaining values are cal-
culated by multiplying these x and y vectors. By performing the
evaluation of an exponential function 2N times instead N2 times,
computational performance is significantly improved. Such per-
formance improvements are particularly beneficial for embedded
systems (see Equation 16).

In the prior section we alluded to the computational and
memory benefits of using the fractional filter, and the degree
to which this savings increases with the respect to the size of
the filter. For example, a 3× 3 kernel will yield a reduction
from 9 to 6 parameters for each traditional kernel replaced
by a fractional kernel in a neural network layer. Likewise,
the use of a fractional kernel in place of a traditional 5 × 5
or 7 × 7 kernel will result in a reduction from 25 and 49
parameters to just 6 parameters respectively.

During training, every round of backpropagation re-
quires recomputing filter parameters, as well as the filter
values to generate the mask for the next round. We sim-
plify this computation as follows: the computation of the

N2 elements of a filter are executed by the exterior prod-
uct of the N elements on the x-axis and the N elements on
the y-axis. The filter values are calculated via elementwise
multiplication of these x and y vectors (see Figure 4). By
performing the evaluation of the exponential functions 2N
times instead N2 times, the computational performance of
the training algorithm using FFs is significantly improved,
as our approach eschews direct evaluation of N2 Gaussians.

The same method can be used to compute 3D and higher
order filters. Concretely, for 3D FFs, we generate three cor-
responding vectors for x, y and z as in equation 5, com-
puting only 3N elements instead of N3. For a 3D filter
of dimension 5 × 5 × 5, our method uses eight parameters
instead of 125.

During inference, the fractional filter is initially calcu-
lated (just once, at the time of loading the network) from the
stored parameters and then integrated into a CNN workflow
just as with traditional kernels. This initial step requires the
evaluation of the fractional derivative over the N × N pa-
rameters of the kernel (e.g. 25 elements in the case of a
5× 5 filter). By contrast, during training, the the evaluation
of the filters is required once per iteration, but we only need
to compute M ×N values per filter, as shown below.

With training efficiency in mind, we define the function
fa(x, y):

fa(x, y) =
Γ(a+ 1)G(x, y)

(−1)nΓ(n+ 1)Γ(1− n+ a)
(18)

Because it is common to all of the training update steps,
Equation 16 can be rewritten more concisely as:

DaG(x) =
A

ha

15∑
n=0

fa(x) (19)

In the 2D case, we also compute the DbG(y), so that the
(i, j) components of a FF are defined: K(i, j) = DaG(i) ·
DbG(j) for 1 ≤ i, j ≤ N (see Figure 4). Similarly, for
the 3D case, we introduce an additional component axis
DcG(z), so that each (i, j, k) element of a FF is defined:
K(i, j, k) = DaG(i)·DbG(j)·DcG(k) for 1 ≤ i, j, k ≤ N
(see Figure 5). In this manner, for the outer product of
the vectors generated by the evaluation of DaG, DbG, and
DcG, we can define the kernel for one, two or three dimen-
sions. This approach leads to a reduction in computation
from NM operations per filter to N×M , where N is size of
the filter and M denotes the filter dimension. For instance,
instead of the explicit evaluation of the 343 components of a
7×7×7 filter, our method requires only only 21 operations
(see Figures 4 and 5 for a complete visualization).

In the case of Python implementations using Automatic
Differentiation (AD) [44], training a network with FF is
straightforward. However, in the absence of AD frame-
works, one can use the following gradient-based training
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rules for updating 2D FF parameters.

∆xo =
2A

ha

15∑
n=0

(x− ih− xo)fa(x, y)

∆yo =
2A

ha

15∑
n=0

(y − yo)fa(x, y)

∆A =
1

ha

15∑
n=0

fa(x, y)

∆σ =
2A

ha

15∑
n=0

(x− nh− xo)
2 + (y − yo)

2

σ3
fa(x, y)

∆a =
A

ha

15∑
n=0

[Ψ(a+ 1)−Ψ(a− i+ 1)] fa(x, y)

∆b =
A

hb

15∑
n=0

[Ψ(b+ 1)−Ψ(b− i+ 1)] fb(x, y) (20)

where Ψ represents the digamma function.

6. Experimental Results
We conducted experiments using four different datasets

to test and analyze our fractional filters: MNIST, CI-
FAR10,ImageNet, and UCF101; we provide details of these
experimental results in this section.

6.1. MNIST

For MNIST classification, our baseline topology has six
traditional 5 × 5 convolutional filters in the first layer, 10
traditional 5 × 5 convolutional filters in the second layer,
10 traditional 5 × 5 convolutional filters in the third layer
and a final fully-connected layer with 160 inputs (10 4 × 4
activations) and 10 outputs for classification. The number
of parameters per layer is: 150, 1500, 2500 and 1600, re-
spectively, and in total we have 5750 parameters (ignoring
biases).

It is clear that layer three has the largest number of pa-
rameters in the network, and therefore we hypothesize that
this layer would benefit the most from the use of fractional
kernels in terms of compression. Indeed, we show that we
can reduce the number of parameters in this layer by a fac-
tor of 4 without sacrificing the accuracy of the network. Af-
ter training our network using only 500 parameters in the
third layer, instead of the original 2500 used in the base-
line topology, the accuracy of the fractional filter network
dropped from a baseline accuracy of 99.26% to 99.18%, a
small reduction (0.08%), given the 5× compression in the
number of weights for the tested layer (results are shown in
Table 1).

We further examined the accuracy and compression
trade-off when using fractional kernels at various layers in

Figure 5. The computation of the N3 elements of a filter are ex-
ecuted by the exterior product of the N elements on the x-axis
and the N elements on the y-axis by N elements on the z-axis.
The remaining values are calculated by multiplying these x, and
y vectors. By performing the evaluation of required exponential
functions 3N times instead N3 times, computational performance
is substantially improved.

the network; we found the greatest benefit in applying frac-
tional filters to the layer(s) with the largest number of filters.
In the particular case of MNIST, the baseline CNN has only
six filters in the first layer with 150 trainable parameters.
Using fractional filters results in a 5X reduction in required
memory, reducing the number of parameters required to 30
(a reduction of 120 parameters would need to be trained
and stored). But the trade-off for using the filter in the first
layer is a 0.11% reduction in accuracy. Conversely, when
we replace the third layer of the CNN with fractional fil-
ters, we reduce the number of trainable parameters in that
layer from 2500 to 500 (a reduction of 2000 parameters),
the accuracy trade-off is only 0.08%. Naturally, it is also
possible to further compress the network by employing the
fractional filters in additional layers. For example, when
we use fractional filters in both layers 2 and 3, we observe
a 0.36% reduction in accuracy, in exchange for eliminating
3500 parameters. This may be worthwhile depending on the
application, particularly in an edge compute device. For this
experiments we have a 5X compression, because we forced
parameter σ = 1, then the filter used only 5 parameters to-
tal.

6.2. Experiment 2: CIFAR-10

For our second set of experiments we used an augmented
CIFAR-10 dataset with horizontal flipping, padding, and
32× 32 random cropping during training.

One of our goals in the present work is to create a class of
highly-efficient state-of-the-art models that can be deployed
on embedded devices where memory is highly constrained.
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Table 1. MNIST Accuracy vs Memory. Our Baseline CNN em-
ploys traditional 5×5 convolutional kernels in the following topol-
ogy: (layer 1) 6 kernels, (layer 2) 10 kernels, (layer 3) 10 kernels
(layer 4) fully connected layer with 10 outputs. The Fractional
kernels have the same topology as the Baseline network, but we
denote where a traditional kernel layer is replaced with a layer of
fractional kernels.

Neural Network #Parameters accuracy

LeNet [3] 431K 99.4%
LetNet5 [34] 60K 99.24%
50-50-200-10NN [50] 226K 99.51%
Best Practices [45] 132.5K 99.5%
Baseline CNN 5.75K 99.26%
Fractional Filters (Layer 3) 3.75K 99.18%
Fractional Filters (Layer 1) 5.63K 99.15%
Fractional Filters (Layer 1&2) 5.66K 99.04%
Fractional Filters (Layer 2&3) 2.25K 98.9%

Thus we seek to generate the smallest model that can com-
plete a task with the highest possible accuracy given space
and resource limitations.

Our baseline topology for this dataset is the Resnet-18
architecture [16]. In order to highlight the impact of our
approach, we first explored the effect of converting a sin-
gle layer of traditional convolutional kernels in the network
into a layer of fractional kernels. This baseline architec-
ture is structured as follows: Layer 1 is comprised of 16
3× 3 traditional convolutional kernels. Layer 1 feeds into 3
Resnet blocks each comprised of 2 stacks of 16 × 32 × 64
traditional convolutional kernels. The final fully-connected
layer outputs 10 nodes which correspond to the CIFAR ob-
ject classification categories.

Table 2. CIFAR-10 Classification error vs Number of parameters

Neural Network Depth #Parameters Error%

All-CNN [55] 9 1.3M 7.25
MobileNetV1 [20] 28 3.2M 10.76
MobileNetV2 [51] 54 2.24M 7.22
ShuffleNet 8G [62] 10 0.91M 7.71
ShuffleNet 1G [62] 10 0.24M 8.56
HENet [48] 9 0.7M 10.16
ResNet18 [16] 20 0.27M 8.75
Frac-ResNet18 20 0.18M 8.71

Table 2 illustrates how our results compare to prior re-
lated work, including some recent architectures that have
been benchmarked against the CIFAR-10 pattern recog-
nition problem. We limit our analysis to topologies that
use less than 2.5M trainable parameters. As we noted in
the prior section, we believe that fractional filters can po-
tentially enable efficient implementations of deep learning
models for use in embedded systems. Table 2 shows a sum-

mary of results from the smallest models recently reported
for the CIFAR-10 classification problem.

In our experiments, different layers of the ResNet-18
topology were replaced to study the effect of the frac-
tional filters. The notation in table 2 is as follows: Frac-
ResNet18 indicates that all the ResNet block were entirely
comprised of fractional kernels, with the following topol-
ogy: (16 traditional convolutional kernels (3x3),1 fractional
ResNet block, 2 fractional ResNet blocks [16,32,64], and a
fully connected layer (10).

Similar to our experimental results for MNIST, the
CIFAR-10 results exhibit a degradation in accuracy when
replacing all filters in the ResNet blocks of the network, but
the accuracy drop is only 0.04%, while the induced param-
eter reduction 33% in this case. Naturally, if one replaces
larger conventional filters with FFs, the compression yield
can be improved further.

6.3. Experiment 3: ImageNet

The results shown in Table 3 reflect performance on the
ImageNet dataset using a ResNet18 topology with conven-
tional convolutional kernels in the first layer replaced with
our proposed fractional kernels (64 fractional conv(7x7),
4 resnet blocks [64,128,256,512][2,2,2,2], and 1000 fully
connected). These experiments on ImageNet yield a 0.6%
accuracy drop in the top-1 error percentage result, com-
pressing 8× the number of parameters in such layer. be-
cause here the filters had 7 × 7 parameters, these 49 were
replaced by only 6 parameters for each filter.

Table 3. ImageNet Accuracy vs Number of parameters

Neural Network #L1 Parameters Accuracy

ResNet18 [16] 9,408 69.7%
Frac-ResNet18 L1 1,152 69.17%

In this topology the rest of the filters are (3 × 3) having
only 9 parameters each, the effort of reducing to 6 parame-
ters will produce a very light compression on the model, but
for instance the last ResNet block of the model has almost
one million filters, then amount of removed parameters is
about 3,670,016 with 0.5% additional accuracy drop.

6.4. Experiment 4: UCF101

UCF101 [54] is an action recognition dataset of realis-
tic action videos, collected from YouTube, with 101 action
categories. The action categories can be divided into five
types: 1)Human-Object Interaction 2) Body-Motion Only
3) Human-Human Interaction 4) Playing Musical Instru-
ments 5) Sports. With 13,320 videos from 101 action cat-
egories, UCF101 gives the largest diversity in terms of ac-
tions and with the presence of large variations in camera
motion, object appearance and pose, object scale, view-
point, cluttered background, illumination conditions, etc.
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From the videos we extract sequences of frames with a total
of 29,479,886 frames for the training and testing, Our neural
network architecture is based on the 3D-ResNet introduced
in [29] and [57] which uses 3D CNN instead of 2D CNN, in
order to capture spatio-temporal information from the video
data. The original architecture is composed by 64 3D filters
of (7 × 7 × 7), a pooling 3D layer of (3 × 3 × 3), four
ResNet layers of 2 block each with 64, 128, 256 and 512
filters respectively each one with 3D filters of (3 × 3 × 3);
every block performs batch normalization, and the network
uses average pooling and a final fully- connected layer at
output. The proposed fractional filters were used in the first
convolutional layer replacing the 64 (7 × 7 × 7, i.e., 343
parameters per filter) filters with the fractional filters using
only 8 parameters per filter. Our results in the in the table
4 shows a drop of 0.2% in accuracy due to this parameter
compression. In the table 4 the number of parameters in the

Table 4. UCF101 Accuracy vs Number of parameters, Suffle &
learn used cafeNet and OPN uses VGG-M-2048

Neural Network #L1 Parameters Accuracy.

Shuffle & Learn [23] 28,224 50.2%
OPN(80x80) [36] 49,392 59.8%
OPN(120x120) [36] 49,392 55.4%
OPN(224x224) [36] 49,392 51.9%
ResNet18 [16] 65,856 60.6%
Frac-ResNet18 L1 1,536 60.4%

first layer is highlighted,in which the fractional filters were
used. Making this layer in the ResNet18 the more efficient
in terms of number of parameters vs accuracy.

6.5. Converting CNNs into FF-CNNs

Finally, we propose an efficient method to con-
vert any conventional CNN into a FF-based CNN. Us-
ing a pre-trained CNN (e.g., ResNet) one can, in par-
allel, convert each conventional filter into a FF by
solving the optimization problem (in the 2D case):
argmina,b,x0,y0,σ

∑|C|
(i,j)∈C(Fij − Cij)

2, for each filter C

in the CNN; where a, b, x0, y0, σ are the 2D FF parameters
as referred to in Equation 14; C denotes the discrete con-
ventional filter (e.g., 3× 3), Cij connote the corresponding
filter values, and Fij represent the filter values for the FF. In
general, solving the aforementioned optimization problem
is non-trivial. In addition, even individual, slight displace-
ments from an optimal solution for a given filter approxima-
tion can accumulate across many filters in a model, leading
to severe degradation of the FF-CNN performance.

We experimented with three different methods to solve
the above optimization problem as a general procedure for
converting conventional CNNs into FF-CNNs. In total, we
compared the performance of Conjugate Gradient, the Sim-
plex Method and Particle Swarm Optimization (PSO) [28]

Figure 6. Two randomly selected examples of kernel approxima-
tion using the PSO algorithm for 5 × 5 fractional filters; the ap-
proximation is overlaid on top of the original filter in each image.

for approximating conventional filters with fractional fil-
ters. In our experiments, using 10,000 randomly gener-
ated filters, PSO significantly outperformed the other stan-
dard optimization techniques, yielding close to an order of
magnitude smaller normalized error for filter approxima-
tion. When using the previously mentioned CNN architec-
tures for the MNIST dataset, PSO converted the conven-
tional CNN pre-trained model with 99.1% performance on
MNIST to 98.3% (without any additional refinement train-
ing applied).

7. Conclusion
Fractional filters provide a novel solution for kernel com-

pression in deep CNNs through the introduction of a re-
duced representation of a convolutional kernel in functional
form. Importantly, this compression methodology admits
of very favorable scaling attributes, as the number of FF
parameters required for compression is essentially indepen-
dent of the original kernel size.

Through experiments, we demonstrate the general effec-
tiveness of FFs for filter compression across the MNIST,
CIFAR-10, ImageNet, and UCF101 datasets. Notably, us-
ing FFs, we achieve a new record for the smallest model
that can achieve greater than 99% accuracy performance on
MNIST.

The reduction of CNN parameters using fractional filters
can be enhanced considerably in the case of large kernel
sizes. Concretely, our method achieves a 4X compression
for 5 × 5 kernels, and 8X compression for 7 × 7 kernels,
etc. This compression rate is larger still when using 3D fil-
ters (e.g., 15X for 5× 5× 5 kernels and 42X for 7× 7× 7
kernels), as shown in our experiments. To this end, frac-
tional filters provide added value as an efficient means to
compress CNNs across a variety of challenging, high fi-
delity use cases that benefit from the use of large kernel
sizes, including pixel-level segmentation, medical imaging
applications, and super resolution upsampling. Additional
to the compression, the fractional filters allows the training
of a NN using a pre-selected kernel size like 5×5 to get the
parameters a, b, x0... and reuse them to define a 3 × 3 or a
7× 7 without any retraining.
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