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1. Model Details
In this section we provide more details about the baseline

model D-VAE [4], We also further describe the incorpora-
tion of our proposed method into the D-VAE, that produces
DVAE-EMB model, and finally we prove that DVAE-EMB
can injectively encode the computations on DAGs.

D-VAE. D-VAE is a graph-based variational autoencoder
for Directed Acyclic Graphs (DAGs). It uses a message-
passing graph neural network to encode the graphs using an
asynchronous message passing schema, following the topo-
logical ordering of the DAG. Firstly, for every node u, it
aggregates the messages from its neighbors, using an ag-
gregation function A

hin
u = A({Cat(hv, xv) : (v → u)}) (1)

, where xv is the one-hot vector of node v′s type, and Cat
is a concatenation operation. Secondly, it update the rep-
resentation of every node u, based on the incoming aggre-
gated message from its neighbors and the one-hot vector xu

of node u′s type,

hu = U(hin
u , xu). (2)

In contrast with simultaneous message passing schemas, D-
VAE update the hidden states of the nodes following the
topological ordering of the DAG. This asynchronous mes-
sage passing scheme can effectively encode the computa-
tions on DAGs, but the one-hot vector representation of the
operations limits the expressivity of the model.

As the goal is to perform optimization in the continu-
ous learned space, the encoder must map different architec-
tures to different representations hG. To achieve this, the
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aggregation function A and the update function U must be
injective, as noted in Theorem 2 in [4]. Also, the encoder
should be invariant to node permutations, such that isomor-
phic graphs, that represent the same architecture, be mapped
in the same representation. To achieve this, the aggregation
function must be permutation invariant, as noted in Theo-
rem 1 in [4]. To model these two functions, they used a
gated sum as an aggregation function:

hin
u =

∑
u→v

g(Cat(hv, xv))�m(Cat(hv, xv)), (3)

where m is a mapping network and g is a gating network
and a gated recurrent unit (GRU)[1] as an update function:

hu = GRU(xu, h
in
u ) (4)

.

DVAE-EMB The model DVAE-EMB replaces the one-
hot vectors in D-VAE, with our proposed operation embed-
dings approach. The aggregation function 1 and the update
function 2 are transformed as follows:

hin
u = A({Cat(hv, O(xv)) : (v → u)}) (5)

,

hu = U(hin
u , O(xu)), (6)

where O(xu) is the operation embedding of node’s u type.
The equations 3,4 are now modified as follows:

hin
u =

∑
u→v

g(Cat(hv, O(xv)))�m(Cat(hv, O(xv))) (7)

hu = GRU(O(xu), h
in
u ) (8)

.



Since our operation embedding function O is injective,
the update and the aggregation functions remain injective,
as the composition of injective functions is injective. There-
fore Theorems 1,2 still holds for DVAE-EMB and conse-
quently our encoder can injectively encode the computa-
tions on DAGs.

2. Training Details
In order to have a fair comparison, we use the same set-

tings from Zhang et al. [4] to train our models (DVAE-
EMB, GCN-EMB). For the baselines models, we use the
reported results from Zhang et al. [4]. We set the dimen-
sionality of the operation embeddings to be 3 for both mod-
els.

For DVAE-EMB we employ the strategy described in
Section 3.3. Specifically, we fully-train the model for 4 iter-
ations, for 300 epochs in each iteration. In the first iteration
we initialize the operation embeddings from a normal dis-
tribution N (0, I). In the next iterations, we initialize the
operation embeddings, using the output of the last epoch in
the previous iteration. Using this strategy, we observe an
increasing performance of the autoencoder, as the operation
embeddings are trained for more epochs and capture more
effectively the relations between the operations.

For GCN-EMB we just initialize the operation embed-
dings from a normal distribution, and train the model for
300 epochs without extra iterations. Note that both DVAE-
EMB and GCN-EMB achieve better results from their coun-
terparts (DVAE,GCN) even from the first iteration of the
operation embeddings.

All models are implemented using Py-
torch library [3]. The code is available at
https://anonymous.4open.science/r/
75a8dbc2-7fe3-4d07-8f55-7856b8a67829/.

3. Architecture Performance and Graph Prop-
erties - Experiment Details

In this experiment, we investigate the relation between
the performance of the architecture and its corresponding
graph structure as described in Section 3.1. Specifically,
two graph properties, the average path length and the clus-
tering coefficient reveal a correlation with the architecture
performance.

Average path length is defined as the average shortest
path distance between all possible pairs of network nodes.
We calculate average path length of a graph G using the
following formula:

LG =
1

n · (n− 1)
·
∑
i 6=j

d(ui, uj), (9)

where d(ui, uj) is the shortest distance between the nodes

ui and uj . Assume that d(u1, u2) = 0 if there is no path
from ui to uj .

Clustering coefficient measures the probability that the
adjacent vertices of a vertex are connected. We calculate
this property using the igraph software [2]. Specifically, we
measure the global clustering coefficient which is the the
ratio of the triangles and the connected triples in the graph.
Because we have directed graphs the direction of the edges
is ignored.
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