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1. Proof
Proof. First, we prove that Equation 3 (main text) holds
for ∀o ∈ {0, 1, ..., n − 2}. In this case, it’s sufficient
to prove the output of the first convolution Conv(cl,m,k,k)

can be exactly matched by adding Conv(cl,cl+1,1,1) before
Conv(cl+1,m,k,k). Let W 1

cl,cl+1,1,1
and W 2

cl,m,k,k be the
weight tensors of Conv(cl,cl+1,1,1) and Conv(cl+1,m,k,1)

respectively. Let W 3
cl,m,k,k be the weight tensors of

Conv(cl,m,k,1). Let w be one element of the tensor. We
have

y = Conv(cl,cl+1,1,1)(x
cl
l ), z = Conv(cl+1,m,k,1)(y) (1)

y(i, j, c) =

cl∑
p=1

w1
p,c,1,1x(i, j, p) (2)

Also,

z(i, j, c) =

k∑
q=1

cl+1∑
p=1

w2
p,c,q,qy(i+ q, j + q, p)

=

k∑
q=1

cl+1∑
p=1

w2
p,c,q,q(

cl∑
u=1

w1
u,p,1,1x(i+ q, j + q, u))

=

k∑
q=1

cl+1∑
p=1

cl∑
u=1

w2
p,c,q,qw

1
u,p,1,1x(i+ q, j + q, u)

=

k∑
q=1

cl∑
u=1

w3
u,c,q,qx(i+ q, j + q, u)

(3)

Therefore, the first part is proved by setting

w3
u,c,q,q =

cl+1∑
p=1

w2
p,c,q,qw

1
u,p,1,1. (4)

For o = n− 1, we replace a skip connection with an ELS.
We can iteratively apply the first part of the proof till the
end of searchable layers.

*This work was done when all the authors were at Xiaomi AI Lab.

Algorithm 1 The constrained and weighted NAS pipeline.
Input: Supernet S, the number of generations N , popu-
lation size n, validation dataset D, constraints C, objec-
tive weights w
Output: A set of K individuals on the Pareto front.
Train supernet S defined on the scalable search space.
Uniformly generate the populations P0 and Q0 until each
has n individuals satisfying CFLOPS, CAccuracy.
for i = 0 to N − 1 do
Ri = Pi ∪Qi

F = non-dominated-sorting(Ri)
Pick n individuals to form Pi+1 by ranks and the
crowding distance weighted by w.
Qi+1 = ∅
while size(Qi+1) < n do
M = tournament-selection(Pi+1)
qi+1 = crossover(M) ∪ hierarchical-mutation(M)
{Check the FLOPS constraint at first (It takes <
1ms).}
if FLOPS(qi+1) > FLOPSmax then

continue
end if
Evaluate model qi+1 with S on D {Check the accu-
racy constraint (It takes ≈ 60s).}
if Accuracy(qi+1) > Accmin then

Add qi+1 to Qi+1

end if
end while

end for
Select K equispaced models near Pareto-front from PN

2. Algorithm

Our constrained and weighted NAS pipeline is listed in
Algorithm 1 and Fig. 1.



F1

F2

F3

Pi+1
Weighted Non-dominated Sorting 

Pi Qi

i>0

To
ur
na
m
en
t

C
ro
ss
ov
er

M
ut
at
io
n

FL
O
Ps
<5
00
M

A
cc
>4
0%

P0 Q0

Uniform initialization

FL
O
Ps
<5
00
M

A
cc
>4
0%<2n

Figure 1. Constrained and weighted NSGA-II Pipeline. It starts
with a uniform initialization (top left) with some constraints (red)
to generate the initial population. The trained scalable supernet
serves as a fast evaluator to decide the relative performance of each
model so that they can be grouped into several Fronts (F1, F2, . . .)
by weighted non-dominated sorting (right). Only the top n of them
make up the next generation Pi+1, based on which Qi+1 is pro-
duced with tournament selection, crossover and mutation (blue)
under the same constraints (bottom left). The whole evolution
loops until we reach Pareto-optimality.

3. Experiments

3.1. Search Space

For later experiments, we add skip connections to com-
monly used search space to construct S1 and S2. They are
described as follows,

Search Space S1. It is similar to ProxylessNAS [2],
where MobileNetV2 [7] is adopted as its backbone. In
particular, S1 is represented as a block-level supernet with
L = 19 layers of N = 7 choices each. Its total size is 719.
The choices are,

• MobileNetV2’s inverted bottleneck blocks [7] of two
expansion rates (x) in (3,6), three kernel sizes (y) in
(3,5,7), labelled as MBExKy1,

• skip connection (the 6th choice2).

Search Space S2. On top of S1, we give each inverted
bottleneck a squeeze-and-excitation [5] option (e.g., ExKy,
ExKy SE), similar to MnasNet [8]. Its total size thus be-
comes 1319.

We have to notice that skip connections are commonly
used [8, 6, 1], but meticulously neglected in recent single-
path one-shot methods [4, 3].

3.2. NSGA-II Hyperparameters

The hyperparameters for the weighted NSGA-II ap-
proach are given in Table 1.

1The order of numbering o = (x− 3) + (y − 3)/2.
2zero-based numbering

Item value Item value
Population N 70 Mutation Ratio 0.8
prm 0.2 pre 0.65
ppr 0.15 pM 0.7
pK−M 0.3

Table 1. Hyperparameters for the weighted NSGA-II approach.

3.3. More Details about Scalable Supernet with ELS

Given an input of a chickadee3 image from ImageNet,
we illustrate both high-level and low-level feature maps of
the trained supernet with our proposed improvements in
Figure 2. Pure skip connection easily interferes with the
training process as it causes incongruence with other choice
blocks. Note the channel size of feature map after Choice 6
in Figure 2 (a) is half of others because the previous chan-
nel size is 16, while other choice blocks output 32 channels.
This effect is largely attenuated by ELS. As it goes deeper,
we still observe consistent high-level features. Specifically,
when ELS is not enforced, high-level features of deeper
channels easily get blurred out, while the supernet with ELS
enabled continues to learn useful features in deeper chan-
nels.

3.4. Search Space Evaluation

NAS results can benefit from good search space. To
prove the validity of the proposed method, we show our
search space has a wide range and is not particularly de-
signed. We pick two extreme cases, one with all identity
blocks (only the stem and the tail remains), the other with all
K7E6s. They have the minimum and the maximum FLOPS
respectively. We list their evaluation result in Table 2. The
former has 24.1% top-1 accuracy on ImageNet, and the lat-
ter 76.8% at a cost of 557M FLOPs. Both are infeasible
solutions as they violate either accmin or maddsmax. It’s
thus a challenging task to deal with such search space for
ordinary search techniques.

3.5. Analysis of SCARLET Models

SCARLET-A makes full use of large kernels (five 5× 5
and seven 7×7 kernels) to enlarge receptive field. Besides
it activates many squeezing and excitation (12 out of 19)
blocks to improve its classification performance. At the
early stage, it appreciates either large kernels and small ex-
pansion ratios or small kernels and large expansion ratios to
balance the trade-off between accuracy and FLOPs.

SCARLET-B chooses two identity operations. Com-
pared with A, it shortens network depth at the last stages.
Besides, it utilizes squeezing and excitation block exten-
sively (14 out of 17). It places a large expansion block with
large kernels at the tail stage.

3ImageNet ID: n01592084 7680



Choice 0

Choice 1

Choice 2

Choice 3

Choice 4

Choice 5

Choice 6

(a) First choice blocks’ feature maps without ELS

Choice 0

Choice 1

Choice 2

Choice 3

Choice 4

Choice 5

Choice 6

(b) First choice blocks’ feature maps with ELS

Choice 0

Choice 1

Choice 2

Choice 3

Choice 4

Choice 5

Choice 6

(c) High-level choice blocks’ feature maps without ELS

Choice 0

Choice 1

Choice 2

Choice 3

Choice 4

Choice 5

Choice 6

(d) High-level choice blocks’ feature maps with ELS

Figure 2. Learned low-level and high-level features for the supernet with and without ELS.

Models FLOPS (M) > maddsmax Top-1 (%) Top-5 (%) < accmin

All Identity 23 No 24.1 45.0 Yes
All K7E6 557 Yes 76.8 93.3 No

Table 2. Full train results of models with minimal and maximal FLOPS.

SCARLET-C uses three identity operations and utilizes
small expansion ratio extensively to cut down the FLOPs,
large expansion ratio at the tail stage whose resolution is
7 × 7. It prefers large kernels before the downsampling
layers. Besides, it makes an extensive use of squeeze and
excitation to boost accuracy.
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