Supplementary of “SCARLET-NAS: Bridging the Gap between Stability and Scalability in Weight-sharing Neural Architecture Search”

Xiangxiang Chu* Bo Zhang Qingyuan Li Ruijun Xu Xudong Li
{chuxiangxiang,zhangboli1,liqingyuan, xuruijun}@xiaomi.com, lixudong16@mails.ucas.edu.cn

1. Proof

Proof. First, we prove that Equation 3 (main text) holds for $\forall n \in \{0, 1, ..., n - 2\}.$ In this case, it’s sufficient to prove the output of the first convolution $\text{Conv}_{(c_i, m, k, k)}$ can be exactly matched by adding $\text{Conv}_{(c_{i+1}, 1, 1, 1)}$ before $\text{Conv}_{(c_{i+1}, m, k, k)}$. Let $W_{c_i, c_{i+1}, 1, 1}$ and $W_{c_i, m, k, k}$ be the weight tensors of $\text{Conv}_{(c_i, c_{i+1}, 1, 1)}$ and $\text{Conv}_{(c_{i+1}, m, k, k)}$ respectively. Let $W_{c_i, m, k, k}$ be the weight tensors of $\text{Conv}_{(c_i, m, k, 1)}$. Let w be one element of the tensor. We have

$$y = \text{Conv}_{(c_i, c_{i+1}, 1, 1)}(x_1^n), z = \text{Conv}_{(c_i, m, k, 1)}(y)$$

$$y(i, j, c) = \sum_{p=1}^{c_i} w_{p, c, 1, 1} x(i, j, p)$$

Also,

$$z(i, j, c) = \sum_{q=1}^{c_{i+1}} \sum_{p=1}^{c_i} w_{p, c, q, q} y(i + q, j + q, p)$$

$$= \sum_{q=1}^{c_{i+1}} \sum_{u=1}^{c_i} \sum_{p=1}^{c_i} w_{p, c, q, q} w_{u, p, 1, 1} x(i + q, j + q, u)$$

$$= \sum_{q=1}^{c_{i+1}} \sum_{u=1}^{c_i} \sum_{p=1}^{c_i} w_{u, c, q, q} w_{p, c, q, q} w_{u, p, 1, 1} x(i + q, j + q, u)$$

Therefore, the first part is proved by setting

$$w_{u, c, q, q} = \sum_{p=1}^{c_{i+1}} w_{p, c, q, q} w_{u, p, 1, 1}.$$

(4)

For $o = n - 1$, we replace a skip connection with an ELS.

We can iteratively apply the first part of the proof till the end of searchable layers.

*This work was done when all the authors were at Xiaomi AI Lab.

Algorithm 1 The constrained and weighted NAS pipeline.

Input: Supernet S, the number of generations N, population size n, validation dataset D, constraints C, objective weights w

Output: A set of K individuals on the Pareto front.

Train supernet S defined on the scalable search space. Uniformly generate the populations P_1 and Q_0 until each has n individuals satisfying $C_{\text{FLOPS}}, C_{\text{Accuracy}}$.

for $i = 0$ to $N - 1$

$R_i = P_i \cup Q_i$

$F = \text{non-dominated-sorting}(R_i)$

Pick n individuals to form P_{i+1} by ranks and the crowding distance weighted by w.

$Q_{i+1} = \emptyset$

while $\text{size}(Q_{i+1}) < n$ do

$M = \text{tournament-selection}(P_{i+1})$

$q_{i+1} = \text{crossover}(M) \cup \text{hierarchical-mutation}(M)$

(3)

\{ Check the FLOPS constraint at first (It takes $< 1 \text{ms}$). \}

if $FLOPS(q_{i+1}) > FLOPS_{\text{max}}$ then

continue

end if

Evaluate model q_{i+1} with S on D \{ Check the accuracy constraint (It takes $\approx 60s$). \}

if $\text{Accuracy}(q_{i+1}) > \text{Acc}_{\text{min}}$ then

Add Q_{i+1} to Q_{i+1}

end if

end while

end for

Select K equispaced models near Pareto-front from P_N

2. Algorithm

Our constrained and weighted NAS pipeline is listed in Algorithm 1 and Fig. 1.
Figure 1. Constrained and weighted NSGA-II Pipeline. It starts with a uniform initialization (top left) with some constraints (red) to generate the initial population. The trained scalable supernet serves as a fast evaluator to decide the relative performance of each model so that they can be grouped into several Fronts (F1, F2, . . .) by weighted non-dominated sorting (right). Only the top n of them make up the next generation P_{i+1}, based on which Q_{i+1} is produced with tournament selection, crossover and mutation (blue) under the same constraints (bottom left). The whole evolution loops until we reach Pareto-optimality.

3. Experiments

3.1. Search Space

For later experiments, we add skip connections to commonly used search space to construct S1 and S2. They are described as follows,

Search Space S1. It is similar to ProxylessNAS [2], where MobileNetV2 [7] is adopted as its backbone. In particular, S1 is represented as a block-level supernet with L = 19 layers of N = 7 choices each. Its total size is 7^{19}.

The choices are,

- MobileNetV2’s inverted bottleneck blocks [7] of two expansion rates (x) in (3,6), three kernel sizes (y) in (3,5,7), labelled as MBExK{y}1.
- skip connection (the 6th choice).

Search Space S2. On top of S1, we give each inverted bottleneck a squeeze-and-excitation [5] option (e.g., ExKY, ExKYS), similar to MnasNet [8]. Its total size thus becomes 13^{19}.

We have to notice that skip connections are commonly used [8, 6, 1], but meticulously neglected in recent single-path one-shot methods [4, 3].

3.2. NSGA-II Hyperparameters

The hyperparameters for the weighted NSGA-II approach are given in Table 1.

<table>
<thead>
<tr>
<th>Item</th>
<th>value</th>
<th>Item</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population N</td>
<td>70</td>
<td>Mutation Ratio</td>
<td>0.8</td>
</tr>
<tr>
<td>pRM</td>
<td>0.2</td>
<td>pRE</td>
<td>0.65</td>
</tr>
<tr>
<td>pP</td>
<td>0.15</td>
<td>pM</td>
<td>0.7</td>
</tr>
<tr>
<td>pK-M</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Hyperparameters for the weighted NSGA-II approach.

3.3. More Details about Scalable Supernet with ELS

Given an input of a chickadee3 image from ImageNet, we illustrate both high-level and low-level feature maps of the trained supernet with our proposed improvements in Figure 2. Pure skip connection easily interferes with the training process as it causes incongruence with other choice blocks. Note the channel size of feature map after Choice 6 in Figure 2 (a) is half of others because the previous channel size is 16, while other choice blocks output 32 channels. This effect is largely attenuated by ELS. As it goes deeper, we still observe consistent high-level features. Specifically, when ELS is not enforced, high-level features of deeper channels easily get blurred out, while the supernet with ELS enabled continues to learn useful features in deeper channels.

3.4. Search Space Evaluation

NAS results can benefit from good search space. To prove the validity of the proposed method, we show our search space has a wide range and is not particularly designed. We pick two extreme cases, one with all identity blocks (only the stem and the tail remains), the other with all K7Es. They have the minimum and the maximum FLOPS respectively. We list their evaluation result in Table 2. The former has 24.1% top-1 accuracy on ImageNet, and the latter 76.8% at a cost of 557M FLOPs. Both are infeasible solutions as they violate either acc_{min} or madds_{max}. It’s thus a challenging task to deal with such search space for ordinary search techniques.

3.5. Analysis of SCARLET Models

SCARLET-A makes full use of large kernels (five 5 \times 5 and seven 7\times7 kernels) to enlarge receptive field. Besides it activates many squeezing and excitation (12 out of 19) blocks to improve its classification performance. At the early stage, it appreciates either large kernels and small expansion ratios or small kernels and large expansion ratios to balance the trade-off between accuracy and FLOPs.

SCARLET-B chooses two identity operations. Compared with A, it shortens network depth at the last stages. Besides, it utilizes squeezing and excitation block extensively (14 out of 17). It places a large expansion block with large kernels at the tail stage.

1The order of numbering o = (x - 3) + (y - 3)/2.
2zero-based numbering
3ImageNet ID: n01592084_7680
SCARLET-C uses three identity operations and utilizes small expansion ratio extensively to cut down the FLOPs, large expansion ratio at the tail stage whose resolution is 7×7. It prefers large kernels before the downsampling layers. Besides, it makes an extensive use of squeeze and excitation to boost accuracy.

References

